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Abstract

Co-training is a famous learning algorithm used when there are small amounts of
labeled data and large amounts of unlabeled data, but it has limited applications in image
classification due to the unavailability of two independent and sufficient representations
of the images. In this paper, we propose a novel co-training algorithm in which these two
independent and sufficient representations are automatically learned from the data. We
call it as the spatial co-training algorithm (SCT). The main idea of SCT is to divide an
image into two subregions and consider each of them as an independent representation.
In SCT, the division of the image is firstly learned by an EM style algorithm on small
amounts of labeled images, and finally relearned by a co-training style algorithm on
many confident unlabeled images; while the classification of the image is performed
jointly with the division of the image. We validate the proposed method by experimental
results on several image datasets.

1 Introduction
Recent years have witnessed increasing interest in image classification. This interest re-
sulted in many effective approaches that progressed the computer vision field very fast
[4, 5, 9, 19, 22]. However most of these approaches are sensitive to their amounts of la-
beled images. A typical example is the experimental result on the Caltech-101 dataset [9]:
accuracies of kNN [4], SVM [19] and Random Forests [5] are around 75%, 78% and 88%
respectively if 30 images per category are labeled; but their performance degrades a lot, just
around 65%, 70% and 70% if this number reduces to 15. Several effective methods have
been proposed so far to improve the accuracy of the classifiers by the way of making use
of large amounts of unlabeled data [3, 11, 13, 23]. Among them, the co-training algorith-
m assumes that each example has two different independent representations with sufficient
discriminative ability for a good classification [3, 12, 21, 24]. It has been widely applied in
the fields of email classification [14], web page mining [3] and visual tracking [15, 20]. But
we have not observed many of its applications in the field of image classification, apart from
[10] where the content of the image and its tags are used as two independent representations
for web image classification and [1] where contour and skeleton are considered as two com-
plementary representations for shape retrieval. As pointed out in [8], this is because it is
usually hard to obtain such two independent and sufficient representations of a single image.
Nevertheless, several recent studies have shown that the above assumption of the co-training
algorithm is too strong and can be relaxed a lot [2, 6, 7, 17]. In [2], the authors proved that
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a weaker expanding property on the data is enough for the success of the co-training algo-
rithm. They suggested that the co-training algorithm should work well if there are at least
some cases when the classifier on one representation makes confident decisions while the
classifier on the other representation does not have much confidence in its own decision. The
above weaker expanding property of the co-training algorithm has been well demonstrated
in [6, 17, 18] where the authors showed that a random split of a nature single feature set
usually makes the co-training algorithm success and in [7] where the authors proposed an
elegant algorithm to automatically decompose a single feature set into two complementary
subsets as inputs of the co-training algorithm.

Inspired by the above weaker expanding property, in this paper we propose a novel co-
training algorithm in which these two independent and sufficient representations are roughly
learned from the image. Another inspiration of the proposed algorithm comes from the
property of the image classification task itself. As for the image classification task, the
information contained in a whole image is usually redundant. In this case, a subregion of the
whole image is usually sufficient enough for the classifier to make a confident prediction on
it. For example, if our task is to do human vs. non-human image classification, and if we
have already known there is a face in the image, we can make sure that the image belongs to
the human image, without further studying if there are two legs or not.

2 The spatial co-training algorithm
We start the discussion from notations of traditional co-training algorithm [3]. Let L =
{(x1

i ,x
2
i ,yi), i = 1, ..., l} denote the set of labeled examples and U = {(x1

i ,x
2
i ), i = l+1, ..., l+

u} denote the set of unlabeled examples, where x1
i and x2

i are two different representations of
the same example xi. In traditional co-training algorithm, these two different representations
are assumed independent and both of them are strong enough to make a good classification.

2.1 Problem definition
Our proposed algorithm is based on the bag-of-words model [9] that represents each image
as the histogram of its local image patches. In particular, the bag-of-words model performs
to: (1) extract a collection of local descriptors such as sift [16] from the images; (2) quantize
them as indexes; (3) and represent each image as the histogram of indexes of its local image
patches. A lot of visual codebook learning algorithms have been proposed so far, and in
this paper we employ the k-means clustering algorithm because of its simplicity and wide
applications.

Given a set of labeled images {I1, ..., Il}, we extract local sift descriptors densely from
each image and express them as a matrix F :

F = { fi j|i = 1, ...,w; j = 1, ...,v}, (1)

where fi j is the sift descriptor of the local image patch (i, j), w and v are the height and
width of the matrix of the sift descriptor [16]. To simplify our notations, in the following
paragraphs we assume that all images have the same size and thus have the same values of
w and v of the matrix F . Then we apply the k-means clustering algorithm to quantize these
local sift descriptors into indexes and rearrange indexes from one image as a matrix C:

C = {ci j|i = 1, ...,w; j = 1, ...,v}, (2)
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where ci j ∈ {1, ...,K} is the visual code of the local image patch (i, j) and K is the codebook
size. As illustrated in the introduction section, the basic idea of the proposed algorithm
is to partition an image into two subregions and consider each of them as an independent
representation. Now suppose that Is

1 and Is
2 are a partition of the image I that corresponds to

a partition Cs
1 and Cs

2 of all visual codes in C:

Cs
1
∩

Cs
2 = /0; Cs

1
∪

Cs
2 =C, (3)

we calculate the histograms of visual codes in both Is
1 and Is

2 as:

h1,k =
∑(i, j)∈Cs

1
δ (ci j ,k)

∑(i, j)∈Cs
1

1 ; h2,k =
∑(i, j)∈Cs

2
δ (ci j ,k)

∑(i, j)∈Cs
2

1 , (4)

after normalized for k = 1, ...,K; and δ (a,b) = 1 if a= b, and δ (a,b) = 0 if a ̸= b. According
to (4), each division (Cs

1,C
s
2) of the image will lead to a representation pair (h1,h2) of the

image:
(Cs

1,C
s
2)⇒ (h1,h2), (5)

where both h1 and h2 are the histograms with K bins. Consider the overall number of divi-
sions of each image is around wv that is too large to be processed, in this paper we restrict
the division of the image as a vertical line. In this case, the partition of C at the position d
is (C1:w,1:d ,C1:w,d+1:v), and we simplify it as (C1:d ,Cd+1:v) together with their histogram rep-
resentation pair as (h1:d ,hd+1:v). Therefore, the candidate pool of all possible representation
pairs is:

H = {(h1:d ,hd+1:v)| d = 1, ...,v−1}. (6)

Based on the above notations, the proposed algorithm in this paper aims to learn good
divisions {d1, ...,dℓ,dℓ+1, ...,dℓ+u} of both labeled and unlabeled images such that the co-
training algorithm using {(hi,1:di ,hi,di+1:v)|i = 1, ..., ℓ;ℓ+1, ..., ℓ+u} as inputs can succeed.
Two points should be mentioned about the above definition: (1) different images may have
different good values of d; (2) the above restriction of the division of the image may not be
optimal, but our experimental results indicate that it works quite well.

2.2 Solution
Our solution to obtaining {d1, ...,dℓ,dℓ+1, ...,dℓ+u} includes two folds: (1) first we learn
divisions of labeled images {d1, ...,dℓ} by the EM style algorithm; (2) then we learn divisions
of unlabeled images {dℓ+1, ...,dℓ+u} by the co-training style algorithm. In the following
paragraphs, we will go into details of describing the above two approaches.

2.2.1 Learning divisions of labeled images

The proposed algorithm works to divide each image into two subregions and consider each
of them as an independent representation. Let {I1, ..., Iγ} denote the set of labeled positive
images and {d1, ...,dγ} denote their current divisions, based on the bag-of-words model we
get the following representation pairs of these positive training images with respect to their
current divisions:

{(h1,1:d1 ,h1,d1+1:v), ...,(hγ,1:dγ ,hγ,dγ+1:v)}, (7)

where {h1,1:d1 , ...,hγ ,1:dγ} and {h1,d1+1:v, ...,hγ ,dγ+1:v} are their first and second representa-
tions respectively. Note like the whole image, both of these two subregions have their own
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Figure 1: An example of f (di) = min
{

wL·ϕ(hi,1:di )−ρL

∑v′ |wL·ϕ(hi,1:v′ )−ρL| ,
wR·ϕ(hi,di+1:v)−ρR

∑v′ |wR·ϕ(hi,v′+1:v)−ρR|

}
where di =

1, ...,40. Values of f (di) with three different values of di = {10,15,30} are highlighted in:
(a), and their corresponding divisions of the image are shown in: (b) di = 10; (c) di = 15; (d)
di = 30. It is observed that a higher value of f (di) leads to a better division of the image.

meanings of a particular part of an object or a frequently appearing object in a scene, there-
fore we apply the one-class SVM to describe them as svmL and svmR:

svmL

min 1
2∥w

L∥+ 1
νLγL ∑i ξ L

i −ρL, s.t. wL ·ϕ(hi,1:di)≥ ρL−ξ L
i , ξ L

i ≥ 0 (8)

svmR

min 1
2∥w

R∥+ 1
νRγR ∑i ξ R

i −ρR, s.t. wR ·ϕ(hi,1+di:v)≥ ρR−ξ R
i , ξ R

i ≥ 0 (9)

where ρL and ρR are offsets of each example from the origin, νL and νR are shared trade-off
parameters, and ξ L

i and ξ R
i are slack variables for the example. Now suppose the above two

one-class SVMs are known and fixed, given an image Ii with the division position di, we
calculate the decision functions:

(wL ·ϕ(hi,1:di)−ρL, wR ·ϕ(hi,1+di:v)−ρR), (10)

that measures how well does the representation pair (hi,1:di ,hi,1+di:v) fit the current model
(svmL,svmR), then the division of the image that fits the model best can be found as:

di = argmax
d

min
{

wL ·ϕ(hi,1:d)−ρL

∑v′ |wL ·ϕ(hi,1:v′)−ρL|
,

wR ·ϕ(hi,d+1:v)−ρR

∑v′ |wR ·ϕ(hi,v′+1:v)−ρR|

}
. (11)

Therefore we have the following EM style algorithm to learn divisions of labeled images:

• Input

– A set {I1, ..., Iγ} of labeled positive training images

– A set {Iγ+1, ..., Iℓ} of labeled negative training images

• Process
(1) Set initial divisions {d1, ...,dγ} of the images
(2) Loop:

(a) (svmL,svmR)←Fix (d1, ...,dγ ) and train two one-class SVMs
(b) (d1, ...,dγ )←Fix (svmL,svmR) and update divisions of the images
End loop

(3) Determine divisions {dγ+1, ...,dℓ} of negative training images
Figure 2: The EM style algorithm to learning divisions of labeled images.
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Note the above algorithm is unstable due to different initial values of di. In this paper,
we set:

di =
v
2
, (12)

in order to make an initial division without bias, for i = 1, ...,γ . Fig. 1 gives an example

that shows min
{

wL·ϕ(hi,1:di )−ρL

∑v′ |wL·ϕ(hi,1:v′ )−ρL| ,
wR·ϕ(hi,di+1:v)−ρR

∑v′ |wR·ϕ(hi,v′+1:v)−ρR|

}
with all possible values of di on

a typical image after the EM algorithm converges.

2.2.2 Learning divisions of unlabeled images:

Let (svmL,svmR) denote two one-class SVMs learned by the EM style algorithm, we get divi-
sions {dℓ+1, ...,dℓ+u} of all unlabeled images by (11) and their corresponding representation
pairs {(hi,1:di ,hi,di+1:v)|i = ℓ+ 1, ..., ℓ+ u} by (4). Then we perform to classify unlabeled
images by the way of considering these representation pairs as inputs of the co-training al-
gorithm. Fig. 3 shows the whole framework of our proposed algorithm, which we call the
spatial co-training algorithm (SCT).

• Input

– A set L of labeled training images

– A set U of unlabeled images

• Process
(1) Learn divisions D = {d1, ...,dℓ} of labeled images in L by EM style algorithm
(2) Create a pool U ′ of examples by choosing u′ examples at random from U
(3) Loop for k iterations

(a) Learn divisions {d′1, ...,d′u′} of unlabeled images in U ′

(b) Train a classifier F1 on {h1,1:d1 , ...,hℓ,1:dℓ}
(c) Train a classifier F2 on {h1,d1+1:v, ...,hℓ,dℓ+1:v}
(d) Label p positive and n negative on which F1 is most confident
(e) Label p positive and n negative on which F2 is most confident
(f) Add these self-labeled images to L and their divisions to D
(g) Update (svmL,svmR) by training two one-class SVMs on augmented D
(h) ℓ= ℓ+2p+2n
(i) Randomly choose 2p+2n examples from U to replenish U ′

End loop
(4) Train a single view classifier F on the augmented training dataset L
(5) Label all the rest of unlabeled images by F

Figure 3: The spatial co-training algorithm (SCT).

In Fig. 3, confident unlabeled images are not only used for updating the classifiers for
image classification, but also used for re-training (svmL,svmR) for the division of the image.
In addition, the co-training process terminates after a certain number of iterations, followed
by a single view image classification scheme that represents each image by the histogram of
its local sift descriptors in the whole image instead of its subregions. As for classifiers of F ,
F1 and F2, there are many different types to choose from, and in this paper we employ the
linear SVM with probability output.
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Table 1: Classification accuracies(%). SVMS: the support vector machine in which only
small amount of images are labeled; SVMF: the support vector machine in which large
amount of images are labeled; CT: the co-training algorithm in which the division of the
image is fixed; ST: the self-training algorithm.

Datasets SVMS SVMF CT ST SCT

Caltech-4 Face 90.5±1.6 94.2±1.0 91.6±3.5 89.0±2.6 94.6±2.0

Caltech-4 Motorbike 82.7±3.3 89.6±1.4 85.8±3.2 83.6±1.8 86.5±2.9

Caltech-4 Car 95.5±1.3 97.2±1.7 97.3±3.5 95.3±2.6 97.3±2.5

Caltech-4 Airplane 90.1±0.9 95.3±1.9 93.3±1.9 94.0±1.5 96.1±0.3

Graz02 Bike 63.9±3.1 72.6±2.4 72.5±8.9 67.3±3.5 75.9±3.1

Graz02 Person 70.0±4.3 75.3±2.2 72.4±4.9 71.6±3.6 76.4±2.5

Scene-15 Mountain 85.8±1.8 91.7±1.6 87.2±1.0 86.8±2.3 90.0±1.8

Scene-15 Store 80.4±0.9 82.6±0.1 81.6±1.0 81.7±1.2 82.6±1.2

Scene-15 Office 80.5±3.6 87.0±1.4 89.7±1.7 83.0±2.1 89.8±1.9

Scene-15 Building 85.6±2.3 90.9±2.1 90.4±2.1 85.4±2.7 91.7±1.9
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Figure 4: Classification accuracies of the SCT algorithm at different iterations on: (1)
Graz02-Bike; (2) Graz02-Person.

3 Experimental results and analysis
The SCT algorithm was tested to classify between positive and negative images on three
widely used image datasets: Caltech-4, Graz02 and Scene-15. Since there are no negative
images in the Scene-15 image dataset, we consider images with a specified label as positive
images and images with other labels as negative images. Parameter settings in our experi-
ments are given as follows: sift descriptors are extracted densely from each image with local
image patch size 32× 32 and step size 8; the codebook size K is fixed to 500; among all
images, 20 positive and 20 negative images are randomly selected as labeled examples and
others are used as unlabeled examples; at each iteration of the co-training algorithm, p = 2
most confident positive and n = 2 most confident negative examples are labeled, and the
number of iterations is fixed to 20. All experiments were repeated for 10 independent runs
and their results were averaged.

First, we compared the SCT algorithm with the following four approaches with respect
to their classification accuracies: (1) SVMS that represents the support vector machine in
which only small amounts of images are labeled; (2) SVMF that represents the support vector
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Figure 5: Classification accuracies of the SCT algorithm at different iterations on: (1)
Caltech-4 Human face; (2) Caltech-4 Motorbike; (3) Caltech-4 Airplane; (4) Caltech-4 Car.
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Figure 6: Classification accuracies of the SCT algorithm at different iterations on: (1) Scene-
15 Mountain; (2) Scene-15 Store; (3)Scene-15 Office; (4) Scene-15 High building.
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Figure 7: Divergence of SVM’s outputs using two representations learned by the SCT algo-
rithm on Caltech-4 Motorbike dataset.

machine in which large amounts of images are labeled; (3) CT that represents the co-training
algorithm in which the division of the image is fixed; and (4) ST that represents the self-
training algorithm. To guarantee a fair comparison, we set the number of labeled positive and
negative images in the SVMF algorithm as 1001, that is much larger than 20 used in other four
approaches; in addition, we set the division di of the image as v

2 for i = {1, ..., ℓ, ℓ+1, ..., ℓ+
µ} in the CT algorithm and considered these two resulted subregions as inputs of the co-
training algorithm; furthermore, in the ST algorithm we trained a single view support vector
machine and again made use of confident unlabeled images for re-training the support vector
machine iteratively. Table (1) shows classification accuracies obtained by SVMS, SVMF, ST,
CT and SCT on the Caltech-4, Graz02 and Scene-15 image datasets. We observe from Table

1we set the number of labeled positive and negative images as 100, because the number of positive and negative
images in the augmented image dataset is 100 after the co-training process terminates in the SCT algorithm.
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(1) (2)

Figure 8: Divisions of images learned by the SCT algorithm on (1) Caltech-4 Motorbikes;
(2) Caltech-4 Airplanes.

(1) (2)

Figure 9: Divisions of images learned by the SCT algorithm on (1) Graz02 Bike; (2) Graz02
Person.

(1) (2)

Figure 10: Divisions of images learned by the SCT algorithm on (1) Office; (2) High build-
ing.

1 that SCT performs better than CT and ST on all image datasets. It significantly outperforms
SVMS with classification accuracy gains ranging from around 2% on Scene-15 Store dataset
to almost 12% on Graz02 Bike dataset. The above experimental results demonstrate the
feasibility of the SCT algorithm for image classification in which only small amounts of
images are labeled. Another interesting observation is the SCT algorithm achieves higher
accuracies than those obtained by the SVMF algorithm on several datasets. The reason is
perhaps the SCT algorithm selects images to be labeled as training examples according to
SVM’s confidences on them, but which images will be labeled are randomly selected in
SVMF.

Second, we studied classification accuracies on each representation at different iterations
of the co-training process. Fig. 4, Fig.5 and Fig. 6 show the experimental results. We observe
from these figures that classification accuracies on both representations are increasing with
small perturbations during the co-training process. The above experimental results tell us
that these two representations learned by the SCT algorithm benefit each other a lot for
image classification, and the co-training algorithm succeeds if these two representations are
used as its inputs. In addition, we calculated the divergence of SVM’s outputs on these two
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(1) (2)

Figure 11: Divisions of some typical images learned by the SCT algorithm: (1) before the
co-training process; and (2) after the co-training process. It tells us that unlabeled images
can help the SCT algorithm learn a better division of the image.
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Figure 12: Probability outputs of SVM and SCT on: (1) Caltech-4 Motorbike; (2) Graz02
Bike.

representations measured as:

χ(I) = F1(y|I)−F2(y|I),

that is an important factor for the success of the co-training algorithm, where F1(y|I) and
F2(y|I) are probability outputs on the first and second representation respectively. Fig.(7)
shows the experimental result that further demonstrates the feasibility of the SCT algorithm
for learning two complementary representations automatically from the image.

Apart from classification accuracies, another target of the SCT algorithm is to learn a
meaningful division of the image. Fig. 8, Fig. 9 and Fig. 10 are the division of the image
learned by the SCT algorithm. We find that each image is divided into two subregions
that are highlighted by a green rectangle and a red rectangle; and these two subregions are
usually two parts of an object or two same objects or two different objects of the same scene.
To test the usefulness of unlabeled images for the division of the image, we compared the
division of the image learned by the SCT algorithm before and after the co-training process.
Fig. 11 gives the experimental result. It is observed that the SCT algorithm using unlabeled
images achieves better divisions than those obtained by the SCT algorithm without unlabeled
images.

Finally, we observed an interesting phenomenon by comparing probability outputs of
SVM and SCT on test positive images. Note their only difference is in SVM, the classifier
is trained on original labeled images; while in SCT, the classifier is trained on augmented
labeled images. The experimental result is given in Fig. 12. We observed from Fig. 12 that
the co-training algorithm significantly increases the confidence of the classifier on unlabeled
data. We claim that this may be another important reason why can the co-training algorithm
succeed in many data classification problems.
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4 Conclusions
In this paper, we have introduced a novel co-training algorithm, which we called the spatial
co-training algorithm (SCT). The SCT algorithm overcomes the main limitation of tradition-
al co-training algorithm, as it automatically learns two independent and sufficient represen-
tations from the data. Its basic idea is to divide an image into two subregions and consider
each of them as an independent representation; and the division of the image and the classi-
fication of the image are learned jointly by a co-training style algorithm. We have tested the
SCT algorithm on several image datasets with only small amounts of labeled images, and
very good results were achieved.
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