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Abstract

In the current multi-scale LBP (MS-LBP) on texture and material classification, each
scale is encoded into histograms individually. This strategy ignores the correlation be-
tween different scales, and loses a lot of discriminative information. In this paper , we
propose a novel and effective multi-scale joint encoding of local binary patterns (MSJ-
LBP) for texture and material classification. In MSJ-LBP, the joint encoding strategy
can capture the correlation between different scales and hence depict richer local struc-
tures. In addition, the proposed MSJ-LBP is computationally simple and rotation invari-
ant. Extensive experiments on four challenging databases (Outex_TC_00012, Brodatz,
KTH-TIPS, KTH-TIPS2a) show that the proposed MSJ-LBP significantly outperforms
the classical MS-LBP and achieves the state-of-the-art performance.

1 Introduction
Texture and material classification are a fundamental research problem in computer vision,
which play an important role in a lot of vision applications including scene understanding,
object recognition, content-based image retrieval, medical image analysis, image segmenta-
tion and many more.

The Local Binary Pattern (LBP) [14] descriptor has achieved great success on texture and
material classification due to its computational efficiency and texture discriminative power.
Since its first publication, LBP has been widely applied to a lot of applications, such as
face recognition, face detection, image retrieval, lip reading and many more [17]. A lot of
LBP variants have been proposed in the past ten years. In [21], Tan et al. propose a Local
Ternary Pattern (LTP) for face recognition. The proposed method shows great robustness to
illumination variation. To achieve great rotation invariance, Ahonen et al. [1] propose an
effective LBP Histogram Fourier (LBP-HF) features. Their method shows great robustness
to image rotation. Recently, a novel Linear Configuration Pattern (LCP) [6] is introduced
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Figure 1: An illustration of LBP and Multi-scale LBP. Compared with single-scale LBP,
LBPs in multiple scales jointly characterize richer local structures. The LBP patterns in
different scales have strong correlation.

to explore multi-channel discriminative information of both the microscopic configuration
and local features. In addition, there are some other variants, such as DLBP [12], CLBP [8],
VLBP [26] and so on.

To depict texture information in different image resolutions, multi-scale strategy is in-
troduced into texture and material classification [8, 9, 11, 13, 16]. Firstly, single-scale LBP
histogram features are extracted in each scale separately. Then, the histograms in each scale
are concatenated into a final image representation. Similarly, the same multi-scale strategy
are used by LCP, LBP-HF, DLBP and other LBP-based features. Since the multi-scale strat-
egy always achieves much better performance than single scale, it is usually recognized as
an indispensable means to achieve the state-of-the-art performance.

However, despite its effectiveness in texture and material classification, the classical
multi-scale strategy ignores the correlation information between different scales. As shown
on the left panel of Figure 1, each LBP pattern depicts a kind of local image structure. On the
right panel of Figure 1, LBP patterns in multiple scales jointly depict a kind of stronger local
structure. In fact, texture patterns in different scales around the same central point usually
have a strong correlation. Ignoring such correlation will lead to huge lose of discriminative
information.

In this paper, we propose a Multi-Scale Joint encoding of LBP ( MSJ-LBP ) feature
to encode the joint distribution of LBP patterns in different scales for texture and material
classification. Contrast to the classical multi-scale LBP (MS-LBP) that ignores the corre-
lation between different scales, MSJ-LBP can effectively encode this kind of correlation.
Compared to the single scale encoding, the multi-scale joint encoding strategy can depict
stronger local structures. Meanwhile, the computational cost of MSJ-LBP is extremely low.
In practice, the speed of MSJ-LBP is much faster than MS-LBP due to that MSJ-LBP uses
a fewer neighbors. In addition, the proposed feature is designed for rotation invariance, and
excellent experimental results on the datasets with obvious image rotation demonstrate the
robustness of the proposed feature to image rotation.
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Figure 2: An illustration of drawback of the current MS-LBP. MS-LBP encodes each scale
individually. Although the two structures shown above have the same LBPRIU patterns in the
corresponding scales, they correspond to different subtle structures in image.

2 Multi-scale Joint Encoding of Local Binary Pattern

2.1 A Brief Review of LBP
LBP is an effective gray-scale texture operator that depicts local structures of natural images,
such as edge, contour, flat region and so on. For each pixel in an image, the LBP pattern can
be computed by comparing its pixel value with the values of its neighbors:

LBP(⃗s) =
n−1

∑
k=0

ϕ(vk − vc)2k, ϕ(x) =

{
1, x ≥ 0
0, x < 0,

(1)

where s⃗ = [n,r], n is the number of neighbors and r is the radius of the neighbors. vc is the
gray value of the central pixel, and vk is the pixel value of its k-th neighbor.

In [16], Ojala et al. also observed that these patterns with very few spatial transitions
described the fundamental properties of the image, and they called these patterns as “uniform
patterns”. The number of spatial transitions can be calculated as follows:

Φ(LBP(⃗s)) =
n

∑
k=1

|ϕ(vk − vc)−ϕ(vk−1 − vc)|, (2)

where vn is set to v0. The uniform patterns are defined as those patterns with Φ(LBP(s))≤ 2.
For instance, “00001110” is a uniform pattern, while “00100100” is not.

The uniform LBP (LBPU ) depends on the start point of the binary sequence. Defined
on different start points, LBPU will have different uniform patterns. For instance, the binary
sequence “00001000” defined on 1st position or 2nd position, the corresponding uniform
LBP patterns are different. Here, we denote LBPU (⃗s, i) as the uniform LBP pattern on the
scale s⃗1 with i as the start point of the binary sequence, where 0 ≤ i ≤ n−1.

To achieve robustness to image rotation, Ojala et al. also introduced the concept of Ro-
tation Invariant LBP (LBPRI) and Rotation Invariant Uniform LBP (LBPRIU ), where LBPRIU

is popularly used for texture classification. The LBPRIU can be defined as:

LBPRIU (⃗s) =

{
∑n−1

k=0 ϕ(vk − vc), Φ(LBP(s))≤ 2
n+1, otherwise,

(3)

For the number of neighbors n = 8, LBP has 28 = 256 patterns, in which there are 58
uniform patterns and 198 non-uniform patterns. Usually, all 198 non-uniform patterns are
summarized into one pattern. Thus, in practice, LBPU has 59 patterns. According to Eq. 3,
the LBPRIU has 10 patterns.
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Figure 3: An illustration of the encoding method of MSJ-LBP and its rotation invariance.
For the left image, we first compute its LBPRIU pattern in the scale s⃗1 and determine the start
point i which maximizes the binary sequence. According to the start point i, we can compute
its LBPU in the scale s⃗2. Thus, the joint pattern is [(11110000)RIU ,(11110001)U ]. Similarly,
we can get the same joint pattern for the right joint pattern.

2.2 Multi-scale Joint Encoding Local Binary Pattern
As shown in Figure 1, each LBP pattern characterizes a local structure, but its descriptive
power is limited by its small described region. Compared to single scale LBP, the LBPs in
multiple scales jointly characterize richer local structures with larger described region.

To capture the texture information in different resolutions, multi-scale encoding strategy
is usually used in texture and material classification tasks [8, 11, 13, 16]. First, the LBPRIU

histograms are extracted individually from each scale, and then the histograms for all scales
are concatenated into the final representation. On most texture and material tasks, the classi-
cal MS-LBP achieves great performance .

However, the MS-LBP (Multi-scale LBPRIU ) ignores the correlation between different
scales. As shown in Figure 2, the two structures have the same MS-LBP pattern, but they
represent apparently different structures. The left figure characterizes a strong contour struc-
ture, but the right figure depicts a not usually occurred structure. In the natural images, the
LBP patterns between the adjacent scales are usually relevant. The patterns in different s-
cales jointly reflect a stronger structure. Capturing such stronger structure can provide more
discriminative information.

To characterize stronger local image structures, it is necessary to jointly encode the joint
distribution of LBP patterns in different scales. Here, we propose a kind of multi-scale joint
encoding of local binary pattern (MSJ-LBP) feature. Denote MSJ-LBP with scales s⃗1 and s⃗2
as MSJ−LBP(s⃗1, s⃗2) , then it can be defined as follows:

MSJ−LBP(s⃗1, s⃗2) = [LBPRIU (s⃗1),LBPU (s⃗2, i)]co, (4)

where
i = argmax

i
{ROR(LBP(s⃗1), i) | i = 0,1, ....,n1−1}, (5)

s⃗1 = [n1,r1] and s⃗2 = [n2,r2]. In this paper, n2 is set to be n1 for efficient computation.
LBPRIU (s⃗1) denotes the rotation invariant uniform LBP pattern of the scale s⃗1, and LBPU (s⃗2, i)
denotes the uniform LBP pattern of the scale s⃗2 using i as the start point. ROR(x, i) performs
a circular bit-wise right shift on the P-bit number xi times. [ , ]co is a co-occurrence operator.

As shown in Figure 3, we can firstly compute its LBPRIU pattern on scale s⃗1 and deter-
mine the start point i which maximizes the binary sequence of the scale s⃗1. As indicated
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before, LBPRIU has 10 patterns. According to the start point i, we can obtain the LBPU (s⃗2, i)
pattern of the center point on the scale s⃗2. LBPU has 59 patterns. Thus, the MSJ-LBP in-
cludes 10×59 = 590 patterns. This encoding strategy is partly inspired by [18]. However, d-
ifferent from [18] and our another work [19] which focus on capturing spatial co-occurrence
of two adjacent points on single scale, the proposed method focuses on capturing texture
correlation between different scales around one point.

The gradient magnitude reflects the local contrast, and contains a lot of useful informa-
tion. The regions with large gradient variance usually indicate stronger local edge structures
which are informative. Thus, we use the gradient magnitude to weight the joint pattern.

Dense sampling strategy is used for building the histogram like the classical LBP-based
histogram representation method. For each point on two chosen scales, we compute its joint
MSJ-LBP pattern that is one of 590 patterns and its gradient magnitude. Then, we build the
histogram by accumulating the patterns of all points except some boundary points.

2.3 Image Representation and Classification
In the previous subsection, we have described the extraction process for two-scales joint
patterns. One of these two scales is considered as the reference scale, which is encoded using
LBPRIU pattern and provides the start point i. Similarly, the other scale can also be considered
as the reference scale. Thus, for each pair, we have a histogram with the dimension 590×2=
1180. In this paper, we use three scales of LBPs ( LBP(8, 1), LBP(8, 2) and LBP(8, 3) ) and
divide them into three pairs ( (8, 1) and (8, 2), (8, 1) and (8, 3), (8, 2) and (8, 3) ). We
concatenate the histograms from each pair. Therefore, the final dimension of our feature is
590*6=3540. We can use more scales, but this will further increase the feature dimension
but not greatly improve the recognition performance.

To conduct the classification, we use one-vs-the-rest χ2 kernel SVM or nearest neighbor
classifier according to the compared previous works. The used χ2 kernel similarity between
features X and Y can be written as S(X ,Y ) = ∑N

i=1
2XiYi
Xi+Yi

, Where N is the dimension of X
and Y . In practice, we use Vlfeat [24] for efficient computation of kernel matrix. For kernel
SVM, we use the Libsvm [5] toolbox.

2.4 Analysis of MSJ-LBP’s Property
• MSJ-LBP depicts larger supporting region and characterizes stronger local structures.

Different from the classical MS-LBP that ignores the texture correlation between dif-
ferent scales, the MSJ-LBP jointly encodes two scales and well preserves the property
of the structures.

• MSJ-LBP is gray-scale invariant. The binary comparisons are invariant to the mono-
tonic gray-scale variance. Thus, the MSJ-LBP pattern will not change under the mono-
tonic gray-scale variance.

• MSJ-LBP is rotation invariant. As shown in Figure 3, the proposed encoding strategy
promises that MSJ-LBP is invariant to image rotation.

• MSJ-LBP’s computational cost is low. In theory, MSJ-LBP has similar computational
cost as MS-LBP when they use the same neighbors. But in practice, we use fewer
neighbors for the MSJ-LBP to reduce the feature dimension. Therefore, the MSJ-LBP
has better efficiency than the MS-LBP.
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Outex_TC_00012 Brodatz

Figure 4: Samples of Outex_TC_00012 and Brodatz. Note that Outex_TC_00012 has strong
rotation variation.

3 Experimental Evaluation
Baselines. Since the proposed MSJ-LBP is designed to describe the joint distribution of

LBPs on multiple scales. Thus, the most relevant competitor is the traditional MS-LBP [16]
approach. In texture classification task, rotation invariant uniform LBP (LBPRIU ) has better
robustness to image rotation than the original LBP and uniform LBP (LBPU ). Therefore, we
use MS-LBPRIU in this paper. Besides of the MS-LBP, there are several LBP variants that
show great effectiveness on texture and material classification, such as LBP-HF [1], DLBP
[12] and LCP [6]. We will detailly compare our MSJ-LBP with them in the paper.

Implementation Details. In this paper, we just use three scales (8, 1), (8, 2) and (8, 3)
for all databases. Thus, we have three pairs (8, 1) and (8, 2), (8, 1) and (8, 3), (8, 2) and (8,
3). We also use three scales for MS-LBP and LBP-HF. Their scales are (8, 1), (16, 2) and
(24, 3). For LCP, we use the default configuration provided by [6].

Classifier. To fairly compare with previous works, we use the corresponding classifier
with them. Since some works use nearest neighbor (NN) classifier, and some previous works
use SVM classifier, we use the same classifier as the compared works.

Computational Cost. In theory, the MSJ-LBP has the same computational complex-
ity with the classical multi-scale LBP. However, in practice, our MSJ-LBP is much faster
because we use fewer neighbors than MS-LBP. Using the matlab implementation of 1 on a
laptop with Pentium 2.0 GHz Dual-core CPU, MS-LBP takes 116 ms to process an 200×200
image, but our MSJ-LBP on matlab takes 55 ms.

3.1 Evaluation of the effectiveness of joint encoding
The MS-LBP is the most relevant to our MSJ-LBP. The former individually encodes each
scale, but the latter jointly encodes multiple scales. Here, we conduct experiments to directly
compare these two approaches to validate the effectiveness of joint encoding strategy.

The experiments are conducted on Brodatz and KTH-TIPS databases. We individually
use nearest neighbor and kernel SVM classifiers. For Brodatz, we use 3 samples for training,
and the rest for testing. For KTH-TIPS, we use 40 training samples, and the rest for testing.
The experimental results are shown in Table 1.

From Table 1, MSJ-LBP significantly outperforms MS-LBP for all configurations. For
instance, for the two scale (8, 1) and (8, 2), MSJ-LBP improves MS-LBP from 87.0% to
94.0% using NN classifier. Similarly, we can observe the similar improvement using SVM

1http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab
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Table 1: Comparison of MS-LBP and MSJ-LBP on Brodatz and KTH-TIPS.

Databases (P, R)
NN SVM

MS-LBP MSJ-LBP MS-LBP MSJ-LBP

Brodatz

(8, 1) + (8, 2) 86.98 94.02 89.46 96.46
(8, 1) + (8, 3) 87.98 94.72 90.51 96.96
(8, 2) + (8, 3) 85.36 93.17 87.86 96.21

(8, 1) + (8, 2) + (8, 3) 87.87 94.49 92.03 97.05

KTH-TIPS

(8, 1) + (8, 2) 91.59 96.16 90.00 97.74
(8, 1) + (8, 3) 92.59 96.93 89.96 98.02
(8, 2) + (8, 3) 91.80 95.41 90.79 97.98

(8, 1) + (8, 2) + (8, 3) 93.36 96.89 92.93 98.47

classifier. According to Table 1, the joint encoding of scales (8, 1) and (8, 3) always achieves
better performance than (8, 1) and (8, 2), and (8, 2) and (8, 3). The reason is that (8, 1) and
(8, 3) has better complementary information than other pairs.

3.2 Texture Classification and Rotation Invariance
Outex [15] is a widely used dataset in texture classification. In this paper, we use the chal-
lenging test suite Outex_TC_00012. It contains 24 texture classes under different illumi-
nation conditions and rotation variance. For each class, 20 samples are used for training.
The training images are taken under single orientation, but the 8640 testing images have
different orientations. Follow the works [1, 6], we use the nearest neighbor classifier. The
classification accuracy for different methods are summarized in Table 2.

For all LBP-related methods (LBPU , LBPRIU , LBP-HF, DLBP, LCP), multi-scale strat-
egy is used. The number of neighbor for LCP and MSJ-LBP are fixed to 8 for all scales,
while the number of neighbors for other methods increases with the radius. For example,
MSJ-LBP use (8, 1), (8, 2) and (8, 3), but LBPU and LBPRIU use (8, 1), (16, 2) and (24, 3).

Table 2: Comparison of several state-of-the-art methods and MSJ-LBP on Outex_TC_00012.
Methods LBPU [16] LBPRIU [16] LBP-HF [1] DLBP [7] LCP [6] MSJ-LBP

R1 56.6 64.6 77.3 56.0 68.4 -
R2 57.8 79.1 87.3 68.7 88.1 -
R3 45.0 83.3 89.6 75.4 92.3 -

R1 + R2 59.5 82.1 89.4 77.8 84.0 91.7
R1 + R3 51.2 88.3 91.7 82.0 88.0 94.6
R2 + R3 51.3 85.7 91.5 83.7 92.7 92.7

R1 + R2 + R3 53.9 87.0 92.5 84.9 90.3 95.1
Texton [23] 91.7 MR8 [22] 92.7

From Table 2, MSJ-LBP achieves the highest classification accuracy among all compared
methods. The performance of multi-scale uniform LBP ( LBPU ) is 53.9%. It is significantly
lower than LBPRIU . The reason is that the training samples come from single orientation, but
the testing samples are from multiple orientations. LBPU is sensitive to image rotation, but
LBPRIU is robust to image rotation. Our MSJ-LBP obtains 95.1% classification accuracy,
which fully verifies the rotation invariance of the proposed method.

Brodatz [2] is a well-known texture benchmark. It contains 111 classes with 9 images
per class. The size of each image is 213×213. We individually use 1 or 3 training samples,
and the rest for test. The accuracy is averaged on 100 runs. The results are shown in Table 3.
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Table 3: Performance of kinds of LBP variants and our MSJ-LBP on Brodatz
Nearest Neighbor Classifier

Methods MS-LBP LBP-HF LBPV LCP MSJ-LBP
1 Training Sample 77.2 84.4 80.2 78.8 87.6
3 Training Samples 83.2 87.2 89.0 84.8 94.5

SVM Classifier
Methods MS-LBP LBP-HF LBPV LCP MSJ-LBP

1 Training Sample 88.8 92.3 85.0 89.6 92.7
3 Training Samples 93.5 94.6 93.2 94.4 97.1

From Table 3,the MSJ-LBP significantly outperforms the MS-LBP using both NN or
SVM classifier. We also observe that the performance of SVM classifier is obviously higher
than NN classifier. The observation is consistent with [4, 25]. Meanwhile, the proposed MSJ-
LBP shows better performance than other kinds of LBP variants including LBP-HF, LBPV
and LCP. This is mainly due to that MSJ-LBP well considers the correlation between the
different scales around one center point, but LBP-HF, LBPV and LCP ignore the correlation
and just focus on improving the discriminative power on each scale. It should be noted that
our MSJ-LBP is also slightly better than PRI-CoLBP (96.6%) [18].

3.3 Material Classification

(a) KTH-TIPS

(b) KTH-TIPS2a

Figure 5: Samples of KTH-TIPS and KTH-TIPS2a. Note that KTH-TIPS contains strong
scale variation and KTH-TIPS2a has strong scale and appearance variation.

KTH-TIPS [10] database is firstly introduced to bring in scale variation. It contains 10
material classes. The images are captured under 9 different scales (equally spaced from 0.5
to 2), three different illumination directions and three different poses. Thus, in this dataset,
each class has 81 samples. Follow the standard experimental setup, we use 40 images per
class for training and the rest for testing. The results are shown in Table 4.

From Table 4, we have the following three observations. Firstly, MSJ-LBP achieves the
highest performance on all LBP relevant approaches. For instance, using NN, MSJ-LBP
achieves 96.5%, which outperforms LCP for 2.8%, LBP-HF for 2.2% and LBPV for 3.5%.
Secondly, compared with some state-of-the-art approaches using kernel SVM, such as bag
of dense sift (96.1%) [25], MSJ-LBP achieves better performance. Finally, similar to the
results on Brodatz, the performance of using kernel SVM significantly outperforms the NN
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Table 4: Performance of kinds of LBP variants and our MSJ-LBP on KTH-TIPS
Nearest Neighbor Classifier

Methods MS-LBP LBP-HF LBPV LCP MSJ-LBP
40 Training Sample 93.4 94.7 93.4 94.1 96.9

SVM Classifier
Methods MS-LBP LBP-HF LBPV LCP MSJ-LBP

40 Training Sample 94.4 96.9 95.5 95.9 98.5

classifier. With χ2 kernel SVM, our MSJ-LBP gets comparable performance to PRI-CoLBP
(98.3%) [18], but much faster than the latter.

KTH-TIPS2a [3] database includes 4608 images from 11 material categories with 4
different instances per category. All images are captured under 3 varying viewing angles,
4 illumination conditions and 9 different scales. Thus, each instance has 3× 4× 9 = 108
samples. Note that the task is challenging due to that the instances in same categories have
huge variation. Follow the setup of [11], we individually use 1, 2 or 3 instances for training
and the rest for testing. We also use kernel SVM like [11]. Figure 6 shows the results.
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Figure 6: Experimental results of several methods on KTH-TIPS2a.

From Figure 6, it can be observed that MSJ-LBP gets the best performance on all three
experimental setups. First of all, all LBP relevant approaches significantly outperforms the
bag of dense sift approach. For example, using just one instance for training and the rest
three instance for testing, MSJ-LBP outperforms bag of dense sift by about 24.5%. This
observation indicates that LBP relevant features may be more suitable to the material recog-
nition task than the SIFT based approach. Meanwhile, although the task is challenging, our
MSJ-LBP still achieves obvious improvement than the LCP and LBP-HF. It should be noted
that our MSJ-LBP also significantly outperforms newly published LHS (73.0%) [20].
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4 Conclusion
This paper proposes a novel and effective texture descriptor (MSJ-LBP) for texture and mate-
rial classification. The proposed MSJ-LBP is computationally simple and invariant to image
rotation. Compared to the current multi-scale LBP that ignores the correlation among differ-
ent scales around the center point, the MSJ-LBP jointly encodes the local binary patterns of
two scales around the center point, and can capture the correlation between different scales.
We conducted extensive experiments to validate the effectiveness of the proposed approach
on texture and material classification task. Superior performances are achieved compared
with the state-of-the-art approaches.
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