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SAME DIFFERENT 

Figure 1: Face Verification. Given a pair of face images, the task is to
verify if both depict the same person. This is a challenging task due to the
variations in lighting, pose, face expression, etc.

Overview. The face verification and recognition domain has mostly been
dominated by carefully designed representations based on features com-
puted around numerous facial landmarks [1, 3]. On the other hand, for
image classification, image representations are capable of capturing dis-
criminative image information without any domain-specific knowledge
by using densely computed features, coupled with a non-linear encoding.
For instance, the high-dimensional Fisher vector encoding [6] of SIFT
features [5] achieves state-of-the-art performance on several image clas-
sification benchmarks [2].

In this paper, we address this discrepancy and make two contribu-
tions. First, we show that Fisher vector encoding of dense SIFT, an
off-the-shelf image representation, achieves state-of-the-art face verifica-
tion performance on the challenging “Labeled Faces in the Wild” (LFW)
benchmark. Second, we show that the high-dimensional face represen-
tation using Fisher vector encoding is amenable to discriminative dimen-
sionality reduction. The resulting compact descriptor has equal or better
recognition accuracy and is very well suited to large-scale face recogni-
tion tasks.

The overview of our face descriptor computation pipeline is shown
in Fig. 2. The learnt dimensionality reduction model is visualised in Fig. 3.
It is able to automatically extract the discriminative regions of the face.

Results. In the unrestricted setting of LFW, we achieve 93.03±1.05%
face verification accuracy, closely matching 93.18± 1.07% obtained by
the state-of-the-art method [3], based on high-dimensional LBP descrip-
tors sampled around 27 face landmarks. It should be noted that the best
result of [3] using SIFT is 91.77%. In the restricted setting of LFW, we
achieve the verification accuracy of 87.47±1.49%, setting the new state-
of-the-art. This is better than the second best method of [4] by 3.4%.

The ROC curves of our method as well as the other methods are
shown in Fig. 4.
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Figure 2: Method overview. Given an image, we first run an off-the-shelf
face and facial landmark detectors to align the face to a canonical frame.
Spatially-augmented SIFT features are then densely extracted from the
face region and encoded into a high-dimensional Fisher vector face rep-
resentation. Finally, discriminative dimensionality reduction is learnt on
these features to compress them into a compact representation, while im-
proving the discriminative ability.
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Figure 3: Learnt model. A Fisher vector, coupled with discriminative di-
mensionality reduction, can automatically capture the discriminative parts
of the face. (a): an aligned face image; (b): unsupervised GMM clus-
ters densely span the face; (c): a close-up of a face part covered by the
Gaussians; (d): 50 Gaussians of the GMM, corresponding to the learnt
projection matrix columns with the highest energy; (e): 50 Gaussians cor-
responding to the learnt projection matrix columns with the lowest energy.
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Figure 4: Comparison with the state-of-the-art. ROC curves of our
method and the state-of-the-art techniques in LFW-unrestricted (left) and
LFW-restricted (right) settings.


