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Abstract

A biologically motivated computational model of early recurrence is proposed for
edge detection. Studies of the primate vision suggested that visual features are transmit-
ted in the two visual pathways with different speeds (with the dorsal pathway processing
faster than that of the ventral pathway) and the presences of extensive recurrent connec-
tions across the two pathways. It is thus likely that the dorsal perception facilitates the
ventral perception via early recurrent mechanism. Following these neural principles, we
hypothesize that early recurrence enables responses to high-spatial frequency features
(fine edges) to be suppressed by low-spatial frequency features (coarse edges) in a mul-
tiplicative manner. Using real images, we quantitatively compared contours calculated
by our work with another well-known biologically motivated model. To further explore
early recurrence in solving machine vision problems, the representation is used to boost
different popular edge algorithms. Results from both experiments lead to the conclusion
that early recurrence has a positive and consistent influence on edge detection.

1 Introduction
Edge detection is an essential task in image analysis and machine vision. A number of
edge detection algorithms have been proposed in the past [1, 4, 5, 6, 7, 8, 9, 10, 11, 12].
However, the problem remains partially resolved. Perhaps the most difficult challenge is how
to generate an edge map to accurately localize true edges that are perceptually salient, and
meanwhile to exclude false edges caused by image noises and textures.

This paper concerns a computational model of early recurrence for edge detection. The
model is motivated by studies of primate vision. It is proposed that visual features are per-
ceived through the two main visual pathways, namely the dorsal and the ventral pathway,
with different speeds: the dorsal pathway processes information much more rapidly than that
of the ventral pathway. Depending on their physiological properties [13], the dorsal pathway
is sensitive to low-spatial frequency features (e.g. coarse edges) and the ventral pathway is
sensitive to high-spatial frequency features (e.g. fine edges). In traditional views, edges are
perceived only in the ventral pathway, particularly in the ventral layers of the primary visual
cortex (V1), or ventral V1. However, recent studies of asynchronous cortical processing
have suggested that computation in ventral V1 may be influenced by signals coming from
higher-level dorsal areas as a result of massive early recurrent mechanisms [14, 15, 16, 17].
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Figure 1: Compare non-classical RF inhibition mechanisms. Left: self-inhibition [1],
middle: butterfly-shaped self-inhibition [19], right: the proposed early recurrent inhibition.

We formalize a computational model to the aforementioned early recurrent mechanism.
The computation simulates the early recurrence from dorsal area MT to ventral V1. The
essence of the mechanism is that responses of ventral V1 are inhibited by responses of MT.
We hypothesize that the inhibition facilitates the low-level feature computation and leads
to a much cleaned edge representation.1 It is proposed that early recurrent inhibition is
a weighted multiplication operation. Depending on the weighting strategy, two instances
of MT-ventral V1 recurrence are investigated, namely isotropic and anisotropic inhibition.
Isotropic inhibition causes ventral V1 responses to a preferred orientation to be inhibited
by the sum of MT responses to all orientations in an equal manner. Anisotropic inhibition
suppresses ventral V1 responses to a preferred orientation by MT responses to the same
orientation. Our proposed model is consistent with the scale-space theory [18] and suggests
that cross-pathway interaction plays a role in enforcing consistency of image structure across
scales. The model includes an interval-tree based representation, which highlights a marked
correspondence between the stability of object contour and its perceptual salience.

To investigate the performance in practical machine vision applications, refined edge
representation was used as input to a contour operator proposed in [1]. Using real images,
we quantitatively compared contours calculated by our work with the biologically motivated
contour detector in [1]. In addition, we applied early recurrent presentation to boost different
popular edge representations. Results from both experiments clearly demonstrate that early
recurrent inhibition has a positive and consistent impact on the contour detection.

The rest of the paper is organized as the follows. Section 2 reviews related work. Section
3 proposes and formalizes the model of early recurrence. Section 4 discusses experiment
and results. Section 5 concludes the work.

2 Related Work
Existing edge models compute edges by first-order [4, 5] or second-order approaches [6] to
search for pixel value changes. To discriminate true edges associated with primitives from
false edges due to image textures and noises, approaches of statistical analysis [7, 8], multi-
scale analysis [9, 10] and machine learning [11, 12] have been studied.

Inspired by the primate visual system, a number of models have been proposed that
make use of neuronal non-classical RF characteristics to facilitate edge detection. In [1],

1Although literature commonly models the dorsal pathway as sensitive to spatiotemporal features, numerous
neurophysiological studies [22, 23, 24] have confirmed that dorsal area MT also responds to static image features.
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the center-surround mechanism found in many V1 neurons is modeled as self-inhibition that
suppresses edge segments observed surround the center RF (see Fig. 1 left drawing). The
authors formalized two types of self-inhibition, isotropic and anisotropic. Experiments using
real images confirmed that self-inhibition improves edge detection, leading to much cleaned
contour maps compared with Canny and Gabor energy edge detectors. Investigation of self-
inhibition has been extended into multi-scale analysis in [2, 3] with different applications.
More recently self-inhibition has been re-visited with a refined center-surround inhibition
scheme [19]. A butterfly-shaped surround region is proposed, which consists of two adap-
tive inhibitory end-regions and two non-adaptive inhibitory side-regions (see Fig. 1 middle).
Experiments showed that the surround region performs better than [1] in preserving real im-
age contours. However, the biological underpinnings to such adaptive self-inhibition region
are unclear. Although the authors have discussed a few possible sources of inhibition, they
did not explain which visual areas or cortical connections the model represents.

3 Computational Model of Early Recurrence
3.1 General Model
The cross-pathway recurrent mechanism observed in our brain inspires us with an alternative
kind of inhibition that may be useful in improving edge representation. Our model views the
primate visual system as a multi-layered two-visual-pathway representation [20, 21]. The
two visual pathways compute different edge features. Specifically, ventral V1 computes
fine-scale edges and projects results to higher-level ventral areas to compute object contour.
Dorsal V1 (the dorsal layers of area V1) is sensitive to coarse-scale edges and sends output to
area MT for further analysis. Results of MT are fed back to modulate ventral V1 computation
(Fig. 2 left drawing). Modulated ventral V1 responses are further inhibited by the center-
surround self-inhibition [1]. The whole process can be defined as:

RV 1v = H(EV 1v · InhMT
re −αInhV 1v

cs ), (1)

where RV 1v denotes ventral V1 representation. H(s) = max(s,0) is a half-wave rectification
function. EV 1v denotes ventral V1 responses to feed-forward image stimuli, which have
been commonly deemed as the edge representation in most existing works. InhMT

re is the
early recurrent inhibition generated from area MT. InhV 1v

cs denotes the center-surround self-
inhibition, and α is a weighting factor.

Experiments [25, 26] have suggested that the biophysical underpinnings of MT-V1 re-
currence can be described by multiplication. We thus propose InhMT

re inhibits V1 via mul-
tiplication. Further, InhV 1v

cs is defined as isotropic Non-Classical Receptive Field inhibition
[1]. Note that although self-inhibition is generated within area V1, the temporal aspects of
the asynchronous signal projection properties between the dorsal and the ventral pathways
make it possible that the recurrent inhibition from MT impacts ventral V1 at an earlier time.
Therefore, recurrent inhibition performs prior to self-inhibition (Fig. 2).

3.2 Formalization

3.2.1 V1 response to feed-forward visual stimuli

V1 neurons is modeled as a bank of 2D Gabor filters. Each filter is constructed as:

gV 1
λ ,σ ,ψ (x,y,θ) = e−(x̃

2+r2 ỹ2)/(2σ 2) cos(2π x̃/λ +ψ), (2)
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Figure 2: General structure of the proposed model. Left: simplified biological hierarchy
and connections. The double arrow line from MT to V1v denotes the early recurrence.
Right: an example of using the proposed computational model to compute object contours.

where, x̃ = xcosθ + ysinθ , ỹ =−xsinθ + ycosθ , and θ is the preferred orientation. In our
study N = 12. ψ is the phase offset. r is the aspect ratio of the eccentricity of the Gaussian.
According to [27], we set r = 0.5. σ denotes the standard deviation of the Gaussian. λ is
the wavelength. According to [28], most V1 neurons have a bandwidth between 1.0 and 1.5
octaves, therefore σ/λ = 0.56 is used.

Given an input image I(x,y), V1 response is formalized as:

rV 1
λ ,σ ,ψ (x,y,θ) = I(x,y)∗gV 1

λ ,σ ,ψ (x,y,θ), (3)

where ∗ denotes convolution. To deal with phase shift, the quadrature pair technique is used,
which integrates results of Gabor filtering as:

EV 1
λ ,σ ,ψ (x,y,θ) =

√
(rV 1

λ ,σ ,ψ
)2 +(rV 1

λ ,σ ,ψ+π/2)
2, (4)

In our experiment, σ values corresponding to dorsal V1 (σc) and ventral V1 (σ f ) are set
differently to characterize preferred spatial sensitivities (scale of edge).

3.2.2 MT integration of dorsal V1 activation

Area MT integrates feed-forward activations from dorsal V1 and sends results to inhibit
ventral V1. In its simplest manner, area MT is modeled using a Gaussian:

gMT
σMT

(x,y) = e−(x
2+r2y2)/(2σ 2

MT ), (5)

where σMT denotes the standard deviation of the Gaussian. Output of MT is therefore:

rMT
λ ,σ ,ψ (x,y,θ) = EV 1

λ ,σ ,ψ (x,y,θ)∗gMT
σMT

(x,y), (6)

3.2.3 Scale-Space Representation

To search for best coarse scales, we notice that the output of Eq. (4) is a scale-space represen-
tation (x-y-θ ). We extended single-scale MT representation to formalize an algorithm that
employs the interval-tree analysis [18] to determine the coarse-level edge representation.

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 



SHI et al.: EARLY RECURRENCE IMPROVES EDGE DETECTION 5

Figure 3: Scale-Space Analysis. Given an input image, the scale-space representation is
computed coarse-to-fine. To simplify the work, the three dimensional scale-space x-y-θ is
separated into x-θ and y-θ respectively. An interval tree is built following [18], based on
which the best coarse-scale representation is determined via searching for a covering of the
space (gray blocks).

To simplify the work, the 3-D scale-space is separated into 2-D scenarios, x-θ and y-θ .
To further reduce the computational costs, only two gradient of Gaussian (0◦ and 90◦) are
used. They are defined as:

∇xgMT (x,y,σgx) = (−x/πσ
2
gx)e

−(x2+r2y2)/(2σ 2
gx) (7)

∇ygMT (x,y,σgy) = (−y/πσ
2
gy)e

−(x2+r2y2)/(2σ 2
gy) (8)

By increasing σgx and σgy, scale-space representations x-θ and y-θ can be constructed
respectively. As shown in Fig. 3, given a x-θ representation, an interval-tree is built follow-
ing [18]. It is observed that scales of real object contours have a marked correspondence
with the stability (vertical axis) in the scale-space. Therefore, the algorithm searches for a
covering of the space (a set of gray blocks) that includes the most stabled blocks across all
interval (horizontal axis). The algorithm then selects the largest scale σ̂gx that cross the most
blocks in the covering as the output scale, and output of MT of 0◦ is formalized as:

rMT (x,y,0) = ∇xgMT (x,y, ˆσgx), (9)

The same operation also applies on y-θ space.

3.2.4 Early recurrent inhibition InhMT
re

We propose that early recurrent inhibition between MT and ventral V1 can be represented as
a weighted multiplicative process. The inhibition representation is defined as:

InhMT
re (x,y,θ) =

∑δ∈∆ ω(δ ,θ)r
MT
λ ,σ ,ψ (x,y,θ)

‖∑δ∈∆ ω(δ ,θ)rMT
λ ,σ ,ψ

(x,y,θ)‖1
, (10)

where ω(δ ,θ) is the weighting factor, denoting strength of connection between MT neuron
of orientation δ and ventral V1 neuron of orientation θ . ∑ denotes the summation of MT
to all orientations δ ∈ ∆. ‖.‖1 is the L1 norm. By setting ω(δ ,θ), two special types of early
recurrent inhibition scheme are derived and investigated separately.

R1. Isotropic inhibition causes fine-scale edge of an orientation inhibited by MT with
all orientations in an equal manner. To do this, we fix ω(δ ,θ) = 1 for all orientations. The
isotropic representation is a summation of MT. It highlights regions corresponding to low-
spatial frequency variations to all orientations and is insensitive to variations caused by high-
frequency stimuli (i.e. noise and textures) .
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R2. Anisotropic inhibition suppresses fine-scale edge to a preferred orientation by MT
responses to the same orientation. This is done by setting:

ω(δ ,θ) =

{
1 if δ = θ

0 otherwise
(11)

Each MT representation contains information of low-spatial frequency variations to only
one orientation. It then modulates V1 responses to the same orientation.

3.2.5 Center-Surround Isotropic Self-inhibition
Center-surround isotropic self-inhibition, InhV 1v

cs is formalized following [1] as a convolution
of the maximum energy map ÊV 1

λ ,σ ,ψ(x,y,θ) with a weighting function as:

InhV 1v
cs = ÊV 1v

λ ,σ ,ψ (x,y)∗wV 1v
σ (x,y), (12)

where the maximum energy map is calculated as:

ÊV 1v
λ ,σ ,ψ (x,y) = max{EV 1v

λ ,σ ,ψ (x,y,θi)|i = 1..N}, (13)

and the weighting function is defined with Difference of Gaussian function [29] as:

wV 1v
σ (x,y) =

H(DoG(x,y))
‖H(DoG(x,y))‖1

, (14)

4 Experiment
The proposed model has been implemented into three forms: (fI) isotropic inhibition based
on single-scale recurrence, (fA) anisotropic inhibition based on single-scale recurrence, and
(ssI) isotropic inhibition based on scale-space recurrence2. A contour operator is imple-
mented [1] to produce binary contours.

A dataset of 40 images with hand-drawn ground-truth contours are used for performance
evaluation3. This dataset has been widely used in the literature of contour detection. Al-
though there are other datasets for edge detection, images in this dataset cover a broad range
of spatial frequency variations, different types of textures and image noise.

To investigate the effect of early recurrence, we design the first experiment that compares
our model with another well-known biologically inspired edge detector [1]. Their method of
isotropic center-surround self-inhibition (S) has been implemented. Detected contours are
compared against ground-truth contours. The performance measurement introduced in [1] is
employed with False Positive Rate (FP), False Negative Rate (FN), and Performance (P).

Each edge detector is tested with a total of 100 different combinations of parameters to
investigate the relationships between different parameter settings. For S and ssI ,10 σ f values
are used in Eq.2 from 0.5 to 3.2, with 0.3 interval, to generate fine-scale edge maps. For fI
and fA, 5 σ f values are used from from 0.5 to 3.2, with 0.6 interval, and single coarse-scale
σc is defined as 4 and 6 times to the fine-scale σ f . For all detectors, 10 α values are used in
Eq.1 from 0 to 2.7, with 0.3 interval, to investigate self-inhibition.

Fig. 4 compares the best contours of four selected images. These images contain objects
of different types. From the comparisons of contour continuity, edge detail and background

2The other case, anisotropic inhibition, is not implemented since mismatched number of orientations. Note
that we simplify in scale-space to use gradient of Gaussian with 2 orientations to compute the coarse-scale edge
representation, but fine-scale edge maps are generated using Gabor filters with 12 orientations

3[Online Available] http://www.cs.rug.nl/ imaging
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Table 1: Experiment parameters and performance for the images presented in Fig. 4.
Last row highlights P score improvements over S [1].

Bear Elephant_2 Gnu Rino
S fI fA ssI S fI fA ssI S fI fA ssI S fI fA ssI

σ f
* 2.8 2.8 2.8 3.2 2.8 2.0 2.8 3.2 2.8 2.8 2.8 3.2 2.6 2.8 2.8 3.2

σc
* - 6σ f 6σ f - - 6σ f 6σ f - - 4σ f 4σ f - - 6σ f 4σ f -

α 0.9 0.6 1.2 0.6 0.9 1.2 0.0 0.0 0.9 0.0 0.3 0.0 1.2 0.9 1.2 0.0
FP 2.51 1.52 0.67 0.52 0.61 0.24 0.48 0.28 0.65 0.31 0.32 0.13 0.36 0.68 0.33 0.49
FN 0.56 0.33 0.43 0.20 0.36 0.43 0.32 0.35 0.53 0.46 0.43 0.35 0.44 0.30 0.40 0.18
P 0.21 0.33 0.41 0.56 0.46 0.50 0.52 0.55 0.36 0.47 0.48 0.60 0.47 0.47 0.50 0.58
Improve - 57% 95% 167% - 9% 13% 20% - 31% 33% 67% - 0% 6% 23%

* σ f and σc represent standard deviation (σ ) used in Eq. 2.

texture inhibition, it is clear that the contour maps computed by the proposed detectors
achieve better performance than method from [1]. Table 1 lists parameters used and perfor-
mance. Our proposed methods surpass the competitor in most performance measurements.
The enhancements over self-inhibition detector are significant (as much as 167%).The pro-
posed isotropic inhibition achieves the lowest false positive rate, indicating a better suppres-
sion of false edges. The proposed anisotropic inhibition has the lowest false negative rate,
which further confirms it has superior ability to retain real object contours.

Fig. 5 right compares P scores. The best performance (top bar) and median performance
(red line in box) of the proposed detectors are consistently higher than S. Due to single
coarse-scale σc, early recurrent inhibition of fA and fI are not as stable as ssI.

To further investigate whether the proposed model is a general process for machine vi-
sion, we incorporate the scale-space analysis based recurrent representation into 2 popular
edge detectors. In particular, Canny edge detector [4] is chosen because it is widely used
edge detector, and multi-scale Brightness/Texture Gradients (BTG) detector proposed in
[12] is selected because it represents a state-of-the-art approach. Although Malik and his
colleagues have extended the work [10, 11], the goals of these extensions emphasize learn-
ing to detect contours, and thus they do not confine to the current purpose. The proposed
recurrent representation fits itself into these models by modulating original edge responses
before constructing contour, which produced modulated detector Canny+ER and BTG+ER.

We tested these methods on the same dataset (Fig. 6), which indicated that via modula-
tion, edges detected more focus on real contours. ROC and Precision-Recall curves gener-
ated based on ground truth show that modulated edges augment baselines in most cases. The
proposed computational model may consistently improve edge detections in real scenes.

5 Conclusion
In this paper, we proposed a computational model of early recurrence to improve edge detec-
tion. The model is inspired by the asynchronous visual feature processing mechanism found
in the primate visual system. The computation uses dorsal (coarse) edge to inhibit ventral
(fine) edges by multiplicative inhibition. The proposed recurrent inhibition is fundamentally
different from Self-inhibition [1], which is a mechanism within area V1 and works in an ad-
ditive manner. Early recurrence, alternatively, uses an additional kind of inhibition generated
from dorsal area MT and works by multiplication.

The first experiment examined soundness of early recurrence based on a filter parameter
study. The second experiment applied early recurrent to boost practical contour detectors.
Using real images, results indicate that contours generated via early recurrence consistently
surpass those in [1] and machine vision algorithms [4, 12]. Isotropic and anisotropic inhi-
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Figure 4: Contours comparison from top to bottom, input image, ground truth, computed
contours by S [1] and scale-space analysis ssI.

Figure 5: Contours comparison Left: from top to bottom, row 3 to 6 illustrate contours by
S [1], proposed single-scale anisotropic fA, isotropic fI, and scale-space analysis ssI. Row 6
shows the best contours. Right: Box-and-whistler plot of all images. The proposed detectors
outperform S in most cases, with ssI provides the most reliable contours.
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Figure 6: Improved contour detectors. Contours detected by early recurrent modulation
(Canny+ER and BTG+ER) are significantly improved, indicating the proposed work de-
fines a general approach to boost low-level feature extractions.
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bitions are two weighting schemes studied. They facilitate edge detection differently, with
anisotropic provides better output for most test images. Additional experiments are required
to further explore these schemes as well as other weighting methods.

Different from [12], early recurrent modulation boosts contour detection performance
without any learning processing. To an extent, this study implies that even though the recent
machine vision trend is in favor to learn low level features using large number of test samples,
insights from the primate visual system still require further investigations and may be shown
with great importance to the whole picture of visual interpretations.
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