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Abstract

Moving object detection is often one of the most basic
and important stages in computer vision applications. In
this paper, a novel background model is proposed to extract
moving foreground objects from videos that may contain dif-
ferent kinds of disturbance such as illumination changes,
camera parameter variations, noises and dynamic back-
grounds, etc. For each frame, a local frequency response
map is generated using short-term Fourier transformation
(STFT) in local regions, and by extracting the relations
among neighborhoods of the response map, a compact pixel
feature is introduced as local frequency pattern. Then, an
adaptive probabilistic estimation of pixel feature sequence
modified from kernel density estimation is performed to es-
timate the probability of a pixel being background. Ex-
perimental evaluations on complex scenes of surveillance
videos demonstrate that the proposed method has archived
satisfactory results.

1. Introduction

With massive of surveillance cameras deployed in the
public world, automated analysis and processing of surveil-
lance videos are crucial, as visually combing in such huge
video data sets is impractical for human analysts. Extract-
ing moving foreground objects from monitored videos is a
critical procedure in the smart surveillance video processing
applications. The extracted foreground objects are usually
used as input to further high-level process, such as object
tracking, event alert and behavior analysis, etc. Thus, its
performance can have a huge influence on the further pro-
cessing. However, due to various complex scenes in the real
world, moving foreground object detection is still a chal-
lenging task and a hot research topic in the past few decades.

One of the most popular approaches presented in the liter-
ature is to construct a background model that classify each
frame pixel being background or not according to its fea-
ture values, which is referred to as background subtraction.
Some excellent surveys on the recent development of these
methods can be found in [1, 2].

The most widely used method is Gaussian Mixture
Model (GMM) proposed by Stauffer and Grimson [3], in
which the pixel process is modeled by a mixture of K
weighted Gaussian distributions in color space. Differ-
ent from a fixed number of Gaussian distributions used in
the original GMM, Zivkovic [4] and Lee [5] presented a
modification by adaptively choosing the number of mixture
components for each pixel. GMM-like methods have been
widely used in different forms because of their simplicity
and computational efficiency. However, their methods can-
not handle the disturbance of sudden intensity variations
and highly dynamic backgrounds, yielding lots of false de-
tections. Considering that the assumption of pixel processes
subjecting to Gaussian distribution is restrict, Elgammal et
al. [6] took advantage of kernel density estimation to pro-
vide a more flexible model. By estimating the probability
of observing pixel based on samples of intensity values of
each history pixel in a non-parametric way, their method can
adapt quickly to the dynamic changes in the scenes. Kim
et al. [7] proposed a compact non-parametric algorithm for
foreground detection, which sampled background pixel val-
ues and quantized them into a set of codewords.

More recently, texture features have been adopted by lots
of computer vision applications and are also introduced to
extract features for moving object detection. Heikkilä et al.
[8] presented a block-based method which employed tex-
tures features by modeling each block with its local binary
pattern (LBP) histogram to capture the background statis-
tics. Although the block-based methods are generally more

2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance

 978-1-4799-0703-8/13/$31.00 ©2013 IEEE 389



Figure 1. Flowchart of proposed moving object detection method.

robust and computational efficient than other pixel-based
methods, the main drawback of these methods is that they
can’t extract the accurate shape of the moving object very
well. Liao et al. [9] developed a scale invariant local ternary
pattern (SILTP) operator for background model together
with the pattern kernel density estimation for probability es-
timation. Different from the previous traditional methods,
Zhou and Xu et al. [10] modeled the moving foreground ob-
ject detection as an image labeling problem, in which both
spatial and temporal coherency of the object were enforced
using an Markov Random Field (MRF) model. Thus, the fi-
nal detection mask is determined by inferring the maximum
a posterior. However, in the these MRF-based methods, it’s
quite critical to design the appropriate components of the
energy function.

In this paper, we propose a novel and robust approach
for tackling the moving object detection from surveillance
videos containing different kinds of disturbances. For each
frame, a local frequency response map is generated using
short-term Fourier transformation (STFT) in local regions,
and each pixel is further encoded by the relations among the
neighborhood of the response map. Then, the pixel feature
sequence is modeled by an incremental adaptive estimation
modified from kernel density estimation. Finally, the new
coming pixel is evaluated belonging to background by com-
paring its distribution probability with a given threshold.
Extensive experiments have been carried out and the results
show that the proposed method is very efficient and robust
under complex video scenarios such as sudden changes of
illumination and rippling water surfaces.

The rest of this paper is organized as follows. Section 2
describes the detail of the proposed method, including the
pixel feature extraction, background modeling of the feature
process and blinking elimination. Section 3 presents a com-
prehensive comparison of our method with other methods,
followed by the conclusions in Section 4.

2. Proposed Method
The approach proposed for moving object detection in

this paper follows the processing flow as shown in Fig. 1.
For each frame, a compact pixel feature referred to as local

frequency pattern (LFP) is extracted by the relation of local
frequency response among its neighborhoods. With a his-
tory process of such pixel feature sequences, a probabilistic
model is trained to estimate the probability of a pixel being
background. Furthermore, a heuristic method is applied to
eliminate the blinking pixel in the detected mask. The de-
tails of each components in the method will be described in
the following subsections.

2.1. Local Frequency Pixel Pattern

Traditionally, pixel intensities and color values are often
used as feature description method in background model
[3, 4, 6]. And with great success in facial recognition and
image classification, spatial features such as edges, gradi-
ents and texture features, etc. are also introduced to moving
object detection [8, 11]. However, these methods use spa-
tial information to encode pixels, which are very vulnerable
to image noises and highly dynamic backgrounds. In fre-
quency analysis, noises, waving trees, drifting clouds, and
rippling water surfaces of the complex backgrounds often
contribute plenty to the high-frequency part of the image.
Therefore, in this work we introduce a local frequency pat-
tern operator, in which only low frequency part of the image
is extracted to encode each pixel.

Given an input image f(x), its local frequency infor-
mation is extracted using a short-term Fourier transforma-
tion computed over a rectangular M × M neighborhood
NM×M (x) at each pixel position x, which is defined by

F (u,x) =
∑

y∈NM×M (x)

f(x− y) exp{−j2πuTy} (1)

where u = [u, v] is the frequency vector in horizonal and
vertical directions. In the real world applications, real-time
processing is crucial for moving object detection. As can be
noticed that, Eq. (1) can be derived to

F (u,x) = wT
u fx (2)

where wu is the vectorized convolution kernel at frequency
u, and fx is the pixel vector containing all M2 pixel samples
from sub-image NM×M (x). Since the convolution kernel
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is separable, the final transform can be computed using 1-
D convolution for rows and columns successively. Fig. 2
shows local frequency response maps by performing STFT
in different frequency.

(a) (b) (c) (d)

Figure 2. An example of transforming frame (a) using STFT in
different frequency vector u: (b)u = [1, 1], (c)u = [1/3, 1/3],
(d)u = [1/9, 1/9].

The local frequencies extracted from low-frequency part
of the image can capture the local texture properties and
filter out high-frequency part caused by noises, highly dy-
namic backgrounds, etc. This imposes advantages over the
intensity and color based features used in the traditional ap-
proaches. Particularly, in order to provide more robustness,
we adopt the idea of local binary pattern (LBP) to quantize
the relation pattern among neighborhoods [8]. In LBP, the
image pixels are labeled by thresholding the neighborhoods
of each pixel with the center value and the result is consid-
ered as a binary number, which is referred to as the new
pattern. In the local frequency response map, we denote the
magnitude of the response at position x and frequency u as
M(x), and the 3× 3 neighborhood centered on x as M(y)
where y ∈ N3×3(x). The relation between the neighbor-
hood and the center is quantized by sign function s(·)

s(x) =

{
1, x ≥ 0
0, x < 0

(3)

The local frequency pattern at position x and frequency
u can be computed by concatenating the eight bits into a
scalar value

LFPu(x) =
8∑

i=0

s(M(yi)−M(x))× 2i (4)

where yi is the i-th neighbored value of N3×3(x). Thus the
new pattern of the pixel is in the range 0-255. Fig. 3 presents
a illustration of LBP quantization of local frequency re-
sponse map.

With the advanced properties of local frequency analysis
and local binary pattern operator, the local frequency pat-
tern can model the pixel information in frequency domain.

2.2. Background Model Estimation

The goal of every moving object detection method is to
classify each pixel of the image into two categories, back-

Figure 3. Illustration of performing LBP quantization of the local
frequency response.

ground pixel and moving foreground pixel. In this subsec-
tion, an incremental adaptive probabilistic model is intro-
duced to estimate the probability of a pixel being a moving
foreground pixel [6]. Suppose a feature sequence is derived
from local frequency pattern operated on a set of t history
background samples and is defined as

{p0, . . . , pt−1} = {LFP 0
u(x), . . . , LFP t−1

u (x)} (5)

Under a KDE model, the new coming pixel is determined
belonging to background or foreground according to its his-
tory feature sequence. The probability of the pixel under
the background model can be estimated by

Pr(pt|B) =
t−1∑
i=0

ωiKH(pt − pi) (6)

where ωi is the weighting coefficient of each history sample
and KH is the kernel estimator with bandwidth H which is
a symmetric function that integrates to one. There are sev-
eral kernel estimators commonly used in KDE: Epanech-
nikov kernel, uniform kernel, Gaussian kernel, and others.
In our work, Gaussian kernel is adopted due to its conve-
nient mathematical properties. Note that choosing Gaussian
function as the kernel estimator is different from fitting the
pixel feature process to Gaussian distribution. The research
also has shown that choosing which kernel function does
not affect too much on the final estimate, whereas the band-
width of the kernel is a crucial parameter which exhibits
a strong influence of the estimation. And in the real-time
applications, only a limited length of pixel feature process
can be stored for the modeling. In order to achieve an ef-
ficient and accurate estimation result, the kernel bandwidth
is trained from successive absolute deviation of the pixel
feature sequence [12]

∆p = {
∣∣pi − pi−1

∣∣ | i = 1, 2, . . . , t− 1} (7)

The covariance of the successive absolute deviation can
represent the temporal scatter of the training samples, which
makes itself a good choice for kernel bandwidth

σ2 = cov(∆p) = (∆p − µ∆)(∆p − µ∆)
T (8)
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where µ∆ is a length-(n−1) vector with each element equal
to the mean value of ∆p. Thus, with the adaptive cho-
sen kernel bandwidth, the final probability of a pixel being
background can be estimated as

Pr(pt|B) =
t−1∑
i=0

ωi√
2πσ2

exp

{
−1

2

(pt − pi)2

σ2

}
(9)

After the probability of each pixel feature in the new
frame is estimated, the median of the probabilities in 8-
connected neighborhood of each pixel is compared with a
given threshold to determine whether the pixel belongs to
background

M(x) =

{
0, if median(Pr(pt|B)) ≥ thr
1, otherwise (10)

2.3. Background Model Update

Once the background model is constructed, updating the
model is essential for tackling the variations in the back-
ground, such as illumination changes, shadows and dy-
namic backgrounds.

Since the foreground regions have nothing to do with the
background model, only pixels classified as background are
used for updating in our method. In the surveillance videos,
due to the exists of dynamic background objects, the pix-
els belonging to those regions may often misclassified as
foreground pixels. To overcome these variations, we adopt
an update mechanism that searches the local region of each
pixel in the background model for the best match. The best
match is defined to be the neighboring sample with mini-
mum distribution probability of the current pixel model

ym = arg min
y∈Nx

Pr(pty|B) (11)

Considering a pixel of the waving tree branches, it will
move to its neighborhood as time goes, and then move
back to its original position. In [13], a similar approach
called “diffusion” is used to update the background model,
which is based on a random sampling scheme. Instead,
our approach chooses the neighboring pixel based on the
likelihood between the sample feature and the background
model, which provide more robustness against choosing the
pixel randomly. The new match is then used to update the
background model

Prt(pt|B) = (1− ρ)Prt−1(ptym
|B) + ρKH(ptym

, pt−1)
(12)

where Prt(pt|B) denotes the distribution probability of
background model at time t and ptym

is the feature of the
found pixel match ym.

2.4. Blinking Pixel Elimination

In the moving object detection applications, complicated
scenes and different kinds of variations make it impossible
to present an explicit model to adapt to them, which leads
to lots of misclassification and false detection. Especially,
those pixels that often switches between background and
foreground contribute much to the background model esti-
mation and make the model unstable for these variations. In
this subsection, we adopt a processing trick proposed in [14]
to eliminate these blinking pixels.

The idea of dealing with the blinking pixel is to check if
there are too many switches between background and fore-
ground in a short classification history sequence. Thus, a
map with blinking counts is generated according to the pre-
vious updating mask for each pixel. If the current updating
mask of a pixel is different from its previous updating label,
the blinking counts is increased by 15, otherwise the counts
is decreased by 1. When the blinking counts reaches 0, it
can not be reduced anymore.

A pixel is determined to be blinking if its blinking counts
is larger than 50. Then the pixel is removed from the updat-
ing mask and is classified as background. This trick can
enhance the robustness of our algorithm for sample based
models and can provide a more compact detection result.

3. Experimental Results

The proposed method has been evaluated exhaustively
on complex I2R dataset1, which contains a variety of in-
door and outdoor environments, including rippling water
surfaces, waving tree branches, etc. The I2R dataset con-
sists of nine video sequences captured in diverse and chal-
lenging environments, grouped in two catagories: six in-
door scenes(Hall, Bootstrap, Curtain, Escalator, Lobby and
ShoppingMall), and three outdoor scenes(Fountain, Trees
and WaterSurface). For each scene in the dataset, there are
over several thousands video frames and 20 randomly se-
lected frames that are labeled manually as groundtruth.

In the experiments, the proposed method was compared
with the state-of-the-art GMM [3], ACMMM 03 [4], block-
based LBP histogram approach [8], codebook approach [7]
and SILTP method [9]. In the qualitative comparison, for
the sake of fairness, no morphological operations or any
other postprocessing methods were applied to the result-
ing foregrounds for all the algorithms. And a set of con-
sistent parameters of our approach were chosen as: u =
[1/9, 1/9],M = 5, ρ = 0.003, thr = 0.75. Due to the
limitation of the paper length, three typical videos in the
dataset were selected for analysing the results. Fig. 4
shows qualitative results on several kinds of videos se-
quences of GMM, ACMMM03, CodeBook with default

1http://perception.i2r.a-star.edu.sg/bk model/bk index.html
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Figure 4. Visual comparison of the detected moving foregrounds
on different video sequences.

parameters. As demonstrated, the color-based GMM suf-
fers from false detections caused by moving shadows. Al-
though ACMMM03 removes the soft shadows successfully,
many small foreground regions are missed in the detection
results. In codebook approach, there are many snowflake
pixels which may yield lots of difficulties for highlevel ap-
plications. By extracting local frequency information of
each pixel, our method is more robust to illumination vari-
ance. And it can also tolerate small moving background re-
gions by modeling the background with neighborhood spa-
tial searching scheme.

In addition, a quantitative performance evaluation of the
detection results is applied for all of the nine datasets with
F-measure. The F-measure evaluates the detection accuracy
by

F = 2 · RC · PR

RC + PR
=

2 · TP
2 · TP + FP + FN

(13)

where F ∈ [0, 1] with RC,PR, TP, FP and FN being
recall, precision, true positives, false positives and false
negatives, respectively. The higher the F value, the more
accurate the foreground subtraction. Tab. (1) illustrates

a more quantitative performance results for our method
against compared algorithms, in which the results of LBP
Histogram and SILTP are reported by Liao et al. [9].

4. Conclusion

Moving object detection is often one of the most ba-
sic and important stages in the surveillance video applica-
tions. In this paper, we proposed a novel pixel-wise back-
ground modeling method for moving object detection in
scenes with different kinds of complex disturbance, such
as illumination variations, camera exposure changes and
dynamic backgrounds, etc. First, our method extracts fre-
quency information from the local regions of the image us-
ing short-term fourier transformation (STFT), and the fea-
ture of each pixel is constructed by describing the relations
among the neighborhoods of the local frequency magnitude.
Then, an incremental adaptive probabilistic estimation ex-
tended from kernel density estimation is performed to eval-
uate the probability of a pixel being background. Finally,
by adopting an elimination mechanism of blinking pixels,
our method is more robust to complex scenes and dynamic
backgrounds. Extensive experiments show that the pro-
posed approach produces a reliable and accurate detection
results on complex surveillance videos.
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