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Abstract

The integration of surface normals is a classic and fundamental task in computer vi-
sion. In this paper we deal with a highly efficient fast marching (FM) method to perform
the integration. In doing this we build upon a previous work of Ho and his coauthors.
Their FM scheme is based on an analytic model that incorporates the eikonal equation.
Our method is also built upon this equation, but it makes use of a complete discrete for-
mulation for constructing the FM integrator (DEFM). We not only provide a theoretical
justification of the proposed method, but also illustrate at hand of a simple example that
our approach is much better suited to the task. Several more sophisticated tests confirm
the robustness and higher accuracy of the DEFM model. Moreover, we present an ex-
tension of DEFM that allows to integrate surface normals over non-trivial domains, e.g.
featuring holes. Numerical results confirm desirable qualities of this method.

1 Introduction
The integration of normal vectors of a surface is a fundamental problem in computer vision.
Important classic examples for techniques where this task arises are shape from shading and
photometric stereo. There it is used to recover the three-dimensional (3-D) shape of objects
from one or more input images, respectively [9, 18]. Several methods have been developed
to solve the problem of surface normal integration over the last decades. As milestones let
us mention here the method of Horn and Brooks based on the calculus of variations [8], the
method of Frankot and Chellappa which employs the frequency domain [5] and the direct
integration scheme of Wu and Li [19]. For an extensive review, we refer to [4].

While a variety of schemes has been proposed, there is, however, still a need for methods
that combine accuracy, robustness and high efficiency. By the latter objective, an algorithmic
approach that appears to be a natural candidate is the fast marching (FM) method, cf. [6, 12,
13, 14, 17]. Given that the task at hand can be formulated as a static eikonal-type equation,
it can be solved with a complexity of O(N logN), where N is the number of pixels of the
computational domain. In the work of Ho et al. [7] this strategy has been adopted. Their
approach is based on an analytic formulation of the integration task in terms of an eikonal
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equation. However, while in [7] some promising results are presented, the authors also report
significant problems with the robustness and accuracy of the scheme.

Let us emphasise that the discretisation of a hyperbolic partial differential equation
(PDE) such as the eikonal equation is a delicate task, see e.g. [14] for a useful discussion
in the context of this work. A mixture of discrete and analytic expressions as employed by
Ho et al. [7] might induce numerical instability such as the amplification of discretisation
errors, which would fit to observations in [7].

Our Contributions. In this paper we improve the scheme of Ho et al. by making it sta-
ble and accurate in the first step. We propose a complete discrete formulation of the model
by Ho et al. in terms of a proper approximation of the underlying PDE. At hand of a sim-
ple example we explain why the resulting new algorithm DEFM is much better suited for
the integration task than the method in [7]. We also give a theoretical analysis showing the
difference between the schemes. By additional experiments we confirm the robustness and
accuracy gain of DEFM compared to the method of Ho et al. Moreover, we present an ex-
tension of DEFM that enables to deal with more general, connected computational domains
featuring e.g. holes. Our extended method relies on the use of a pre-computed geodesic
distance as a metric on the computational domain.

Paper organisation Section 2 gives a brief review of the work by Ho et al. We give
an exposition on the proposed approach by providing an example and detailed analysis in
Section 3. Section 4 validates our approach by reporting experimental results. Afterwards,
the paper is closed by concluding remarks.

2 The Previous Method

We briefly review the method by Ho et al. [7] upon which our approach is based. The basic
idea relies on solving an eikonal equation using the FM method under certain assumptions.

Let us begin with looking at an example of an integration problem in the one-dimensional
(1D) case. In this instance, by the fundamental theorem of calculus an integration of v′ gives
an antiderivative v up to an additive constant c. Therefore, we attain∫

v′(x1)dx1 = v(x1)+ c . (1)

In analogy to the 1D case the solution structure of (1) can be respected in 2D as well. There-
fore in order to obtain v in 2D, Ho et al. consider the auxiliary formulation

w(x1,x2) := v(x1,x2)+λ f (x1,x2) , (2)

where λ > 0 is a constant parameter and f denotes a function. Here, one can note that the
role of the constant c in (1) corresponds to the term λ f in (2). Moreover, from a numerical
viewpoint, in order to apply FM the information of the critical points of w should be avail-
able, e.g. that w admits only a single minimum at some initial point x0. In this regard, the
function f is designed in such a way that it should not modify any important structures of v,
yet give us some useful information at the same time. In [7], the point x0 is set at the origin
and as a function fulfilling the discussed requirements

fHo := x2
1 + x2

2 (3)
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is chosen. Since the FM method is originally devised to solve the eikonal equation [14],
for the deployment of FM as a numerical solver the expression in (2) should be put into an
eikonal-type format. This leads to

|∇w|= |∇v+λ∇ fHo|=
√
(vx1 +λ 2x1)2 +(vx2 +λ 2x2)2 (4)

with vx1 := ∂v
∂x1

and vx2 := ∂v
∂x2

. Let us emphasise that Ho et al. make use of an analytic
computation of ∇ fHo in the above equation. Since all elements on the right hands side of
(4) are known, the FM method allows to compute w from the PDE |∇w| = |∇v+λ∇ fHo|.
In order to obtain v from w, one has to subtract the known function f from w after that
computation.

3 Our Approach
3.1 Upwind Discretisation
Our first advancement stems from the deployment of a proper discretisation method for the
eikonal equation (4), namely an upwind scheme [11]. One important reason for this choice
is directly related to the nature of an eikonal equation. It is a special case of a Hamilton-
Jacobi PDE, and for this type of equations it is well-known that in general there does not
exist a solution in the classic sense [1]. In fact, a solution we are looking for is defined in
the viscosity sense [2]. Another reason comes from the nature of the FM method. Since
FM is originally designed for solving an eikonal equation and the method itself already
embodies an upwind strategy [14], a solution computed by FM relies also upon non-smooth
solutions in the viscosity sense [15]. In the latter context, there is no theoretical justification
for employing an analytic derivative such as ∇ fHo in (4) for FM.

Thus, instead of the analytic expression ∇ fHo in (4) we employ a complete discrete for-
mulation using as discrete derivative the upwind difference from [11]. In 1D, this upwind
discretisation reads as

f̂x := max
(
D− f ,−D+ f ,0

)
(5)

with

D− f =
fi− fi−1

∆x
> 0 and D+ f =

fi+1− fi

∆x
< 0 (6)

where ∆x is the mesh width and f j denotes the discrete function value at j∆x with j being the
index of the grid point. Each inequality in (6) holds for consistency since the upwind scheme
chooses only one direction for the propagation of the information. This upwind formula can
also be applied in a straightforward way in 2D.

In order to make the advantage of the proposed method over the method of Ho et al.
clearly visible, in what follows we provide a simple example which shows that upwind dif-
ferencing outperforms the analytic derivative.

3.1.1 Example

We consider the 1D version of the eikonal equation (4) solving it by FM with different
discretisation methods. To this end, let us assume that we are given a three-pixel complete
black input image, i.e. whose grey values are zeros. Furthermore, for simplicity suppose that
the middle pixel is positioned at the origin and is a seed point for the FM method, and we let
the solution value be 0 there.
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For all the computations, we employ λ = 1, grid size ∆x = 1 and Neumann boundary
conditions in case if boundary values are needed. This setting is equivalent to

x = [−1, 0, 1] , vx = [0, 0, 0] and v = [0, 0, 0] and w = [w−1, w0 = 0, w1] , (7)

where w−1 and w1 denote the evaluation of w at x =−1 and x = 1, respectively. In addition,
they are the unknowns that we want to find.

Let us stress that we expect from a proper solution method that it gives the true solution
in such a simple toy example. For the comparison of methods let us construct it. Since all
input grey values are identical in our toy example (and because we use Neumann boundary
conditions), the derivatives vx are all zero, so that by the given value v = 0 at the central point
we have that v is identical to the zero function v = 0 at all grid points. By ∆x = 1 and λ = 1,
we evaluate f := f (x) = x2 (centred upon the middle pixel) at the two grid points of interest
as f (±1) = 1, so that we expect by w = v+λ f that the exact solution of our toy problem is
given by the vector w = [1,0,1].

Analytic method by Ho et al. First, we perform the procedure for w−1 in (7). In consid-
eration of the 1D version of (3), we receive

f1D Ho = x2 = [1, 0, 1] (8)

and
[ f1D Ho]x = 2x = [−2, 0, 2] . (9)

Therefore, by (4) and (9) we attain

|wx|(x=−1)
(4)
= [ f1D Ho]x|(x=−1)

(9)
= |−2| ⇒ |wx|(x=−1) = 2 , (10)

where |wx|(x=−1) denotes the absolute value of the evaluation for the x-derivative of w at
x =−1. The next step is to apply FM [14] at (10). This leads to√

max
(

w−1−w−2

∆x
,−w0−w−1

∆x
,0
)2

=

√
(w−1)

2 = 2 . (11)

As a result, we have w−1 = 2, the case w−1 =−2 is automatically ruled out. For w1 the same
procedure is conducted. Finally, we obtain

w1D Ho = [2, 0, 2] . (12)

Proposed upwind discretisation. Now, we perform the same computation making use of
upwind differencing instead of the analytic derivative. For the position at x =−1, by (5) we
can obtain

f̂x
∣∣
(x=−1) = max

(
f−1− f−2

∆x
,− f0− f−1

∆x
,0
)

= max
(

1−1
1

,−0−1
1

,0
)

= 1 . (13)

Analogously, for x = 1 we have f̂x
∣∣
x=1 = 1. Thus, we have the upwind difference

f̂x = [1, 0, 1] . (14)

Utilising FM as in the analytic case, we attain

w1D upwind = [1, 0, 1] . (15)
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Evaluation. In summary, it can be recognised that our method achieves the desired re-
sult, while there is even in this simple toy example a significant discrepancy between exact
solution and computed result when using the method of Ho et al., see (12) and (15).

3.1.2 Scheme Analysis

One of the most desirable properties for an algorithmic approach is the robustness in that the
computed result should not be highly sensitive to changes of input data, e.g. due to noise. A
fundamental stability property implying robustness is the monotonicity of numerical schemes
which we now investigate, cf. [10]. For shortness of presentation, we restrict our attention
again to the 1D situation. Our investigation extends in a straightforward way to 2D.

Our method. Due to the fact that vx is a pointwise given, precomputed quantity that does
not influence the performance of the scheme, we deal without loss of generality with the
following eikonal equation

λ | fx|= 1 . (16)

Following [11] we consider the corresponding time-dependent formulation of (16) as

λ ft +λ | fx|= 0 . (17)

By applying Euler forward time discretisation and upwind spatial discretisation to (17), we
have

λ
f n+1
i − f n

i
∆t

+λ

√
f̂ 2
x = 0 ⇒ λ f n+1

i = λ f n
i −∆tλ

√
f̂ 2
x =:H , (18)

where f̂x denotes the upwind discretisation given in (5).
Since monotonicity of a scheme means that the scheme update function H in (18) is

non-decreasing for all arguments [3, 10], we need to show that it holds for all i

(i)
∂H

∂ fi−1
≥ 0 , (ii)

∂H
∂ fi
≥ 0 , (iii)

∂H
∂ fi+1

≥ 0 . (19)

For this purpose, we make case distinctions between the first two arguments in (5).

When D− f is chosen. Since ∂H
∂ fi+1

= 0 in this case, we only have two cases. Then, we can
receive

∂H
∂ fi−1

=
∂H
∂ f̂x

∂ f̂x

∂ fi−1
=

∆t
∆x

> 0 (20)

and
∂H
∂ fi

= λ − ∂H
∂ f̂x

∂ f̂x

∂ fi
= λ − ∆t

∆x
≥ 0 ⇒ λ ≥ ∆t

∆x
> 0 . (21)

The condition (21) states that the scheme is monotone when λ ≥ ∆t
∆x . Let us stress that ∆t is

an artificial parameter for which we may assume 0 < ∆t� ∆x.

When D+ f is chosen. We apply the same procedure as previously. First, we have ∂H
∂ fi−1

=

0. Then, we can obtain
∂H

∂ fi+1
=

∂H
∂ f̂x

∂ f̂x

∂ fi+1
=

∆t
∆x

> 0 (22)

and
∂H
∂ fi

= λ − ∂H
∂ f̂x

∂ f̂x

∂ fi
= λ − ∆t

∆x
≥ 0 ⇒ λ ≥ ∆t

∆x
> 0 . (23)
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As a consequence, we can conclude that our proposed scheme is monotone in view of (19).
Moreover, as is shown in (21) and (23) this investigation also tells us that our method leaves
no restrictions for the choice of λ in contrast to the findings of Ho et al. in [7] because λ can
be freely set as any predefined small positive values, see Figure 1.

Non-monotonicity of the analytic method. Here, we show the numerical instabilities of
the method by Ho et al. [7] by presenting the non-monotonicity of the analytic method . The
analytic expression corresponds to a central difference because [ f1D Ho]x is identical to

D f =
fi+1− fi−1

2∆x
= 2x =: f̂x . (24)

Plugging (24) into (18) and applying the criterion in (19) gives us

(a)
∂H

∂ fi−1
= 1 > 0 , (b)

∂H
∂ f̂x

∂ f̂x

∂ fi
=− ∆t

2∆x
f̂x

| f̂x|
, (c)

∂H
∂ f̂x

∂ f̂x

∂ fi+1
=

∆t
2∆x

f̂x

| f̂x|
. (25)

In the light of (b) and (c) in (25), it is clear that monotonicity does not hold in this case.
Let us also mention that it is well known that central differences as in (24) yield unstable
schemes when discretising hyperbolic PDEs, cf. [10].

3.2 Scheme Extension for Handling Non-Trivial Domains
It can be clearly noticed that the metric function f in (2) plays a major role, especially when
λ is large. However, the usage of the Euclidean norm (3) leads to difficulties when the
topology of the domain for an integration is qualitatively different from that of a disc, e.g.
as in the case of a mask shape with two holes inside, see Figure 3(e) and 4(e). By these
figures, one can realise that the Euclidean norm fails in measuring a meaningful distance
from the image centre to places behind the two holes. In such a case, we inevitably should
detour around the holes and at the same time still have to find a suitable distance from the
centre. In order to take care of this matter, instead of the Euclidean distance we incorporate
as indicated a more general geodesic distance which can handle this situation.

4 Experimental Results
We evaluate the performance of the proposed method by carrying out numerical tests on both
synthetic and real data.

Experiment I: Monkey saddle function. In order to test the stability of the proposed
scheme, our first numerical experiment is carried out with the monkey saddle function,

Z = x(x2−3y2)+20 , (26)

see Figure 1(a). As in the work by Ho et al., for the comparison purpose we also use the
same relative error measure

ε =
|Z∗−Z|
|Z|

, (27)

where Z∗ denotes the computed solution. For different λ values, the computation results
of mean, median and standard deviation of the relative error measure (27) are reported in
Figure 1(b), 1(c) and 1(d), respectively. From the plots, one can clearly notice that for the
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(a) The input monkey saddle function (26).
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(b) Mean of the relative error (27).
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(c) Median of the relative error (27).
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(d) Standard deviation of the relative error (27).

Figure 1: The input monkey saddle function described in (26) and plots of mean, median
and standard deviation of the relative error measurements (27) depending on the value of λ .
The value of λ varies in the range 0 < λ ≤ 100 and is represented by the horizontal axes.

whole range of λ the proposed scheme is highly stable comparing to the method by Ho et
al., in all error measures proposed in [7]. Furthermore, this also confirms the results of our
theoretical investigation presented in Section 3.1.2.

Experiment II: Lena. For a visual comparison of schemes, we perform the method of
Ho et al. and our integration method on x- and y-derivatives of the test image “Lena”, see
Figure 2(a), 2(b) and 2(c). The corresponding reconstruction results by each method are
presented in Figure 2(d) and 2(e), respectively. The quality difference between Figure 2(d)
and 2(e) is conspicuous. Notice also the big difference of λ between two experiments,
λHo = 0.2 versus λProposed = 1000000. Relying on our analysis in Section 3.1.2, we chose
λProposed in a generic way and in a range that may be disadvantageous for the scheme accuracy.
Since the method by Ho et al. does not give a reasonable result for large λ values, we only
apply very small values of λ and present the best result. Nevertheless, the proposed method
outperforms the method of Ho et al. in all error measures, see Table 1.

Table 1: Error measurements for Lena experiment given in Figure 2.

Mean Median Standard deviation

Ho et al. (λ = 0.2) 0.3060 0.2079 0.3604
Our method (λ = 1000000) 0.0785 0.0364 0.1325
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(a) The original Lena image. (b) x-derivative of Figure 2(a). (c) y-derivative of Figure 2(a).

(d) Optimal result by the scheme of Ho et al. (e) Generic result by our method.

Figure 2: Top row. The original Lena image and its x- and y-derivatives used as input
images. Bottom row. Reconstruction results by each method.

Experiment III: Buddha. We now apply the proposed method at the reconstruction of a
3D surface by making use of the photometric stereo (PS) algorithm based on the work by
Tankus and Kiryati [16]. To this end, we have used three input images of the same object
with different illumination conditions, see Figure 3(a), 3(b) and 3(c). In order to validate if
the proposed geodesic metric works properly for integration of surface normals delivered by
PS, we have done two experiments i.e. for the integration domain with a mask and without
a mask. The mask has two holes as often used with basic PS methods such as the one
we employ here to avoid effects of the complex eye regions. The rendering results of the
3D reconstruction depending on the integration domain are shown in Figure 3(d) and 3(e),
respectively. It can be clearly recognised that the proposed geodesic metric can handle the
topological changes in the integration domain accordingly.

Experiment IV: Beethoven. Finally, we test our algorithm on the real-world data set
“Beethoven” shown in Figure 4(a), 4(b) and 4(c). As the case with “Buddha”, we perform
the 3D reconstruction from three different input images by using first the aforementioned PS
technique for computing a field of surface normals on the integration domain with a mask
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(a) Input image 1. (b) Input image 2. (c) Input image 3.

(d) Reconstruction without a mask. (e) Reconstruction with a mask.

Figure 3: Top row. The three input images of Buddha with different illumination conditions.
Bottom row. Renderings of the Buddha face after 3D surface integration.

and without a mask, respectively. The outcomes after surface normal integration with the ex-
tended DEFM method are exhibited in Figure 4(d) and 4(e). As can be observed manifestly,
the proposed method works appropriately with realistic data as well.

5 Conclusion
We have constructed and validated a very fast, highly robust and reasonably accurate nu-
merical scheme for surface integration by employing a discrete eikonal equation, based on a
previous method of Ho et al. We extended our proposed method by employing a geodesic
metric in a way that the new algorithm can handle topological changes in integration do-
mains. Since surface normal integration methods are of considerable importance and have
many potential applications in computer vision, we believe that our new method can be an
attractive tool for applications in the field.

Acknowledgements. This work has been partly funded by the Fraunhofer Institute for In-
dustrial Mathematics (ITWM). Moreover, Yong Chul Ju gratefully acknowledges the Cluster
of Excellence “Multimodal Computing and Interaction” within the Excellence Initiative of
the German Federal Government.
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(a) Input image 1. (b) Input image 2. (c) Input image 3.

(d) Reconstruction without a mask. (e) Reconstruction with a mask.

Figure 4: Top row. The three input images of Beethoven bust with different illumination
conditions. Bottom row. Renderings of 3D surface integration results.
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