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Recall our objective function of PPP:

min
UT U=Ir

L(U) = ‖P(X)−P(UUT X)‖2
F , (1)

In this supplementary material, we briefly illustrate how we develop the gradient de-
scent method on the Stiefel manifold defined by UTU = I [1]. The whole optimization is
performed iteratively. In each iteration, we first find the gradient of the objective function
defined in (1) in the tangent plane of the manifold at the solution point in the last iteration.
Then a curve along the projected negative gradient is found and through a curvilinear search
the solution for the next iteration is determined.

The gradient of the objective function in (1) at solution Uk is calculated as follows:

∇F(Uk) = (GUkT −UkGT )Uk, (2)

where G = (AUkUkT B + BUkUkT A− AB− BA)Uk, A = XXT , B = PT P. Following [3],
the curve along which search for the next solution can be defined by performing Cayley
transformation [2] over the current solution:

Y (τ) = (I +
τ

2
W k)−1(I− τ

2
W k)Uk,

where W k = GUkT −UkGT and G is defined as above. By applying the Sherman-Morrison-
Woodbury formula [4], the above Cayley transformation can be simplified as:

Y (τ) = X− τR(I +
τ

2
V T R)−1V TUk, (3)

where R = [G,Uk] and V = [Uk,−G]. The curvilinear search along the above curve is per-
forming traditional linear search until the Armijo-Wolfe conditions are satisfied. The details
are presented in Algorithm 1.

Throughout the parameters are fixed as ρ1 = 1×10−8,ρ2 = 1×10−5 and τ is intialized
as 1×10−3 to achieve the best performance.
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Algorithm 1: Stiefel manifold gradient descent for PPP optimization.
Input : X , P , parameter 0 < ρ1 < ρ2 < 1.
Output: Reconstruction basis U .

1 repeat
2 (S.1) Calculate the gradient according to (2).
3 (S.2) Calculate the curve as in (3).
4 (S.3) Initialize τ to a non-zero value.

5 Calculate F ′(Y (τ)) = tr(GTY ′(τ)), where Y ′(τ) =−
(
I + τ

2 A
)−1 A

(
U+Y (τ)

2

)
,

6 Y ′(0) =−AX , A = GUT −UGT .
7 while F(Y (τ))> F(Y (0))+ρ1τF ′(Y (0)) and F ′(Y (τ))< ρ2F ′(Y (0)) do
8 τ ← τ

2
9 end

10 until Convergence;

[2] F Diele, L Lopez, and R Peluso. The cayley transform in the numerical solution of
unitary differential systems. Advances in computational mathematics, 8(4):317–334,
1998.

[3] Z. Wen and W. Yin. A feasible method for optimization with orthogonality constraints.
Mathematical Programming, pages 1–38, 2010.

[4] Wikipedia. Sherman morrison formula, 2013.


