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Abstract

Linear projection for reducing data dimensionality is a common practice in various
data processing applications. Among the existing projection methods, Principal Com-
ponent Analysis (PCA) is arguably the most popular one. Standard PCA used in image
preprocessing pursues the projection directions by minimizing the reconstruction error
in a least square sense. However, since PCA does not adapt to the data or any specific
domains, it may lead to severe loss of certain discriminative features during the projec-
tion, and damage the performance of either human perception (e.g. stimulus in the visual
cortex, as modeled by Gabor wavelets), or machine perceptions (e.g. recognizing the im-
ages based on a certain type of visual features), or both. In this paper, we propose a novel
Perception Preserving Projections (PPP) method to preserve the information for specific
perception systems. In particular, PPP incorporates domain-specific feature extractor into
the standard PCA formulation for the projection learning procedure. This enables PPP to
make more sensible projections for feature based perception systems while retaining the
simplicity and unsupervised manner of PCA. In experimental studies, PPP shows clear
effectiveness and improvement over PCA in terms of two performance metrics: feature
extraction deviation and the pattern recognition accuracy.

1 Introduction

Unsupervised learning of feature projections to low-dimensional linear subspaces from train-
ing data has become a standard paradigm in the areas of pattern recognition and computer
vision. Principle component analysis (PCA) [9] in particular is one of the most popular
projection learning methods for dimensionality reduction and feature extraction. PCA in the
image preprocessing procedure allows one to project the images into a lower dimensional
subspace where the reconstruction loss is minimized in a least square sense. The new repre-
sentations obtained from the projection can then be exploited as descriptive features. These
learned PCA representations have proven useful for solving problems such as face and object
recognition, tracking, detection, and background modeling. For example, PCA has become
one of the most successful approaches in face recognition [22]. Classifiers (e.g., kKNN) or lin-
ear discriminators (e.g., LDA [2] and MFA [28]) are performed in the PCA-projected spaces
to recognize the images.

(© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 XIE,FENG, YAN,LU: PERCEPTION PRESERVING PROJECTIONS

Human/Machine
Perception Systems

. Perception Preserving Projections Gabor Feature
. H i Extraction
S H > System 1
e B Image Image i Edge Feature
f Projection Reconstruction | Extraction
! {———) System 2

Figure 1: The red rectangle highlights the problem we aim to solve.

Compared with the descriptive features learned from the raw intensity domain, many
advanced features work better either for machine perception (pattern recognition accura-
cy) [23], or human perception (physical interpretability) [6], or both [15] [30]. In those
cases, PCA still serves as an indispensable component in data pre-processing, due to the
considerable advantages gain including background noise reduction, data de-correlation and
storage/computational efficiency [21] [8].

However, the standard PCA is not tuned to any domain-specific features, thus the dis-
criminative features for certain perception system (such as feature-based automatic face
recognition system) may be lost in the projection process. For example, the discriminative
edges of objects in the images may be destroyed after the PCA projection and reconstruction.
Such loss of discriminative information is dependent on data and specific features used in
different perception systems. For example, for face recognition, the Gabor feature is impor-
tant, while for object detection, the gradient feature is more crucial. This required adaptation
in feature domain makes PCA hardly give the sensible projections and preserve informative
features. In this work, we investigate how we can pursue a linear projection method that is
able to prevent significant machine/human perception loss (i.e. feature extraction deviations
before and after projection and reconstruction).

In particular, to preserve the desired feature characteristic for projected images, we pro-
pose a perception preserving projection (PPP) method. PPP pursues a set of suitable pro-
jection basis which minimize the reconstruction loss for both the original images and the
extracted features simultaneously. Here the feature extractor is formulated as a general lin-
ear operator and integrated in the loss function explicitly.

In this way, by minimizing such reconstruction loss, we can obtain a set of projection
basis preserving certain type of perceptions(features). To efficiently solve the induced op-
timization problem, we further introduce a low-rank relaxation to the original orthogonal
constraint on the projection basis, which offers a more efficient and robust solution.

To quantitatively evaluate the machine perception preserving capability of PPP, we ex-
perimentally evaluate the performance of face recognition on the reconstructed face images
from both PCA and PPP. It is shown that on the face images reconstructed by PPP, face
recognition can achieve significantly improved performance, even in much lower dimen-
sions compared to PCA. The results demonstrate that the proposed PPP method can indeed
preserve the feature characteristic of the data.

The remainder of the paper is organized as follows. The formulation of the proposed PPP
method is given in Section 2. In Section 3 we introduce the optimization algorithm. Section 4
gives the experiment results. In Section 5, we discuss several related works. Finally we
conclude the work in Section 6.

2 Problem Formulation

In this section, we introduce the description of our problem formally and then provide cor-
responding solutions in the next section. Through out the paper, we assume the data points
are stacked in the matrix X = [x;,---,x,] € R¥*" column-wisely. Here n is the number of
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samples. And d is the ambient dimension of the observed data points. Denote the projection
basis as U = [uj, -+ ,u,] € RY*" . Here r is the dimension of subspace.

2.1 PCA Revisiting

Principal Component Analysis (PCA) is a widely used data projection method, which projects
a set of data vectors onto a set of uncorrelated principal components computed from the data
observations. More specifically, the objective of PCA is to minimize following loss function:

 min L{U) = [IX =UU"X]j. 1)

Namely we want to find a set of r orthogonal basis along which the reconstructed data ap-
proximate the original data well. Though the optimization problem (1) is not convex, a
global optimal solution is obtained in closed-form by performing eigen-decomposition on
the data covariance matrix XX” = VIV, and the solution is given by selecting the leading r
eigenvectors from the decomposition. Though PCA is able to minimize the data reconstruc-
tion loss in quadratic measure, PCA does not take the following feature extraction step into
consideration and may incur severe information loss in specific perception systems.

2.2 PPP Formulation

There are various feature extractors can be seen as linear operators P over the data vector
x € R [27]. One example is the convolution of data with linear filter f: P(x) = Pyx = f *x.
Widely used linear filters include Gabor filter, Laplacian of Gaussian (LoG) filter. Here Py
denotes the corresponding convolution matrix for certain filter f. Another popular example
is pixel-wise “masking”: Px, where P is a d X d diagonal matrix. The third example is the
sum of filters ):f:l Py x, where Py, represents a matrix constructed for the k-th linear filter
fx- Thus we can unify the above feature extractors as a linear operator P and directly add it
into the PCA objective function. The objective function of PPP can then be formulated as:
min L(U) = |[P'(X) - P'(UU"X)|Iz, 2)
vtu=I,
Where P’ = [(1 — o)P, atly], and @ is a trade-off parameter between the original data space
and feature space. Note that this formulation is a more general form compared to PCA.
When a = 1, the objective function degenerates to standard PCA.

The above objective function states that we aim to find a set of projection basis U €
R4*" such that the extracted features from the reconstructed data P(UU” X) will not deviate
from the features extracted from the original data P(X) too much. Thus the critical feature
information specializes to a certain perception system represented by P is preserved.

3 Optimization

3.1 Optimization on the Stiefel Manifold

The most straightforward method to solve the problem (2) is performing gradient descent
on the Stiefel manifold defined by UTU =1 [1]. One off-the-shelf solver using Cayley
transformation during the iterative optimization process is proposed recently [25]. We test
this method as a baseline, the detailed algorithm for our particular problem and parameter
settings are presented in the supplementary material for reference.

We notice that though state-of-the-art algorithms like [25] can be directly exploited, the
computational cost is quite high because 1) the gradient computation involves calculating the
matrix inverse and 2) the convergence of gradient descent is usually slow. Based on above
observations, instead of directly employing the above gradient descent method on the Stiefel
manifold, we propose our new objective function for PPP.
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3.2 Low-rank Relaxation
Inspired by the Robust PCA work [4], which seeks a low rank matrix to approximate the
original data matrix, here we also relax the orthogonal constraint in the objective function
and just seek a low rank matrix as the transformation matrix.
Therefore, the objective function in (2) can be relaxed as follows:
min||P(X) —P(WX) |, s.t. rank(W) < r, 3)

where r is also the pre-defined number of dimension for the data dimension reduction. To
see this, we can first perform skinny SVD on the obtained reconstruction matrix W = UXVT .
Since the rank of W is r, the sizes of U, X,V are d X r,r X r,d X r respectively. Then in the data
dimension reduction, V can serve as the projection matrix which projects the d-dimension
data to r-dimension ones. And in the data reconstruction, UX can be applied.
Since the nuclear norm is the convex envelope of the rank function [17], the above ob-
jective function can be further relaxed as:
min W |, + & [E[, st P(X) = P(WX) = E, 4)

where E explicitly accommodates the reconstruction errors. Here the Frobenius norm can
be replaced by other norms if the prior structure information of E is available. For example,
if we know there are some gross noise on the data, we can use ¢;-norm to enforce a sparse
structure. If there are some outliers, we can use ¢, ;-norm to isolate the outliers to some
extent. Here, since such prior information is not available, we use the Frobenius norm to
ensure the reconstruction error of each data dimension to be small.

The optimization problem in (4) can be solved by the Alternating Direction Method
(ADM) [11] efficiently. In particular, we first define the following augmented Lagrangian
function:

LW,EY)=||W|+A|E||F+ (¥, P(X) - P(WX) ~ E) +%H7’(X) ~P(WX)—E|} (5)

where Y is the Laplacian multiplier accounting for the hard constraint P(X) — P(WX) = E
and u is an adaptive penalty parameter. The larger value of u, the greater penalty imposed
on the constraint.

One of the advantages of ADM is that the original optimization problem can be decom-
posed into several subproblems which are relatively easier to solve. However, since in the
current objective function there exists a linear operator P(-) imposing on variable W, it is
difficult to solve the sub-problem for optimizing the function w.r.t. W:

LW) = [W]l.+ (¥, PX) = PWX) ~E)+ S|P - PWX) - E}F (©)

We are confronted with a problem that directly minimizing the subproblem above will lead
to solving a discrete-time Sylvester equation P(WX)+ W = C (C is a constant matrix) in
each iteration. The computing complexity for solving the equation can be as high as O(n°),
which is infeasible for the ADM algorithm and making the low-rank relaxation rewardless.

3.3 Linearization of the Objective Function

To alleviate such difficulty, we adopt the recently developed Linearized Alternating Direction
Method (LADM) [12] and linearize the quadratic term in the above Lagrangian function at
the point W*:

LW, W) =W+ (8, =P W) 41 (P (POX) = POWRX) ~ E) XT W = W)+ B [W = Wil

. . . . . 7
Here 1 > (||P||||X||)? is the Lipschitz constant of the linear operators imposed on Ve
able W. After several algebra computation, the above objective function can be written as:

LV, W) = Wi+ ELIw - a2, ®)
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where My = W —P* (P(X) — P(W,X) —E) X' /n+P*YXT /un. P* denotes the adjoint of
the operator P, which is defined as (P(X),Y) = (X,P*(Y)). It is well known that the above
objective function has following closed form solution:

Wip1 =US 1 (D)VT, ©)
where U,X,V are from SVD on the matrix le:n And S(-) is a shrinkage operator defined
as Sglx] = sgn(x)max(|x| — €,0). Here the shrinkage operator is performed element-wisely
for the involved matrix. To guarantee a good convergence rate, we adopt following adaptive
penalty strategy [12]:

Pok,  if wemax(y/new, ep)/[|P(X)]| < &,

My = . (10)
Uz, otherwise.
Here ey = ||Wiy1 — Wi|| and &g = ||E1 — E||. And the stopping criterion is:
IP(X) = PWEX) —E||/IIP(X)]| < e (11

The implementation details of the above linearized ADM for PPP is given in Algorithm 1.
Here the convergence parameters are fixed as €, = & = 1 x 1075, The optimization algorithm
is guaranteed to be convergent by the following theorem 1. In our implementation, we also
adopt partial SVD and rank prediction techniques using PROPACK [10] and represent W
as its skinny SVD to avoid full matrix multiplications and thus yielding a complexity of
O(nd?).

Theorem 1 If { .} is non-decreasing and upper bounded, > ||P||?||X||?, then the se-
quence {(Wy, Ey,Yi)} generated by Algorithm | converges to a KKT point of problem (4).

Algorithm 1: Linearized ADM for PPP optimization.

Input : X, P, A, u®=1x 1075, e = 1 x 1010, py = 1.1.
Output: Reconstruction matrix W.

1 k=0.

2 repeat

3 (S.1) Compute Wy as in (9);

4 | (S.2) Update Exy = (Y — u(P(X) = P(WiX)))/ (24 — )3

5 (S.3) Update the multiplier ¥+ = Y + e (P(X) — P(WX) — E);
6

7

8

(S.4) Update uy to tg4 as in (10);
(S5 k<« k+1.
until Convergence;

4 Experiments
4.1 Experiment I: Synthetic Data

In this experiment, we investigate whether the proposed PPP method could preserve simple
line patterns along one direction in the image reconstruction and immune to the distracter
lines along other directions.

Data: We generate 100 gray level patches with size of 16 X 16 pixels. Among these
patches, 70 patches contain only vertical lines and the other 30 patches contain only hori-
zontal lines. The position and intensity of these vertical and horizontal lines are generated
randomly. The patches with horizontal lines have distinguished difference from most patch-
es with vertical lines and they can be seen as outliers. Intuitively, due to the sensitiveness of
standard PCA to outliers, the reconstructed patches will be contaminated severely by these
horizontal outliers. While for PPP projection, we instantiate the linear operator P as vertical
edge detector formed by the convolution kernel f = [—1,0,1]. And explicitly minimize the
loss of such vertical line patterns in the patch reconstruction.
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Results: The feature deviation value (i.e. |P(X) —P(WX)||%) is plot versus the number
of iterations in Figure 2. From the plot, we can see that both Stiefel manifold and low-rank
relaxation can achieve much smaller feature deviations than PCA. And the convergence of
low-rank is faster and more smooth than Stiefel manifold gradient descent. The reconstruc-
tion results are shown in Figure 4. From the figure, it can be observed that standard PCA
completely fails to reconstruct the original patches after projecting the patch vector onto low-
dimensional subspace. And the characteristic vertical line patterns of the patch are destroyed
completely. However, for the proposed PPP method, we can see that it can successfully p-
reserve the vertical line pattern in the reconstructed data. And the outliers (horizontal line
patterns) are suppressed. From the results, we can see clearly that PPP is able to preserve
critical perception information. It is worth noting that in this case, even if the outlier lines are
discarded mainly because the response of P over horizontal lines is nearly zero, the perceptu-
al results generated by low-rank approximation are better than those given by Stifel manifold
gradient descent. We believe it is because the low-rank relaxation formulation inherits good
characteristics such as insensitivity to outliers(at least to some extend), from robust subspace
learning algorithms such as LRR [14], which shares a very similar formulation as ours. Thus
PPP can produce a much more robust reconstruction results, with significantly less loss of
specialized information and contamination of outliers.

4.2 Experiment II: Gradient Preserving
In this experiment, we investigate the capability of the proposed PPP method on gradient
feature preserving in the procedure of facial image reconstruction. For comparison, we em-
ploy standard PCA as our baseline. To quantitatively evaluate the superiority of PPP over
PCA, we conduct face recognition tasks on following two benchmark datasets. The gra-
dient features are extracted from the reconstructed images and then fed into classifiers for
classification.

Dataset: In this and following experiments, we employ two benchmark datasets for
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evaluation. The first one is the Extended Yale-B face dataset [7]. It contains 16, 128 images
of 38 human subjects under 9 poses and 64 illumination conditions. In this experiment, we
choose the frontal pose and use all the images under different illumination, thus we get 64
images for each person. All the face images are manually aligned and cropped. The size of
each cropped image is 32 x 32 pixels with 256 gray levels per pixel. The pixel values are
scaled to [0, 1].

The second dataset is the FRGC face dataset [16]. The dataset consists of 5,658 face
images from 275 persons. The size of the original images is 100 x 100 pixels. Here, we
resize all the images to 32 x 32 pixels for efficiency. For the training and test split, we
randomly divide the images into two equal parts. Namely, the training and test sets contain
2,829 images respectively.

Experiment settings: In recent computer vision research, features based on gradient
are shown to be important for face recognition [23] and object recognition [5]. Thus how
to preserve the gradient information in data projection and reconstruction process is also
important in real applications. In this experiment, we employ the Laplacian of Gaussian
(LoG) as the gradient feature extractor. The kernel size of LoG is set as 15 x 15 pixels. And
the standard deviation ¢ of the Gaussian kernel is fixed as 1.

As shown in Figure 3, for different projected subspace dimensions, while embedding
original intensity domain of PCA is useful to avoid possible overfitting (for extracting mean-
ingful features in face recognition tasks), if alpha is too large, the performance will decrease
and finally degenerate to standard PCA results. We empirically find that o¢ = 0.05 is good
choice in this and following experiments.

For the classification, we adopt two popular classifiers in face recognition. The first one
is based on k-NN and here the parameter k is fixed as 1. And the classification result for each
test is determined by the voting from its neighboring training images. The second classifier
is based on the widely used discriminator Linear Discriminant Analysis (LDA) [2].

Since the discriminative capability of LoG on face recognition is limited. Directly p-
reserving LoG feature may not improve the recognition performance too much. Therefore,
in the experiments, we adopt a strategy to augment the capability of the linear operator in
capturing the discriminative features. In particular, we learn a discriminative feature transfor-
mation based on LDA on an extra face dataset. Here we use CMU PIE [19]. Note that such
extra knowledge can be obtained from public and thus can be embedded into our proposed
PPP projection method.

Results: The experimental results are shown in Figure 6 and Table 1. From the results,
we can observe that with the increasing of reconstructed data rank (i.e., the reduced dimen-
sion), both the recognition accuracy of PCA and PPP reconstruction data increase. This is
because reconstructing data with higher rank, the information loss decreases. On both the
Extended Yale-B and FRGC datasets, across all of the data rank setting, PPP consistently out-
performs PCA. For example, on the Extended Yale-B dataset, when reduced dimension is 5,
the recognition accuracy based on PCA reconstructed data is only 5.28%. While for PPP, the
performance is increased to 42.30%. The reason is that for the extremely low rank scenario,
the information loss is quite severe. And thus the performance of PCA decreases signifi-
cantly since it only considers the loss w.r.t. the original data. However, in the reconstruction
process, PPP is able to preserve the critical gradient features, even if a considerable amount
of (inessential) information is inevitably lost due to dimensionality reduction.. Therefore,
even at the same rank (i.e., with roughly the same amount of information loss), PPP can
achieve much better performance than PCA. Note that when the rank of reconstructed data
increases to 50, the information loss is not significant. And the performance margin of PPP
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Dim PCA+kNN PPP-S+kNN  PPP-L+kNN PCA+LDA PPP-S+LDA  PPP-L+LDA
5 5.82+1.64 43.51+2.63 42.30+2.17 10.40+£1.53  4430+1.17 44.414+2.68
10 33.56+1.24  68.34+2.81  70.58+2.29 49.80+£2.17  69.57+£2.60 71.14+2.73
15 48.66+1.95 77.63+1.25 76.524+1.09 70.13£1.07  7875+£2.73  77.40+1.66
20 58.39+249 81.66+2.83 80.21+2.10 80.54+2.79  83.00+£1.69  83.54+2.96
30 71.36+£2.07 84.23+2.26  84.34+3.03 85.124+1.35  85.124+2.85 86.92+1.09
50 79.084+2.27  82.66+1.20  86.13+0.81 89.15+2.44  86.02+1.75 89.58+1.16

Table 1: Face recognition accuracy(%) on the Extended Yale-B database based on gradient
feature. Here PPP-L denotes the PPP with low rank relaxation and PPP-S denotes the PPP
optimized by gradient descent over Stiefel Manifold.

Input lmagesi PPP Projected Images Input Imagesl

Y Wdiedel B
O i

O
Trade-off parameter a increases Trade-off parameter a increases

Figure 5: The reconstruction results of PPP under different values of trade-off parameter o.

PPP Projected Images
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and PCA also decreases. But it can be seen that PPP still outperforms PCA with around 7%
performance margin.

4.3 Experiment III: Gabor Feature Preserving

In this experiment, we specifically investigate the capability of PPP for Gabor feature p-
reserving in the data projection. Besides Gabor feature is useful for machine recogni-
tion [15] [30], there are also findings suggesting that Gabor filter is close to human visual
perception systems [6]. To evaluate the performance quantitatively, we also conduct the face
recognition experiments on the Extended Yale-B and FRGC datasets, following the same
experiment setting as above for Gradient feature.

Experiment settings: For the Gabor feature extraction, here we adopt a bank of Gabor
filters [13] consisting of 8 different orientations (with orientation parameter ¢ € {0,...,7})
and 5 different scales (with scale parameter v = {0,...,4}). Namely there are in total 40
different Gabor filters and 40 different corresponding linear operators P;,i = 1,...,40. Since
the Gabor filter is a complex filter. We isolate the real part P and imaginary part P*
and concatenate them as P = [P; PZ] to form the used linear operator. This projection
methodology is reasonable because in the following feature extraction process, magnitude of
Gabor feature is used and the real/imaginary part can be separably projected in our algorithm.

Results: The experimental results are shown in Figure 3, Figure 6 and Table 2. We can
observe the similar performance trend as the above gradient feature based experiments. In
particular, on the Extended Yale-B dataset, when the reduced dimension is equal to 5, the
performance of PCA is 4.47% while PPP improves the performance to 40.16% for the low-
rank based optimization. The performance improvement brought by PPP is quite significant.
And when the reduced dimension is 50, the performance of PCA is 83% while PPP achieves
a little higher accuracy, namely 83.11%. To investigate how the PPP can preserve specialized
perception in the image projection, we provide some exemplar results in Figure 5. Here when
a = 0, the results are from purely feature preserving. And only some discriminative points
are preserved in the reconstruction. When the value of & increases, the results become more
similar to the original images. An interesting result is that when ¢ is small, the reconstructed
images of different persons look quite similar. However, by extracting the Gabor features,
these images can be distinguished correctly.

We should also explain that the experiments in this section are not to achieve state-of-the-
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Figure 6: The performance comparison for reconstructed face recognition from (a) PCA and
(b) PPP on FRGC dataset based on Gabor/LoG feature.

Dim PCA+kNN PPP-S+kNN  PPP-L+kNN PCA+LDA PPP-S+LDA  PPP-L+LDA
5 4.47+£2.92 40.04+£3.38  40.16+£0.69 17.34+1.93  36.13+3.17  38.59+1.77
10 41.05£2.93  6421£1.87 69.46+1.64 62.53+2.04 7483+£328 72.71+2.62
15 57.94+1.32  75.50+4.40  79.08+2.79 82214222 84.56+1.15  87.81+1.68
20 70.36+£2.94  7897+0.74 81.77+1.25 87.92+1.04 86.80+2.21 91.05+1.38
30 79.19+£291  79.42+236  82.89+1.86 90.72+1.28  90.04+2.06  91.39+1.77
50 83.00+1.97 82.44+2.13 83.11+0.95 91.50+£2.26  92.06+2.76  92.17+2.45

Table 2: Recognition accuracy(%) on the Extended Yale-B database based on Gabor features.

art performance for face recognition. Rather, the goal is to compare the perception preserving
performance of PPP as the same role where PCA may be applied.

S Related Work

There are many variants of PCA, such as the probablilistic PCA [20], the kernel PCA [18],
the Laplacian PCA [32], the generalized PCA [24]. Recent years have witnessed increasing
interest in low rank matrix approximation, such as the low-rank matrix completion [3], ro-
bust PCA (RPCA) [4]. In particular, these methods pursue a low-rank matrix approximation
to the data matrix by isolating certain structured noise (e.g., gross error on certain dimension,
outliers). RPCA is generally used for removing the corruptiong in the data and recovering
the low rank data. To explicitly obtain the projection basis, a standard PCA operation is
necessary following the RPCA. Our proposed method focuses on the projection learning in-
stead of corruption removing and data recovering. Several methods have been proposed to
to improve the perceptual(visual) quality of reconstructed images. Smart PCA [31] is based
on the probabilistic interpretation of PCA, the inverse Wishart distribution is used as con-
jugate prior for the population covariance and domain knowledge can be transferred by the
prior hyperparameters. However the domain knowledge in smart PCA is still constrained on
intensity-domain feature distance functions(such as pixel locations). 2DPCA [29] is based
on 2D image matrices rather than 1D vectors so the image matrix does not need to be trans-
formed into a vector prior to feature extraction. Instead, an image covariance matrix is
constructed directly using the original image matrices, and its eigenvectors are derived for
image feature extraction. Though 2DPCA is useful in feature extraction, it is not able to
reduce dimensions of the images. However, the main contribution of our work is not to gain
good perceptual quality on the intensity domain. What we want to preserve specializes to
a certain type of features that are provided by a specific perception system (or user), mean-
while retain the simplicity and unsupervised manner of classic PCA. It is also interesting to
see how PPP can be regarded as an implementation of unsupervised joint embedding [26] of
different domains(original and feature space in our case).

6 Conclusion

We propose the perception preserving projection (PPP) method, which is able to preserve
the important information for specific perception system in the image projection process.
In particular, we explicitly embed the feature preserving metric provided by a certain type
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of perception systems into the loss function and propose a low-rank approximation opti-
mization method to the problem. In two concrete application scenarios, we take Gabor and
gradient features as illustration and experimentally evaluate that PPP can better preserve the
discriminative and domain-specific feature information.
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