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While region-based image alignment algorithms that use gradient descent
can achieve sub-pixel accuracy when they converge, their convergence de-
pends on the smoothness of the image intensity values. Image smoothness
is often enforced through the use of multi-scale approaches in which im-
ages are smoothed and downsampled. Yet, these approaches typically use
fixed smoothing parameters which may be appropriate for some images
but not for others. Even for a particular image, the optimal smoothing pa-
rameters may depend on the magnitude of the transformation. When the
transformation is large, the image should be smoothed more than when
the transformation is small. Further, with gradient-based approaches, the
optimal smoothing parameters may change with each iteration as the al-
gorithm proceeds towards convergence.

We address convergence issues related to the choice of smoothing
parameters by deriving a Gauss-Newton gradient descent algorithm based
on distribution fields (DFs) and proposing a method to dynamically select
smoothing parameters at each iteration. DFs have previously been used
in the context of tracking [6]. In this work we incorporate DFs into a
full affine model for region-based alignment and simultaneously search
over parameterized sets of geometric and photometric transforms. We
use a probabilistic interpretation of DFs to select smoothing parameters
at each step in the optimization and show that this results in improved
convergence rates.

Following the notation of Baker and Matthews [1], let T (x) be an im-
age containing a fixed region for which we want to find the corresponding
region in I(x), where x = (x,y)T is a column vector. We refer to T (x) as
the template image and I(x) as the input image. Let W (x;p) be the pa-
rameterized set of warps, where p are the parameters. The goal of region-
based alignment is to find the p̂ that minimizes some distance measure
between T (x) and I(W(x; p̂)).

One of the early image alignment algorithms was the gradient-based
Lucas-Kanade (LK) algorithm [3]. In the LK method, the feature space
consists of intensity values and the similarity measure is the L2 distance.
Our method is inspired by the LK algorithm, but we replace the image
and template with their DF representations. The basic idea of a DF is to
represent a region in an image as a normalized histogram, i.e., a proba-
bility distribution, over feature values at each pixel. In this work we use
grayscale intensity values as the feature values although other features
could be used instead (e.g. edge intensities, RGB values for color images,
etc.). The simplest DF consists of probability distributions over binned
intensity values where each probability distribution is degenerate and is
given by

D(I,x, f ) =

{
1 if I(x) ∈ bin f
0 otherwise,

(1)

where D(I,x, f ) is the value of the DF for image I at position x and bin f .
Using Eq. (1) alone to represent an image provides few additional

benefits over using the image itself. Indeed, when the number of bins
equals the number of intensity values, the representation contains the
same information as the image. Additional benefits can be gained though
if the DF is “smoothed” to “spread” the information in the image. In par-
ticular, the DF can be convolved with a three-dimensional Gaussian filter
with a standard deviation of σxy in the spatial directions and σ f in the fea-
ture space dimension. By convolving with a Gaussian filter, some degree
of uncertainty is allowed in both the location and value of an image pixel.
Like image blurring, convolving a DF with a Gaussian filter spreads in-
formation about intensity values to neighboring pixels, but does so with a
smaller loss of information.

There are various trade-offs that need to be considered when choosing
the σxy and σ f values used for smoothing the DFs for alignment. For
instance, a larger σxy value may allow for a larger basin of attraction but

may result in a less precise final alignment. And if the σxy value is chosen
to be too large or too small, it can cause the algorithm to diverge.

Rather than choose fixed σ values, the values can be chosen auto-
matically based on the current location in the search space. In this work,
the σ values are chosen using the probabilistic view of DFs by maximiz-
ing the log likelihood of the current warped input image under the DF
of the template image. Treating the DF of one image as an independent
pixel model, this is defined to be the sum of the log probabilities of each
pixel of the current warped input image under the corresponding proba-
bility distribution of the template image’s DF. Our method is similar to
the approach used by Narayana et al. for choosing the pixelwise kernel
variances in their background subtraction algorithm [4, 5].

In our approach, the log likelihood of the current warped input image,
I′ =W (p), under the DF of the template, smoothed using the parameters
σxy and σ f , is given by

l(σ = {σxy,σ f }|T, I′,R) = ∑
x∈R

log
(
Dσ (T,x,bin(I′(x))

)
, (2)

where bin is the binning function that takes an intensity value and maps it
to the appropriate histogram bin.

Since truncated Gaussian kernels are used for efficiency to smooth
the DFs, it is possible that some entries of a DF are zero. To deal with
the problem of zero probabilities (in which a single outlier can cause the
likelihood to be zero), we replace log(Dσ (T,x,bin(I′(x))) in Eq. (2) with
log(max(.0001,Dσ (T,x,bin(I′(x)))). At each iteration in our method,
an exhaustive search is performed over a finite set of σxy and σ f values
and the σxy and σ f values that maximize Eq. (2) are used to convolve the
two DFs.

At each iteration of a forward-inverse compositional Gauss Newton
optimization, we use the above method to dynamically select the σ values
used to blur the DFs of the current warped input image and template. Fur-
ther, similar to the simultaneous inverse compositional (SIC) algorithm
described by Baker and Matthews [2], we extend the algorithm to also
search over bias and gain parameters. We achieve impressive conver-
gence results compared to other existing algorithms and also show that
the adaptive kernel parameters produce convergence rates better than or
equal to the best convergence rates produced by any of a large set of fixed
parameter values.
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