
   
 
 

Abstract 
 

While video analytics used in surveillance applications 
performs well in normal conditions, it may not work as 
accurately under adverse circumstances. Taking 
advantage of the complementary aspects of video and 
audio can lead to a more effective analytics framework 
resulting in increased system robustness. For example, 
sound scene analysis may indicate potential security risks 
outside field-of-view, pointing the camera in that 
direction. This paper presents a robust low-complexity 
method for two-microphone estimation of sound direction. 
While the source localization problem has been studied 
extensively, a reliable low-complexity solution remains 
elusive. The proposed direction estimation is based on the 
Generalized Cross-Correlation with Phase Transform 
(GCC-PHAT) method. The novel aspects of our approach 
include band-selective processing and inter-frame filtering 
of the GCC-PHAT objective function prior to peak 
detection. The audio bandwidth, microphone spacing, 
angle resolution, processing delay and complexity can all 
be adjusted depending on the application requirements. 
The described algorithm can be used in a multi-
microphone configuration for spatial sound localization 
by combining estimates from microphone pairs. It has 
been implemented as a real-time demo on a modified TI 
DM8127 IP camera. The default 16 kHz audio sampling 
frequency requires about 5 MIPS processing power in our 
fixed-point implementation. The test results show robust 
sound direction estimation under a variety of background 
noise conditions. 
 

1. Introduction 
Many video analytics solutions used in surveillance 

applications to identify security-risk events perform 
relatively well in normal conditions. They might not, 
however, detect emergency events accurately in cases of 
view obstruction, low or rapidly changing lighting, out-of-
view activities, or other adverse conditions (e.g. rain, fog, 
smoke). In such cases, audio analytics can be used to 

provide additional information about the environment 
under surveillance. Audio analytics can analyze the sound 
scene of a surveyed environment and provide additional 
data about activities not readily discerned by a camera. 
Sound identification may alert to potential security risks 
and sound localization may be used to point the camera in 
the direction of interest. Taking advantage of the 
complementary aspects of video and audio can provide a 
powerful framework that should lead to increased system 
robustness and positive alarm detection rate. 

This paper presents a prototype solution that adds sound 
localization capability to a surveillance camera. In 
addition to security, localization of a sound source is of 
interest in many other applications including video 
conferencing, smart buildings, robotics, and assisted 
living. In these intelligent-environment applications, 
microphone arrays are used to track speakers and various 
other sounds of interest. While the sound localization 
problem has been studied extensively, a reliable low-
complexity solution remains elusive. 

We generally take the human ability to localize sound 
for granted. Our auditory system combines multiple cues 
for an effective sound source localization including signal 
level differences between ears, temporal and spectral 
analyses, and pattern matching [1]. Effects such as the 
head shadowing of the sound, and direction-specific 
frequency patterns imposed by the outer ear and torso, 
help us localize the spatial sound origins. These are 
difficult to replicate using microphones and low 
complexity signal processing. 

Sound source localization algorithms are traditionally 
based on the sound’s Time Difference of Arrival (TDOA) 
between various microphones. One of the most widely 
used TDOA estimators employs Generalized Cross-
Correlation with Phase Transform (GCC-PHAT) [2, 3]. 
The GCC-PHAT method is attractive because, while being 
sub-optimal under ideal conditions, it tends to perform 
well in challenging environments, for example in the 
presence of reverberation. Several recent approaches 
aimed at improving accuracy of the TDOA estimate 
modify the GCC-PHAT weighting function, for example 
by applying an SNR-dependent exponent to the weighting 
function [4], adding a bias term in the denominator [5], 
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and using estimates of the phase statistics [5, 6]. Other 
approaches extend GCC-PHAT by calculating the TDOA 
in temporal and frequency bands followed by merging the 
estimates [7, 8], or including TDOA prior assumptions 
during estimation [10].  To reduce the effects of noise, 
some methods pre-process the input to remove unwanted 
signal components prior to applying GCC-PHAT, for 
example by performing spectral subtraction and mean 
normalization [5], or by decomposing the input using basis 
functions [9]. The GCC-PHAT output can be post-
processed to obtain higher TDOA estimate accuracy, such 
as applying interpolation functions during the search for 
the GCC-PHAT delay peak value [4].  

All the above approaches improve the TDOA accuracy 
but not necessarily its stability. Real-time applications 
require not only an accurate, but also a stable and low-
latency TDOA estimate in order to accomplish objectives 
such as focusing a camera in the direction of a sound 
without annoying camera jitter. In such applications, 
estimation of the precise location of the sound source is 
often not as important as ensuring the stability of the 
estimate. Stable TDOA estimation often implies high 
sampling rates and processing large windows of data, 
which increases latency and consumes processing 
resources. In this paper, we present a low-resource method 
based on GCC-PHAT to provide accurate and stable 
sound-direction estimates. TDOA estimates are known to 
exhibit anomalous behavior during short periods of silence 
and in noise [11]. In our approach, we select only the 
frequency bands that may most likely contain useful 
information, and reject those dominated by noise. We 
propose a novel inter-frame adaptive filter which is 
applied to the GCC-PHAT objective function prior to 
determining the TDOA estimate. The inter-frame filter 
reinforces correlation peaks across a number of processing 
frames and thus substantially improves stability of the 
final estimate. The inter-frame filtering is performed 

before a peak is identified in the GCC-PHAT objective 
function, effectively smoothing the direction estimate. To 
further improve performance, post-processing median-
filter and hysteresis are added. 

We implemented the described sound-direction 
algorithm on the TI DM8127 DaVinci processor in the 
Appro-built TMDSIPCAM8127J3 IP camera. The camera 
reference design incorporates only one built-in 
microphone which is not sufficient for our purpose; we 
disabled this built-in microphone, and connected two 
external microphones to the AIC3204 audio codec in the 
IP camera. The added connections provide balanced inputs 
and microphone bias. The two external microphones are 
attached to moveable mounts located directly in front of 
the camera to test performance at various microphone 
separation distances. To turn the camera in the sound 
direction, we mounted it on a high-torque servo motor. We 
use the AIC3204 codec’s audio output to generate the 
PWM drive signal required by the servo. Video output 
from the camera is available from HDMI or by streaming 
through the internet. 

We describe the proposed sound direction algorithm in 
Section 2 and the modified IP camera and its steering 
system in Section 3, followed by a discussion of the tests 
and results in Section 4. 

2. Estimation of Sound Direction 
The block diagram of our two-microphone sound 

direction estimator is shown in Fig. 1. The processing 
blocks are organized into three categories: front-end 
processing, direction estimator, and post-processing. 

2.1. Front-end processing 
The audio input is split into overlapping data blocks and 

a Hamming window is applied to each block, followed by 
the FFT. The offset between the successive data blocks is 
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Figure 1:  Block diagram of the two-microphone sound direction estimator 
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referred to as a processing “frame”. One FFT is performed 
for each of the two data channels, that is two FFTs for 
each processing frame. 

The signal power is estimated in each frequency band 
and overall, and SNR is calculated based on the estimated 
background noise. Using thirteen frequency bands for 16 
kHz input signal, for example, we calculate fourteen SNR 
values per frame (one per each frequency band, and one 
over all frequencies). The SNR estimates in each 
frequency band are used for band selection: frequencies 
that likely contain useful information are included in the 
GCC-PHAT analysis, while others (those dominated by 
noise) are not; we use thresholds of 0-10 dB depending on 
the desired sensitivity. In addition, if the overall SNR of a 
particular frame is below a specified threshold, e.g. 10-15 
dB, the frame is not used for TDOA estimation. 

2.2. Direction estimator 
To improve the performance of a baseline GCC-PHAT, 

we apply spectral band selection based on the estimated 
SNR. Frequency selection addresses the weakness of 
GCC-PHAT which uses only the signal phase in its TDOA 
estimation. All the phase values contribute to the TDOA 
estimate regardless of their substance; that is, the 
potentially random phase of noise is treated at par with the 
signal of interest phase. By selecting the spectral bands 
dominated by the sound of interest and discarding those 
dominated by noise, the final TDOA estimate is improved. 

The SNR-based band selection and the PHAT weighing 
(based on spectral amplitude) are combined  

PHAT  kkk WBW =    with   
1

PHAT 
* −

= kkk YXW   (1) 

and the GCC-PHAT values at each frequency k are 
calculated as 

*
kkkk YXWG =          (2) 

where X and Y represent FFTs of the two input channels. 
Up-sampling is performed in the frequency domain by 

inserting zeros in the spectral representation before the 
inverse transform. This interpolation increases the 
resolution of the TDOA estimate, and thus the resolution 
of the sound direction estimate. 

An inverse FFT of Gk is performed to obtain the TDOA 
objective function g(d). The offset d of the maximum 
value of g(d) would provide the TDOA estimate in the 
basic GCC-PHAT. We include, however, additional inter-
frame adaptive filtering prior to this maximum search such 
that 
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=
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M

m
mm dgadg
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~         (3) 

where M is the filter size and am are the adaptive filter 
coefficients. 

The inter-frame filtering is applied to smooth out the 
frame-to-frame maxima variations in the objective 
functions gm(d) domain. The filtering is applied across 
corresponding elements of g(d) from multiple frames 
(which deemphasizes temporal maxima), not within each 
g(d) function (which could smear the maxima). This inter-
frame filtering reinforces correlation peaks across a 
number of processing frames and thus substantially 
improves stability of the final estimate. While various 
filters may be employed, we found that setting the filter 
coefficients am to the frame’s signal power works 
sufficiently well. This adaptive filtering may also be 
viewed as amplitude-weighted average of the TDOA 
objective functions g(d) across frames. The advantages of 
such filtering are low-delay tracking of high-energy sound 
onsets and very low complexity (since only a limited 
number of the g(d) objective function values need to be 
considered). For example, with the 344 m/s speed of 
sound, 10 cm microphone distance, 16 kHz input sampling 
frequency, and the up-sampling rate of 4, the maximum 
TDOA values are ± 9 and so only 19 points of g(d) are 
filtered. 

The offset d of the maximum of the filtered objective 
function (d)g~  provides our initial TDOA estimate as 

( )dg
d

~maxargTDOA =         (4) 

The estimated TDOA is then further smoothed out in the 
post-processing stage. 

2.3. Post-processing 
In post-processing, we use a median filter to smooth 

out occasional spikes in the TDOA estimates. We use a 5-
tap filter; a longer filter may be used if the delay is 
acceptable. Other smoothing filters also may be applied. 
Hysteresis is further used to prevent a frame-to-frame jitter 
between adjacent TDOA values. The TDOA estimate is 
kept unchanged from the last frame if it varies by less than 
a specified value from the previous estimate; otherwise the 
new estimate is accepted. 

The TDOA estimate is converted to an angle 
specifying the sound direction. The standard far-field 
assumption of the sound source is used to calculate the 
angle of sound arrival. 

3. IP Camera with Sound Localization 
We implemented the sound source localization 

algorithm on the TI DM8127 IP camera. It runs on the 
ARM Cortex A8 processor of the DM8127 chip under the 
Linux OS provided with the camera. The C674x DSP (and 
the on-board video coprocessor) performs video analysis. 
We use the AIC3204 codec’s audio output to generate the 
PWM drive signal required by the servo that turns the 
camera towards the identified sound. 
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3.1. Microphone configuration 
The DM8127 IP camera includes a single built-in 

microphone connected to the AIC3204 codec’s MIC1R 
P/M balanced inputs. Blocking capacitors on the sub board 
isolate the codec inputs from the microphone, and the 
codec’s MICBIAS output provides bias to the microphone 
through a 1K ohm resistor. 

Our prototype system, shown in Fig. 2, requires two 
microphone signals to perform sound localization. To 
achieve that, we disconnected the built-in microphone and 
attached the MIC1R P/M inputs to a connector on the side 
of the camera. We duplicated the blocking capacitor and 
microphone bias circuitry for the codec’s MIC1L P/M 
inputs and attached them to a second connector. We used 
two small external omni-directional microphones mounted 
on an adjustable camera base to test several microphone 
configurations. In order to use the two microphones, we 
modified the ALSA audio driver software in the ARM 
Linux distribution supplied with the camera which had 
originally been set for single-microphone use. We used 
ALSA utilities to configure the AIC3204 codec for the 
required input gains and pre-filter characteristics. 

3.2. Camera rotation 
To enable the camera’s rotation towards the direction of 

a detected sound, we mounted it on an HS-985MG high-
torque servo. We utilized the AIC3204 codec HP output to 
produce the PWM drive signal.  We sent the codec PWM 
signal through an external signal conditioning circuit that 
provided hysteresis for noise stability, gain, level shifting, 
and fast rise-time PWM pulse shaping to sharpen signal 
transition edges required by the servo. 

We developed a software module to generate the 
continuous servo control audio PWM signal in a separate 
running thread. The module adjusts the PWM signal width 
to rotate the camera to the desired position. A sampling 
frequency of 16 kHz yields 6.25 ms PWM pulse width 

which equates to an angular resolution of 6.25 degrees. 
For our experiments, this was adequate to position the 
camera so the located sound source is well within its field 
of view. 

4. Tests and Results 
The default settings of our sound direction estimator 

include 10 cm microphones spacing, 16 kHz audio 
sampling frequency, 1024-point FFT, and 16 Hz analysis 
rate (1000 samples window shift). The 8x frequency-
domain up-sampling increases the effective sampling 
frequency to 128 kHz. With the sound speed of 343 m/s, 
these settings provide an angle resolution of about 3 
degrees near the center, and 15 degrees near the ±90 
angles. The far-field assumption [12] requires at least 47 
cm distance between sound and microphones. 

We split the bandwidth into thirteen frequency bands 
from 100 to 7000 Hz (with the bands varying from 200 Hz 
to 1000 Hz at the lower and upper ends of the spectrum, 
respectively). Only bands with the SNR of 5 dB or higher 
are used in the estimation. The inter-frame adaptive filter 
coefficients are set to the signal power of eight most recent 
frames. The size of the median post-filter is five. These 
default settings at 16 kHz audio sampling frequency take 
about 5 MIPS processing power in our fixed-point 
implementation. 

All of the above parameters can be set as needed. We 
tested various combinations and validated consistent 
performance across a wide range of settings. A desired 
combination should be selected based on the required 
angle resolution, microphone spacing, noise environment, 
as well as computational complexity and delay constraints. 

A performance example of the algorithm with default 
settings is presented in Fig. 3. The example represents a 25 
second recording of a moving speaker in fairly quiet office 
environment. As the speaker moves from the center to the 
left and then to the right, we desire a steady sound-
direction estimate that tracks the sound location. The 
speech signal (mono down mix) is shown in Fig. 3a. In 
Fig. 3b, the estimate obtained from the GCC-PHAT 
baseline algorithm is shown. This estimate is very noisy 
with many excursions from the correct sound direction. 
The plot well illustrates one of the weaknesses of the basic 
GCC-PHAT method: as the amplitude spectrum is 
normalized through the PHAT transformation, frequencies 
representing the signal of interest and those with mostly 
noise get similar consideration, often resulting in a noisy 
outcome. Fig. 3c shows the baseline GCC-PHAT with 
post-processing applied. It can be observed that a number 
of excursions from the sound path are being eliminated 
and the direction estimate becomes much “smoother”. 
Ever more sophisticated post-processing could further 
clean up this estimate at the expense of computational 
complexity and/or added delay. Finally, Fig. 3d presents 
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the output of the proposed sound direction algorithm. 
Selection of the higher SNR frequency bands and, more 
importantly, the inter-frame adaptive filtering of the 
objective function smoothes out the undesired frame-to-
frame GCC-PHAT variations and provides a steadier 
sound-direction estimate. 

We performed a set of tests to determine the expected 
performance of the proposed sound-direction algorithm in 
clean and noisy conditions. While the quantitative tests 
were performed with speech signals, no part of the 
described algorithm assumes speech-like signal 
characteristics and we have also verified that directions of 
other sounds are equally well identified. Five female and 
five male speakers were recorded while slowly moving 
around the microphones (left and right, closer and further 
away). Four background noises were also recorded with 
the same microphone configuration. To simulate a defused 
character of the noise, multiple loudspeakers were used 
facing away from the microphones. Babble, car, office, 
and street noises were recorded. The background noise 
was then mixed with the speech at SNR levels from 25 to 
5 dB. For the clean condition, we calculated the average 
value of frame-to-frame angle change which we found to 
be a good simple performance indicator for a stationary or 
slowly moving sound source. When the estimator matches 
the slowly-moving sound direction well, the average angle 
change is low; as the algorithm's performance deteriorates, 
more and more excursions from the correct values increase 
this average. Note that the average angle change heavily 
depends on the test material so it is not suitable to be an 
objective performance measure in itself. It is, however, a 
helpful indicator that under given test conditions one 

estimator performs better than another, and it indicates 
well when an algorithm may be starting to break down. 
The average per-second frame-to-frame angle change and 
its standard deviation for the baseline GCC-PHAT, with 
post-processing, with band-selection, with inter-frame 
filtering, and with all of the above are summarized in 
Table 1. The 2.8°/sec average angle change of our 
algorithm provides a much more stable outcome than the 
reference 142.1°/sec baseline GCC-PHAT estimate. The 
large average angle change of GCC-PHAT is caused by 
the frequent excursions from the correct sound direction as 
can be observed in Fig. 3a. 

For the noisy conditions, we calculated the average per-
frame angle difference between the clean speech direction 
and the corresponding estimates with background noise 
added. These tests are designed to validate the proposed 
algorithm stability even in environments with considerable 
noise. In the tests, the average angle difference between 
clean and noisy speech varied between 0.1°/frame for 
25dB SNR up to 5.2°/frame for 5dB SNR signal as 
presented in Table 2. For reference, the average per-frame 
angle difference between the proposed algorithm and the 
baseline GCC-PHAT for the tested database was 
15°/frame (much higher than 5.2°/frame). Understandably, 
the difference increases with increased noise level. Most 
of the time, the angle estimates for clean and noisy speech 
are in fact the same – the difference mostly occurs in 
timing of the transitions between angles as a speaker 
moves around. The results do indicate that the proposed 
algorithm maintains stable performance even in 
considerable background noise. 

The presented sound direction algorithm was 
incorporated into a real-time demo running on a modified 
DM8127 IP camera which is steered towards an estimated 
sound source. In this application, estimation of the precise 
angle of the sound source is not crucial (the sound source 
needs to appear in the camera's field of view, but it does 
not necessarily have to be centered). Ensuring the stability 
of the estimate to prevent unnecessary camera jitter is 

Figure 3: (a) Speech example, (b) GCC-PHAT estimate, (c) 
GCC-PHAT with post-filtering, (d) Proposed algorithm’s output 

(a) 

(b) 

(c) 

(d) 

Table 1 Average per second frame-to-frame angle change 

 baseline 
GCC-PHAT 

with pp 
(post- 

processing) 

with pp & 
inter-frame 

filtering 

with pp & 
band-

selection 
with all  

Avg 142.1 30.4 15.1 5.1 2.8  

Std 13.5 4.6 3.6 1.4 0.9  

 

 SNR babble car office street  
 25 0.2 0.1 0.2 0.2  
 15 0.9 0.6 0.8 0.7  
 5 3.0 2.0 4.2 5.2  
 
Table 2 Average per-frame angle difference, clean vs. noise 
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more important. The demo was tested in a number of 
practical scenarios. One of the observations from the tests 
is that sound reflections may cause an incorrect detection 
of the direction angle, particularly in small office spaces 
when a speaker is facing away from the microphones. It 
may not be possible to totally eliminate this problem as the 
dominant sound that is recorded by the microphones does 
in fact arrive from a different location (a reflecting 
surface) than it originated from. As such, an estimator may 
correctly identify the dominant sound direction which, 
however, does not in this case coincide with the position 
of the original sound source. A more elaborate sound 
localization tracker would be needed in such situations. 

5. Conclusions 
Taking advantage of the complementary aspects of 

video and audio can lead to a powerful analytics 
framework that improves surveillance effectiveness and 
robustness. Sound identification may alert to potential 
security risks even when they are obstructed, hidden, or 
before they appear within camera field-of-view, and sound 
localization may point the camera in the direction of 
interest. We presented a robust low-complexity method for 
two-microphone estimation of sound direction based on 
TDOA with GCC-PHAT. Audio bandwidth, microphone 
spacing, angle resolution, processing delay and complexity 
can all be adjusted depending on the application 
requirements. The described algorithm can be used in a 
multi-microphone configuration for spatial sound 
localization by combining estimates from microphone 
pairs. The low-complexity techniques applied to better the 
sound direction estimate include spectral band selection 
and inter-frame adaptive filtering applied to the GCC-
PHAT objective function. Spectral selection takes 
advantage of the frequency bands that most likely contain 
useful information, and rejects those dominated by noise. 
The novel inter-frame filtering of the GCC-PHAT 
objective function reinforces correlation peaks across a 
number of processing frames and thus substantially 
improves stability of the final estimate. This inter-frame 
filtering is performed before a correlation peak is 
identified, effectively smoothing the sound direction 
estimate. The above techniques may also be used with 
other time or frequency-domain TDOA estimators, for 
example with the simpler GCC estimator, to further reduce 
the system complexity. The results show significant 
improvement over the baseline GCC-PHAT method in 
terms of the output stability. The tests confirm a robust 
performance for clean speech as well as for a variety of 
background noise conditions. No part of the described 
algorithm assumes speech-like signal characteristics and 
the direction estimation performs equally well for any 
sound of sufficient SNR with respect to the estimated 
background noise. The proposed algorithm has been 

implemented as a real-time demo on a modified DM8127 
IP camera in which two external microphones and a high-
torque servo motor are added. The default 16 kHz audio 
sampling frequency requires only about 5 MIPS 
processing power in our fixed-point implementation. 

6. References 
[1] Woodruff, J.,  DeLiang Wang,  “Binaural Localization of 

Multiple Sources in Reverberant and Noisy Environments”,  
Audio, Speech, and Language Processing, IEEE 
Transactions on, On page(s): 1503 - 1512 Volume: 20, 
Issue: 5, July 2012 

[2] C. H. Knapp and G. C. Carter, “The generalized correlation 
method for estimation of time delay,” IEEE Transactions on 
Acoustics, Speech and Signal Processing, ASSP-24(4), 
pp.320-327, Aug. 1976 

[3] M. S. Brandstein and H. F. Silverman, “A robust method for 
speech signal time-delay estimation in reverberant rooms,” 
Proc. of the IEEE International Conference on Acoustics, 
Speech, and Signal Processing, pp. 375–378, 1997 

[4] Bo Qin, Heng Zhang, Qiang Fu, Yonghong Yan, 
“Subsample Time Delay Estimation via Improved GCC 
PHAT Algorithm”, Proc. ICSP 2008, pp. 2979-2982, 2008 

[5] Hong Liu and Miao Shen, “Continuous Sound Source 
Localization based on Microphone Array for Mobile 
Robots”, IEEE/RSJ International Conference on Intelligent 
Robots and Systems, pp. 4339-4339, 2010 

[6] Bowon Lee, Amir Said, Ton Kalker, and Ronald W. 
Schafer, “Maximum Likelihood Time Delay Estimation 
with Phase Domain Analysis in the Generalized Cross 
Correlation Framework”, Workshop on Hands-free Speech 
Communication and Microphone Arrays, pp. 89-92, 2008 

[7] Shoko Araki, Masakiyo Fujimoto, Kentaro Ishizuka, 
Hiroshi Sawada, and Shoji Makino, “A DOA Based 
Speaker Diarization System For Real Meetings”, Workshop 
on Hands-free Speech Communication and Microphone 
Arrays, pp. 29-32, 2008 

[8] Heidi Christensen, Ning Ma, Stuart N. Wrigley, Jon Barker, 
“A Speech Fragment Approach To Localising Multiple 
Speakers In Reverberant Environments”, Proc. of the IEEE 
International Conference on Acoustics, Speech, and Signal 
Processing, pp. 4593-4596, 2009 

[9] Xiao Wu,Shijiu Jin, Zhoumo Zeng, Yunkui Xiao, Yajuan 
Cao, “Location for Audio signals Based on Empirical Mode 
Decomposition”, Proc. of the IEEE International 
Conference on Automation and Logistics Shenyang, China, 
pp. 1888-1891, August 2009 

[10]  Bowon Lee and Ton Kalker, “Maximum a Posteriori 
Estimation of Time Delay”, International Workshop on 
Computational Advances in Multi-Sensor Adaptive 
Processing,  pp. 285-288, 2007 

[11] Anthony  Badali, Jean-Marc Valin, Francois Michaud, and 
Parham Aarabi, “Evaluating Real-time Audio Localization 
Algorithms for Artificial audition in Robotics”, IEEE/RSJ 
International Conference on Intelligent Robots and Systems, 
pp. 2033-2038, 2009 

[12] Ali Pourmohammad and Seyed Mohammad Ahadi, “Real 
Time High Accuracy 3-D PHAT-Based Sound Source 
Localization Using a Simple 4-Microphone Arrangement”, 
IEEE Systems Journal, vol. 6, no. 3, pp. 455-468, Sep. 2012 

98


	1. Introduction
	2. Estimation of Sound Direction
	2.1. Front-end processing
	2.2. Direction estimator
	2.3. Post-processing

	3. IP Camera with Sound Localization
	3.1. Microphone configuration
	3.2. Camera rotation

	4. Tests and Results
	5. Conclusions
	6. References



