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Abstract

A common approach to scene understanding generates a set of structural hypothe-
ses and evaluates these hypotheses using visual features that are easy to detect. How-
ever, these features may not necessarily be the most informative features to discriminate
among the hypotheses. This paper demonstrates that by focusing attention on regions
where the hypotheses differ in how they explain the visual features, we can then eval-
uate those hypotheses more efficiently. We define the informativeness of each feature
based on the expected information gain that the feature provides to the current set of
hypotheses, and demonstrate how these informative features can be selected efficiently.
We evaluate our attention focusing method on a Bayesian filter-based approach to scene
understanding. Our experimental results demonstrate that by focusing attention on the
most informative point features, the Bayesian filter converges to a single hypothesis more
efficiently, with no loss of accuracy.

1 Introduction
An indoor navigating agent needs to efficiently understand the geometric structure of its lo-
cal environment in order to act. A common scene understanding approach is to generate a
set of hypotheses about the geometric structure of the indoor environment and then test the
hypotheses to select the one with the highest rank. From a single image, Lee et al. [5] gener-
ates hypotheses from image lines and evaluates the hypotheses based on the total number of
pixels that each hypothesis agrees with an orientation map. Hedau et al. [2] generates scene
layout candidates from image lines and ranks the candidates with a pre-trained predictor that
scores the hypotheses based on global perspective cues. Lee et al. [6] searches through all
possible room configurations (layout and box-like objects) and evaluates each configuration
with a pre-trained scoring mechanism. Satkin et al. [7] uses a data-driven approach to gener-
ate layout hypotheses and learns a predictor to link image features with a 3D model library.
For on-line mobile agent that perceives its local environment through a temporally continu-
ous stream of images (e.g. a video), Tsai, et al. [11] generates a set of hypotheses from the
first frame of the video, and uses a Bayesian filter to evaluate the hypotheses on-line based
on their abilities to explain the 2D motions of a set of tracked features. Tsai and Kuipers [10]
extended the real-time scene understanding method to generate children hypotheses on-line
from existing hypotheses to describe the scene in more detail. These methods simply detect
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Figure 1: System pipeline. (Best viewed in color.) We demonstrate our attention focus-
ing method in an on-line generate-and-test framework for scene understanding [10]. The
steps with solid gray blocks are adapted from [10], and the steps with dashed blue blocks
show where we select and extract the informative features. After generating children hy-
potheses (|{M}′t−1| ≥ |{M}t−1|) , we select point features from the current set of tracked
features that are informative to discriminate among the hypotheses {M}′t−1. Once the pos-
terior probabilities of the hypotheses are updated and hypotheses with low probabilities are
removed ( |{M}t | ≤ |{M}

′
t−1|), we identify new informative features based on the current

set of hypotheses {M}t to add into the tracking set. These features will be used to evaluate
hypotheses in future frames.

features (e.g. lines [2, 5, 7], points [10, 11], and edges [7]) that are easily detectable for
evaluating the hypotheses. In fact, some of the most informative features to discriminate
the hypotheses may not be extracted if features are detected by fixed thresholds, because the
most informative regions may not have high image contrasts for features to be detected.

This paper demonstrates that by focusing attention on features in the informative regions,
we can evaluate the hypotheses more efficiently. We divide the image into regions based on
the expected information gain that each feature provides, which we call informativeness. The
idea of focusing on informative regions of the image space is inspired by the idea of saliency
detection [3, 4, 8]. While these works typically define saliency regions based on image and
motion properties of the pixels in the images [3, 4] or based on human fixations [8], our
informative regions are defined in terms of the agent’s own state of knowledge, the current
set of hypotheses about the geometric structure of the indoor environment. We adapt the
threshold for extracting features for each region based on its informativeness. If a region is
more informative, features with lower image contrasts are allowed to be used for hypotheses
evaluation. We selected a Bayesian filter-based approach to scene understanding [10] to
evaluate our attention focusing method. Our experimental results demonstrate that this bias
of the search toward the most informative point features helps the Bayesian filter to converge
to a single hypothesis more efficiently, without loss of accuracy.

Our main contribution is to show that by using informativeness to control the process
of feature acquisition, we can use computational resources more efficiently to discriminate
among hypothesized interpretations of a visual scene, with no loss of accuracy. Informa-
tiveness allows our method to focus computational resources on regions in the scene where
different hypotheses make different predictions. We demonstrate our method using the prob-
lem of real-time scene understanding for a mobile agent (e.g. [10, 11]), but it is equally
applicable to other scene understanding problems (e.g. [2, 5, 6, 7]).
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2 Methodology
We demonstrate our attention focusing method on an on-line generate-and-test framework
that constructs the geometric structure of the indoor environment [10]. Figure 1 describes
our framework. We propose a method for selecting the set of point features P that are most
informative for evaluating the set M of hypothesized models. The goal is to select features
P that maximize the information gain IG(M,P):

IG(M,P) = H(M)−H(M|P) (1)

where H(M) is the entropy of the current set of hypotheses and H(M|P) is the entropy given
the set of point features P. To explicitly maximize Equation 1, we need to evaluate the
hypotheses with all combinations of all possible features, and then select the combination
that returns a minimum expected entropy H(M|P). This process is very costly. However, we
observe that a point feature will increase IG(M) only if at least two hypotheses have different
explanations about its 2D motion. In other words, a point p j is “informative” if it lies in a
region where at least two hypotheses make different predictions. We define I(p j,M) ∈ [0,1]
to be the informativeness of point p j, measuring its discriminating power among the set M,

I(p j,M) = log(|M|)−H(Mu|p j), (2)

where H(Mu|p j) is the expected entropy of the set M with uniform prior. Higher informa-
tiveness I(p j,M) means the point is able to provide larger information gain. If all hypotheses
explain the 2D motion of point p j in the same way, the point is not informative I(p j,M) = 0.
Section 2.1 describes how the informativeness I(p j,M) of a point is computed, and Section
2.2 describes how we identify a set of informative points P for a set M of hypotheses..

2.1 Compute Informativeness of a Point Feature

For any point p j in the image space, its informativeness I(p j,M) reflects how informative
that point is for evaluating the current set of hypotheses M = {M1,M2, ...,MN}. I(p j,M) ∈
[0,1] is positive if the point is capable of discriminating at least two hypotheses, and is zero
if the point does not provide any information to discriminate among any hypotheses.

Given two hypotheses, if a point is informative I(p j,M) > 0, the two hypotheses have
different explanations about its 2D motion. A hypothesis predicts the 2D motion of point
p j by reconstructing the point in 3D based on the 3D plane that the point is on, and then
projects the point onto another frame [10, 11]. Thus, the key for the two hypotheses to have
different predictions is when the two hypotheses assign the point to different 3D planes. If
there is a difference from this pair of hypotheses, I(p j,M) of point p j increases. At the end,
I(p j,M) is the sum of scores from all possible pairs of the current hypotheses.

In fact, the informativeness I(p j,M) of all the points can be divided into several regions,
where all points within each region have the same I(p j,M). Figure 2(b) is an example of
these regions. For efficiency, instead of computing the precise boundaries of these regions,
we approximate these regions with a set of non-overlapping boxes that specify which por-
tions of the image are informative. The upper bounds of these boxes are the top image border.
All points within each box are set to the same I(p j,M)> 0 value, and any point that is out-
side the boxes has I(p j,M) = 0. Figure 2(c) is an example of our box approximation. Note
that it is possible that a point that originally has zero informativeness becomes non-zero in
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(a) Hypotheses (b) Informative Regions (c) Box Approximation

Figure 2: An example of the informative regions and our box approximation for those
regions. (Best viewed in color.) (a) The current set of hypotheses at this frame. (b) The
gray-scale value reflects the informativeness I(p j,M) ∈ [0,1] of each pixel p j in the current
image based on the four hypotheses shown in (a). Since the hypotheses are qualitatively
distinctive, the image divides into several regions based on the informativeness. However,
to precisely compute the exact boundary of these regions can be computationally expensive.
Thus, we use a set of boxes to approximate these regions as shown in (c). All points within
each box are set to the same I(p j,M) > 0 value, and any point that is outside the boxes
has I(p j,M) = 0. The informativeness of each box is set to the maximum informativeness
among all pixels within the box, so no information is lost by using the box approximation.

our box approximation, but all informative points remain informative. Thus, we do not lose
any information by using this approximation.

Formally, we represent our box approximation based on a set of non-overlapping boxes
{b1,b2, ...,bnb}. The informativeness I(bk,M) of each box bk is proportional to the number
of hypothesis pairs that the point can discriminate,

I(bk,M) =

{
1

nb(nb−1)/2 ∑Mm,Mn∈M δ (bk,Mm,Mn) if N > 1

0 otherwise
(3)

where δ (bk,Mm,Mn) ∈ {0,1} equals to 0 if hypotheses Mm and Mn are the same within box
bk, and equals to 1 if the hypotheses differ. Two hypotheses are the same if the associated
3D wall that is projected to the box area bk is the same for the two hypotheses. We check
whether the two walls are the same in 3D. Since the walls are perpendicular to the ground, a
3D wall is parameterized by a line W =(α,d) on the ground plane, where α is the orientation
of the line which implies the normal direction of the wall plane in 3D, and d j is the directed
distance from the origin of the ground-plane map to the line. With this parameterization,

δ (bk,Mm,Mn) =

{
0 if |αm−αn|< αsame and |dm−dn|< dsame

1 otherwise
(4)

where (αm,dm) and (αn,dn) are the walls in hypothesis m and n, respectively. αsame and
dsame are the thresholds for considering the two walls to be the same. In our experiments,
αsame = 0.00872 radian and dsame = 0.05 meter.

To find the boxes, we start by finding their left and right bounds, and then find the lower
bound. (The upper bound lies along the top image border.) The left and right bounds of the
boxes correspond to a set of break points along the image columns. These break points only
occur at the projected image locations of the vertical wall borders of the current hypotheses.
We sort all the break points from the left to the right to form the bounds of the boxes, and
form a set of candidate boxes using adjacent bounds. We then compute the informativeness
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of each box using Equation 3, and remove boxes that have I(bk,M)= 0. For each informative
box, the lower bound is the lowest horizontal line that encloses the ground-wall boundary
segment of all hypotheses that pass through this box. Note, if the lowest horizontal line of a
box is below the border of the image, the lower bound is set at the image border.

2.2 Select Informative Point Features
To evaluate the hypotheses M = {M1,M2, ...,MN}, [10, 11] extracts point features that have
high corner responses from the entire image It . The corner response V (p j) of a point p j is
defined as the minimum eigenvalue of the covariance matrix of derivatives over its neighbor-
hood S(p j) [9] [

∑S(p j)(
dIt
dx )

2
∑S(p j)(

dIt
dx

dIt
dy )

∑S(p j)(
dIt
dx

dIt
dy ) ∑S(p j)(

dIt
dy )

2

]
(5)

However, efforts are being wasted when points with high corner responses lie within unin-
formative regions, and opportunities may be missed when points in informative regions have
relatively low corner responses. Thus, we need to adjust the threshold for extracting point
features in the informative regions to allow point features to be extracted even if they have
lower corner responses. Moreover, when evaluating the hypotheses, instead of using all the
tracked features, we only use point features that are capable of discriminating among the
current hypotheses to reduce the computational cost.

On the other hand, an informative point may not be a good feature to track due to low
corner response. The tracking quality of the point will greatly affect the hypotheses evalua-
tion process, because an ill-tracked point may not agree with the predicted 2D motion of a
correct hypothesis. Thus, we introduce a cost term C(p j) to penalize the system for using
point p j,

C(p j) = 1−
V (p j)

Vmax
(6)

where V (p j) is the corner response of point p j, and Vmax is the value of the maximum corner
response from the current image It .

Given a set of candidate point features Pc in the current image It , we determine which
points to be added into the tracking set for evaluating the hypotheses in a later frame. 1 (We
will discuss how these candidate point features are extracted later.) Inspired by [1], the most
efficient way to evaluate hypotheses is to use a diagnosis method that can well discriminate
the hypotheses and has a low cost at the same time. Thus, to select the set of point features
for evaluation, we maximize

∑
p j∈Pc

(I(p j,M)−C(p j))δ (p j) (7)

where δ (p j) ∈ {0,1} equals to 1 if the point is selected to be tracked and 0 if the point is
not going to be used. Maximizing Equation 7 is equivalent to selecting all the points that
have more informativeness than cost I(p j,M)>C(p j). By maximizing Equation 7, a more
informative point can be selected even with lower corner response, and a point that is less
informative needs to have high corner response in order to be selected. For efficiency, in our
experiments, we only allow at most 20 points to be added at each frame. If ∑p j∈Pc δ (p j) >

20, we add 20 points with the highest gain I(p j,M)−C(p j).

1A point feature needs to be tracked for at least one frame in order to be used to evaluate the hypotheses.
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The set of candidate point features Pc are extracted in the non-zero informativeness re-
gions with a minimum corner response τ ,

τ = min(Vmax(1−max
p j

(I(p j,M))),τmin). (8)

If the corner response is less than this threshold, it is impossible to be used based on Equation
7. We set a hard threshold τmin, to avoid using unreliable points to ensure the quality of
hypotheses evaluation. In our experiments, we set τ = 0.0000001. In addition, a candidate
point is not considered if that point is too close (less than 20 pixels) to an existing tracked
point in the image space.

Besides the informative features, we also extract corner features with high corner re-
sponses as they become available because these features can potentially be informative for
evaluating the hypotheses that are generated in future frames. For the same reason, we keep
track of a point feature as long as it is trackable even when it is not informative for the current
set of hypotheses. Thus, at each frame, we select the subset of the tracked points Pt with
non-zero informativeness I(p j,M)> 0 to evaluate the hypotheses. To evaluate the hypothe-
ses, we extract point correspondences between frame ts and the current frame t > ts. Given a
hypothesis, we construct the 3D location of a point feature in the global frame of reference
given its tracked location in ts, and then, project the point onto the current frame t to compare
with the observation, the tracked location of the point at frame t (re-projection error). The
likelihood of that hypothesis is a function of the re-projection error. The likelihood function
is more informative when ts is larger, so we automatically adjust ts ∈ [5,20] to ensure the
number of features exceeds a threshold. 2

3 Evaluations
We implemented our attention focusing method within the on-line generate-and-test frame-
work of [10], and compared it with the baseline method [10], which simply uses point fea-
tures with high corner responses. The evaluation was done using the Michigan Indoor Cor-
ridor 2012 Video Dataset [10]. Our implementation uses the same parameters for the two
methods, except for those that are related to point feature extraction.

We compare the effectiveness of our method with the baseline [10] by computing the
informativeness of the selected features at each frame. We define the informativeness I(P,M)
of a set of point features P relative to a set of hypotheses M as

I(P,M) = log(|M|)−H(Mu|P). (9)

where Mu is the set M of hypotheses at the current frame, but with uniform prior. We then
compute the likelihood of each hypothesis based on P, and update the posterior probabilities
of the hypotheses. H(Mu|P) is the entropy of the posterior distribution.

We use the set of hypotheses Ma that exist at each frame when running the proposed
method. At the meantime, we tracked two sets of point features. The first set Pb is obtained
by simply tracking features with high corner responses as it is in [10], and the second set Pa
is obtained by our proposed method where features are extracted in the informative regions
even when their corner responses are low. 3 Point features in both sets may overlap. At

2We only use points that can be tracked for at least five frames to ensure that the point is reliable.
3 Subscript a represents attention and b represents baseline.
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Dataset L + T 1 T 2 Overall
I(Pa,Ma)> I(Pb,Ma) 79.92% 63.41% 61.02% 72.99% 71.80%
I(Pa,Ma)< I(Pb,Ma) 10.81% 19.02% 20.34% 0% 10.76%

∑ I(Pa,Ma) 11.67 5.08 5.5 1.21 23.46
∑ I(Pb,Ma) 4.34 3.81 3.98 0.03 12.16

# Frames |Ma|> 0 259 205 59 211 734
MAP Ma Accuracy 94.31% 93.8% 92.8% 95.47% 94.12%

Weighted Ma Accuracy 92.79% 93.08% 92.57% 94.79% 93.35%
I(Pa,Mb)> I(Pb,Mb) 70.62% 67.98% 52.16% 52.82% 61.71%
I(Pa,Mb)< I(Pb,Mb) 8.25% 17.98% 7.23% 2.82% 8.28%

∑ I(Pa,Mb) 34.04 13.88 6.06 21.36 75.34
∑ I(Pb,Mb) 11.48 4.45 4.9 0.9 21.73

# Frames |Mb|> 0 303 228 69 390 990
MAP Mb Accuracy 94.30% 94.03% 91.65% 94.62% 93.68%

Weighted Mb Accuracy 93.33% 92.82% 92.27% 92.38% 92.67%
# Frames 341 311 391 411 1454

Table 1: Quantitative comparison with the baseline method [10]. The top half of the table
is the results of running the proposed method, and the bottom half is the results of running
the baseline. I(P1,M) > I(P2,M) reports the percentage of frames when feature set P1 is
more informative than P2 among all the frames that have more than one hypothesis (|M| >
0). ∑ I(P,M) reports the sum of informativeness over all the frames with |M| > 0. MAP
Accuracy is the average accuracy of the hypothesis with the highest posterior probability at
each frame. Weighted Accuracy is the average weighted accuracy of the set of hypotheses
at each frame, where the weight is the posterior probability of each hypothesis. (The dataset
provides ground-truth labeling for every 10 frames.) See text for discussion.

F
ra

m
e

 2
8

7
F

ra
m

e
 2

9
6

Figure 3: An example where the informative set Pa provides less informativeness than the
baseline set Pb. (Best viewed in color.) Since there is only one hypothesis prior to frame
287, our attention focusing method does not add in new points to the informative set Pa
(green dots) prior to frame 287. At frame 287, a set of children hypotheses are generated so
our method adds new informative features into the informative set Pa. Once these points are
tracked for some frames (second row), these informative points are used to discriminate the
hypotheses. This phenomenon is reflected on the large increasing slope of informativeness
I(Pa,M) (green solid line) between the two blue arrows. On the other hand, the baseline
set Pb (red dots) continue to add in points with high corner responses so at frame 287 the
baseline set happens to have more points that are capable of discriminating the hypotheses.
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each frame, we compute the informativeness by using each set of features (I(Pb,Ma) and
I(Pa,Ma)) to evaluate the current set of hypotheses Ma. We repeat the same comparison
using the set of hypotheses Mb when running the baseline, and compute the informativeness
(I(Pb,Mb) and I(Pa,Mb)) at each frame. Notice that since Ma and Mb may consist of dif-
ferent hypotheses, the set of informative points Pa may be different in the two comparisons.
However, the set of baseline features Pb in both runs are the same because these features are
extracted independent of the hypotheses. These comparisons are shown in Table 1.

In most cases, the informative set Pa provides more informativeness than the baseline
set Pb. This is because more features in the informative set Pa lie in the region where the
current hypotheses give different predictions than those in the baseline set Pb. In some
extreme cases, none of the baseline points lie in the informative regions. Figure 4 shows
examples of these situations. Sometimes the baseline features Pb provide equal or more
informativeness than the informative features Pa. This happens at the first few frames when
a large set of children hypotheses are generated. Because the informative set Pa is so focused
on discriminating the parent hypotheses, Pa may not contain features that can discriminate
the children hypotheses at the first few frames when they are evaluated. However, our method
adds new informative features that discriminate the children hypotheses at the frame when
they are generated, so after tracking these features for some times (at least 5 frames), Pa
provides more discriminative power than Pb. Figure 3 is an example of this situation.

Since the point features that are used in our methods and the baseline methods are dif-
ferent, the hypotheses that the two methods evaluated may differ. The total number of hy-
potheses evaluated in our method is larger than those in the baseline method. This is due to a
threshold on the posterior probability for determining whether a hypothesis is good enough
to generate children hypotheses. Our method evaluates the hypotheses more efficiently than
the baseline and thus, more hypotheses exceeded this threshold and generated children hy-
potheses. Even though our method evaluates more hypotheses, our method converges to a
single hypotheses more often. As shown in Table 1, about 50% of the time, our method
converges to a single hypothesis while only about 30% of the time, the baseline method
converges to a single hypothesis.

In Table 1, we report the accuracy of our method and the baseline method based on our
implementation. 4 The accuracy of our methods is similar to the baseline method. This
suggests that by focusing attention on regions that are informative, regions where the current
hypotheses have different explanations of the point features, we can converge to a single
hypothesis more efficiently with no loss of accuracy.

4 Conclusion and Future Work

We demonstrate that by focusing attention on visual features that are informative, we can
evaluate the hypothesized model of the scene more efficiently. A feature is informative if
it is capable of discriminating among the hypotheses. In this paper, we define informative-
ness of a point feature mathematically and proposed method to identify informative fea-
tures. We evaluate our attention focusing method on an on-line generate-and-test framework
that constructs the geometric structure of the indoor scene [10]. Our experimental results
demonstrate that this bias of search towards informative features provides more discrimi-
nating power among the hypotheses than simply using features that are easy to detect, with

4 Our implementation of the baseline method reaches similar accuracies as those reported in [10].
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Figure 4: Examples of our attention focusing method. (Best viewed in color.) Each row is
a snapshot of one of the four datasets. The first column is the set of hypotheses M at that
frame. The second column visualizes the point features (green) that are used to evaluate the
hypotheses from the informative set Pa. The third column shows the point features (red)
from the baseline set Pb that are visible at the current frame. For the second and the third
column, only the informative regions (I(bk,M)> 0) are shown, and non-informative regions
are shown in white. The last column is the informativeness of using each feature set. Our
proposed attention focusing method I(Pa,M) is shown in green solid lines, and the baseline
method I(Pb,M) is shown in red dashed lines. Our method achieves higher informativeness
because more point features that are capable of discriminating the hypotheses are tracked.
In general, there are 1.5 to 6.5 times more point features that are capable of discriminating
the hypotheses in the informative set Pa than in Pb. In some extreme cases (last row), the
baseline set Pb does not contain any features to discriminate the hypotheses so the informa-
tiveness I(Pb,M) at those frames are zero.
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no loss of accuracy. Our future work is to apply our attention focusing method to real-time
active vision. We are designing a motion planner for the agent to increase the area of infor-
mative regions in the image space so that the agent can obtain more informative features to
evaluate the hypotheses more efficiently.
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