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Abstract

Multiple targets tracking is a challenging problem due to
occlusions or identity switching. Although the use of prior
information about the motion of the targets improves the
tracking results, a single motion model may not capture the
complex dynamic of the targets. This is a common situa-
tion with pedestrians, as each person moves in its own way,
making tracking a difficult task. In this paper, this problem
is faced by using a proposal based on the Interacting Mul-
tiple Model (IMM) and implemented in a Bayesian scheme
through a particle filter. The core of this approach is to
leave the filter choose the motion model that fits better the
motion of the targets. The algorithm is evaluated, under
several combinations of motion models, with middle-dense
crowded scenes from the PETS 2009 dataset.

1. Introduction
In recent years, multiple object tracking (MOT) in real

world scenes has become a popular topic, due to its appli-
cability in many areas like surveillance, activity recogni-
tion, robotics, among others. Many techniques for pedes-
trian tracking have been proposed, most of them belong-
ing to two categories: Detection-based methods ([1]) and
Bayesian filtering methods ([13]). Regardless of the cate-
gory the method belongs to, all approaches share at some
level the incorporation of a prior knowledge about the tar-
gets motion.

The pedestrian motion is governed by different causes
such as environment constraints or social forces. Hence,
the motion of one pedestrian is somewhat unique and even
the motion of a same target can change in more than one
occasion. For example, in Fig. 1(b) the couple at the upper
right of the image is standing in place, while other people
are moving, some at constant velocity (like the couple at the
image bottom) or at constant acceleration (like the pedes-
trian in the middle of the image). However, most of the
approaches rely on one classic linear model (i.e. constant
velocity) to describe this complex dynamic.
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Figure 1. Example of particle filter (PF) with interacting multiple
motion model. 1(a) Target with a PF of 10 particles (circles), each
one with its own model (red: constant position; green: constant
velocity; and blue: constant acceleration). The arrows show the
target next position. The top-left bar indicate the percent of parti-
cles of each model. 1(b) Examples of real world tracking with the
proposal.

In this paper, the motion is modeled as a mixture of mod-
els to provide improvements in the visual pedestrian track-
ing performance. We use the Interacting Multiple Model
(IMM) scheme under a Particle Filter (PF) methodology,
which allows to integrate many different models in one
single framework [2]. The original algorithm has been
changed and we propose a new resampling process in the
PF, allowing the filter to draw more samples for the motion
model that fits better to the pedestrian motion. This modifi-
cation allows the filter to choose the best model (or models).
In the proposed algorithm, a single PF tracker follows one
pedestrian and each particle has a motion model associated
to it. This is shown in Fig. 1(a), where circles represent the
particles with a different color per model. Fig. 1(b) shows
the output of our algorithm, where the upper left bar of each
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tracker indicates the percentage of particles that is assigned
to each model, red for constant position, green for constant
velocity and blue for constant acceleration.

The rest of the paper is organized as follows: related
work is discussed in section 2. The formulation of the IMM
is presented in section 3 and we give the details of the parti-
cle filter implementation in section 4. The experiments and
results of this algorithm are shown in section 5. Finally,
conclusions are drawn in section 6.

2. Related work
Multiple motion models are an elegant way to capture the

complex dynamics of targets. The IMM methodology can
be used to fuse several models in one context by weighting
each model and making it contribute to the final distribu-
tion [4]. In [12], a hybrid foreground subtraction and pedes-
trian tracking algorithm is presented that relies on the track-
ing results as a feedback to improve the foreground subtrac-
tion. The tracking is done by a bank of Kalman filters per
target, each one with a distinct linear model. The estima-
tion of the filters are merged with the Interacting Multiple
Model technique (IMM-KF). The IMM-KF is fast and suit-
able for a large number of targets. In works similar to ours,
this methodology is used in pedestrian tracking in [6]. They
use a people detector based on histogram of oriented gra-
dient (HOG) to initialize a IMM-KF tracker. In [5], the
authors propose an algorithm that use a bank of KF’s and
choose the combination of those that optimize the state es-
timation. However, KFs are limited to linear or linearizable
models and can not recover well when one filter fails, which
decreases the tracking performance.

To overcome the limitations of IMM-KF, [2] proposes
an Interacting Multiple Model implemented with Particle
Filter (IMM-PF), for tracking maneuvering targets. They
assign a fixed number of particles (1000) to each motion
model. The models are weighted according to their impor-
tance in the filter. Hence, the most suitable model will con-
tribute more than the others. Instead of the classic resam-
pling of the PF, Boers performs a parametric representation
of the distributions by mixtures of Gaussians (MoG), with
a high number of terms. However, it suffers of a waste of
computational resources at processing particles of models
with low importance. Moreover, the MoGs imply cluster-
ing, which adds more computational complexity.

In [7], a variant of the IMM-PF is proposed, where the
particle motion model is assumed to evolve over time. In
this case, particles can keep the same motion or pass from
moving to stopped model or conversely. A prior on the tran-
sitions between models is included by a transition matrix
(TM) with fixed values, which indicates the jump probabil-
ity from a model to another. At each time, a model is first
sampled from the TM and the previous particle, and then
states are sampled with this motion prior. In many cases,

fixed transition values cannot represent well the real model
changes. Moreover, sampling is done only from the mo-
tion transition prior, then there is nothing that guides the
particles to high values of the posterior. These works show
improvements at tracking simulated targets.

Contributions. Our approach for pedestrian tracking is
based on the IMM-PF algorithm. In this paper, we present
two contributions for the visual pedestrian tracking prob-
lem: first, we present an efficient IMM-PF implementa-
tion, that makes no use of transition priors between mod-
els, but uses the PF resampling step to redistribute particles
among motion models, allowing better fit to multiple mo-
tion changes; second, we evaluate the performance of the
IMM-PF in multiple pedestrian tracking and test it on chal-
lenging public datasets. We evaluate the performance of
individual motion models, or combinations of them.

3. Interacting Multiple Motion Models
The Bayes filter, under the Markov assumption for the

state, is often written in two steps, the prediction step and
the correction step, that correspond to the following two
equations updating the posterior distribution over the state

{
p(Xt|Z1:t−1) =

∫
p(Xt|Xt−1)p(Xt−1|Z1:t−1)dXt−1,

p(Xt|Z1:t) ∝ p(Zt|Xt)p(Xt|Z1:t−1).
(1)

We propose to use the Interacting Multiple Model strat-
egy [2] and, for that, model the multi-modality of the mo-
tion prior p(Xt|Xt−1) by a mixture of M distributions:

p(Xt|Xt−1) =
∑M
m=1 π

m
t p

m(Xt|Xt−1). (2)

The original Bayes filter is then modified into

p(Xt|Z1:t) ∝
M∑
m=1

πmt p(Zt|Xt)p
m(Xt|Z1:t−1) (3)

with pm(Xt|Z1:t−1) =
∫
pm(Xt|Xt−1)p(Xt−1|Z1:t−1)dXt−1.

Within this scheme, at each step, the weights of each mo-
tion model in the mixture are updated in function of their
respective likelihoods,

πmt = πmt−1

∫
p(Zt|Xt)p

m(Xt|Z1:t−1)dXt. (4)

4. Particle filter implementation of the IMM
The general formulation of the previous section could

be implemented under different schemes, i.e. Kalman filters
(by assuming linear models and Gaussian additive noise dis-
tributions). In our case, we have chosen an implicit repre-
sentation of the posterior based on the particle filter strategy,
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due to the easiness of its use, its capability of managing dif-
ferent kinds of distributions and non-linear motion or obser-
vation models. Hereafter, we describe the implementation
of particle filter for multi-pedestrian tracking.

The targets are defined with a bounding box. Hence our
state X is:

X→ (u, v, u̇, v̇, ü, v̈)T , (5)

where (u, v) is the position in the image plane, (u̇, v̇) is the
velocity along the two directions and (ü, v̈) is the accelera-
tion in the u and v directions, respectively. The real dimen-
sions (h,w) of the bounding box (BB) around the pedestri-
ans are fixed to the average size of an adult (in world coor-
dinates) and they are projected into a corresponding box in
image plane by supposing that the camera projection matrix
is known. Hence, the BB of each pedestrian changes with
the distance of the target from the camera.

4.1. Particle representation

The PF approximate the posterior in Eq. 1 by a set of
N weighted samples or particles. To implement the multi-
modality, each particle is assigned to a motion model, indi-
cated by a label l ∈ {1 . . .M}. Thereby, a particle n at time
t is represented by (X

(n)
t , ω

(n)
t , l(n)).

In the IMM-PF methodology, the model m = {1 . . .M}
contributes to the posterior estimation according to its im-
portance, which is defined by the weight πmt . Therefore,
the model m has Nm particles, making a total of N =∑M
m=1Nm particles. The posterior estimation can be fi-

nally represented by considering both weights of the parti-
cles (ω(n)

t ) and the models (πmt ):

p(Xt|Z1:t) =
M∑
m=1

πmt
∑
n∈ψm

ω
(n)
t δ

X
(n)
t

(Xt), (6)

s.t.
M∑
m=1

πmt = 1 and
∑
n∈ψm

ω
(n)
t = 1,

where ψm = {n ∈ {1 . . . N} : l(n) = m} represents the
indices of the particles that belongs to model m.

4.2. Sampling and dynamic model

Since drawing samples from p(Xt|Xt−1,Z1:t) is gener-
ally impossible, we use an importance proposal distribution
q(·), that approximates the posterior and from which we can
easily draw samples. In multi-motion model case, we have
M proposals, such as:

Xm
t ∼ qm(Xt|Xt−1,Z1:t).

Here, we sample a new state of each particle
from the motion model corresponding to its label
l(n), pm(Xt|Xt−1). This model is a Gaussian
N(Xt; trl(n)(X

(n)
t−1),Σl(n)), with trl(n)(·) the deterministic

form of the motion model. Then, sampling is realized by

X
(n)
t = trl(n)(X

(n)
t−1) + νl(n) , (7)

where νl(n) is additive noise. The index l(n) ∈ {1 . . .M}
indicates which motion model the particle n is associated
to, i.e. l(n) = m if the particle n is following the model m.

4.3. Observation model and correction step

The probabilistic observation model we implemented,
p(Zt|Xt), is rather simple, our aim being to evaluate prob-
abilistic motion models and, in particular, Interactive Multi-
ple Models. Our approach relies on color histograms (in the
HSV space) and motion histograms (absolute difference be-
tween consecutive images), as proposed in [10]. We define a
reference histogram href anytime we create a new tracker.
The likelihood is evaluated through the Bhattacharya dis-
tance between href and the current histogram h(n) corre-
sponding to the state X

(n)
t of the particle n. Also, we in-

clude spatial information with the color observation by us-
ing two vertical histograms per target, one for the top part
of the pedestrian and another for the bottom part. With
the specification of this observation model, we update the
weight of particle n within each competing motion model

ω
(n)
t =

ω̃
(n)
t∑

i∈ψm
ω̃
(i)
t

, (8)

ω̃
(n)
t =

ω
(n)
t−1p(Zt|X

(n)
t )pl(n)(X

(n)
t |X

(n)
t−1)

q(X
(n)
t |X

(n)
t−1,Z1:t)

,

where p(Zt|X(n)
t ) is the likelihood of observation Zt eval-

uated at the state of particle n and q(X
(n)
t |X

(n)
t−1,Z1:t)

is the proposal distribution. Since q(·|X(n)
t−1,Z1:t) =

pl(n)(·|X(n)
t−1), we have:

ω̃
(n)
t = ω

(n)
t−1 · p(Zt|X

(n)
t ).

The new weight of the models is given by:

πmt =
πmt−1ω̃

m
t∑M

i=1 π
i
t−1ω̃

i
t

, (9)

ω̃mt =
∑
j∈ψm

ω̃
(j)
t .

Thus, Eqs. 8 and 9 ensure that the constraints on Eq. 6
are always satisfied.
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4.4. Resampling

The resampling allows to avoid sampling impoverish-
ment. We apply it in two ways:
Sampling over particles. The sampling is done over all
particles according to its weight ω(n)

t and the weight of the
model πmt . From these weights, we build a common Cu-
mulative Distribution Function and we draw new samples
according to this distribution. Hence, the best particles of
the best model are sampled more often. In this case, the
number of particle changes, leaving more particles to the
model that fits better to the motion of the target.
Sampling per model. The sampling is done on a per model
basis, leaving the same number of particles per model. To
preserve diversity, each model has always a minimum of γ
particles. If the model has less particles than this threshold
(Nm < γ), we draw new particles from N(X̄t−1,St−1),
i.e., a Gaussian distribution with mean X̄t−1 and covariance
St−1 of all particles of the previous distribution. To keep the
number of particles N unchanged, we take less samples of
the model with more particles. We have set γ = 0.1 ∗N .

Our approach models the transitions between models im-
plicitly, by resampling from time to time. Hence, no prior
transition information is required. The resampling over all
particles is applied every ρ = 4 frames and over models ev-
ery ϕ = 5 frames. These parameters allow the method to be
sufficiently reactive to motion changes without increasing
the computational complexity.

5. Experiments

This algorithm has been implemented in C++ with the
open source library OpenCV. We have used the PETS’2009
dataset [11] to test and evaluate the performance of our
tracking system using the VACE and CLEAR metrics. We
test our algorithm with different motion models described
hereafter: a few classic linear models, a learned motion
prior model, and a combination of those. All the results pre-
sented in this section are the median over 30 experiments.
The parameter values are selected manually according to the
observations in the videos. Finally, we compare our results
with other state of the art tracking algorithms.

5.1. Evaluated motion models

In the literature, different motion models exist that help
to describe the movement of different targets, such as vehi-
cles, pedestrians, etcetera. The most used models are simple
linear models, since they fit well in most of the cases. On
the other hand, models also exist that first learn statistically
how the target moves in a given scene. Those models fit bet-
ter the motion of the targets in complex dynamic scenarios.
In this work, we tested both types of models (linear models
and learned priors).

Constant position model (CP). The target remains in the
same position as the time before. The velocity and accel-
eration are reduced to zero since the target is not moving.
Thus, we define this model with tr(.) as a linear function:

A1 =

[
I2×2 02×4

04×2 04×4

]
. (10)

Constant velocity model (CV). This is the most classical
model in different tracking approaches.

A2 =

 I2×2 T ∗ I2×2 02×2

02×2 I2×2 02×2

02×2 02×2 02×2

 . (11)

Constant acceleration model. (CA) In literature, there
are many models with different assumptions on how to
model the acceleration process of a target [8]. We consider
the CA model as:

A3 =

 I2×2 T ∗ I2×2
T2

2
∗ I2×2

02×2 I2×2 T ∗ I2×2

02×2 02×2 I2×2

 , (12)

where T is the elapsed time between estimations. In our
case, it is always one since we process all frames. Then, for
these three linear models (k ∈ {1, 2, 3}) the transition tr(·)
is defined by:

tr(Xt−1) = AkXt−1. (13)

Motion Priors (MP). Finally, we have tested our algo-
rithm with a learning-based motion model. This kind of ap-
proach works by recollecting information on how the targets
moves, in a given scene, to generate a model. In our case,
we use the learned motion prior model presented in [9]. To
describe it briefly, the image plane is divided into cells of
30 × 30 pixels and, in each cell, the probability of mov-
ing from this cell to another in its neighborhood is esti-
mated from learning data, with an optical flow algorithm
(like Lucas-Kanade). Here, for this evaluation, we have
used sequences of the same view of PETS’09 datasets, ex-
cept those sequences that we used to test our algorithm. The
use of these priors in the tracking system is the same as
in [9]: For a given particle, we determine its corresponding
cell and then sample a velocity from the prior.

5.2. Performance evaluation

The PETS’2009 dataset is a challenging benchmark data,
used to test and evaluate the performance of pedestrian
tracking algorithms. This dataset consists of a set of 8 cam-
era video sequences of an outdoor scene with different lev-
els of difficulty. We use a single camera and we apply our
proposal to views 1 and 2 of the S2-L1 scenario. The task
in this sparse crowd scenario is to track all the individuals
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Figure 2. Evolution of the motion models importance. The line is
the target trajectory. Each color depicts the model with the high-
est weight at that time. (red: constant position; green: constant
velocity; and blue: constant acceleration).

in the sequence. We chose this sequence since it presents
challenging situation for pedestrian tracking.

We have generated ground-truth data to evaluate the per-
formance of our proposal. We have manually labelled each
pedestrian in the scene over all frames to generate a ground-
truth for both views described in the previous section.

We measure the performance of our system with the stan-
dard methodology presented in [3]. We use four metrics: (1)
Sequence Frame Detection Accuracy (SFDA), measured at
frame-level, takes into account spatial alignment of the sys-
tem output and ground-truth objects, penalizing missed de-
tections and false positive; (2) Average Tracking Accuracy
(ATA) is a spatio-temporal measure that penalizes shorter
or longer trajectories, missed trajectories and false posi-
tive; (3) Multiple Object Tracking Precision (MOTP) and
(4) Multiple Object Detection Precision (MODP), measures
the tracks spatio-temporal precision and spatial precision
respectively. Those metrics represent the tracking quality
with scores between 0 (worst) and 1 (perfect).

5.3. Results

The initialization of a new tracker is automatic. We
find the blobs (regions of white pixels) on a binarized im-
age (generated by background subtraction algorithm) to de-
tect a new target. The tracker is automatically removed
if the mean likelihood within the particles is lower than a
threshold for some consecutive frames. In total, we uti-
lize N = 200 particles, assigning at the beginning N

M to
each model. We test our algorithm with different combina-
tions of the models presented in section 5.1. First, we de-
pict in Fig. 2 a few examples of trajectories resulting from
our framework. Each color indicates the model with high-
est weight at that moment of the tracking. It is remarkable
how the different models adjust to the different parts of the
trajectories: In the straight line parts of the trajectories, CV
dominate, while at turning points, CA or CP dominate.

Method SFDA ATA N-MODP MOTP
CA 0.49 0.36 0.53 0.53
CV 0.51 0.36 0.56 0.55
MP 0.47 0.40 0.53 0.53

CV CA 0.50 0.47 0.56 0.56
CV CA MP 0.48 0.49 0.56 0.55
CP CV CA 0.45 0.46 0.53 0.53

CP CV CA MP 0.45 0.45 0.53 0.52

Table 1. Results for the S2.L1 sequence, view 1. The first three
rows are the results obtained by using only one motion model.
The rest are the results of our proposal with a combination of the
models presented in section 5.1. Note: All results are the median
value of 30 experiments.

Method SFDA ATA N-MODP MOTP
CA 0.46 0.37 0.53 0.53
CV 0.51 0.40 0.57 0.56
MP 0.48 0.37 0.47 0.47

CV CA 0.51 0.43 0.53 0.54
CV CA MP 0.50 0.44 0.55 0.54
CP CV CA 0.50 0.48 0.54 0.56

CP CV CA MP 0.49 0.46 0.51 0.54

Table 2. Results for the S2.L1 sequence, view 2. The first three
rows are the results obtained by using only one motion model.

Second, we show quantitative results for the sequences
S2-L1 view 1 in Tab. 1. In the first experiments, we evalu-
ate each single model: CA, CV, MP. The best result in the
ATA column is obtained using MP with 0.4. This measure
indicates that this model allows to track the same target with
the same tracker for a longer duration than the others.

Now, we choose a combination of models to evaluate the
performance of our approach. We observe that using two
simple models like constant velocity and constant accel-
eration (row four of Tab. 1), the ATA score is improved,
which means that we increase the tracking length of the
same target, without switching of identity or losing it. We
can observe that with more models the quality of the track-
ing decreases. This is because models themselves permit
to change direction more easily. So, the identity switching
with targets of similar appearances occurs more often. In
Tab. 2 we show the results for the sequences S2-L1, view
2 with the same experiments described earlier. The ATA
evolution is similar as in view 1. The SFDA score is highly
similar in all experiments, this is due to the way we cre-
ate new targets. This metric could be improved by using a
human detector. Note that the last two scores correspond
to precision, they are not really improved by Multiple Mo-
tion Models, as they essentially depend on the quality of the
observation models (see also Fig. 3 and comparisons with
other approaches).

35



Figure 3. Performance comparison with other proposals in sequence S2-L1, view 1 of PETS09. The y-axis represents the quality of the
tracking, zero meaning a bad result and one an optimal performance. We evaluate each proposal (x-axis) with the four metrics described
in section 5.2. The results are the median of 30 experiments. The first four groups are multi-camera approaches, meanwhile the rest are
monocular proposals. The last three groups are our results using (1) constant velocity and constant acceleration (VA), (2) VA and motion
prior model and (3) all models proposed in section 5.1. References: Horesh [1], Shao [12] and the others [3].

Others proposal comparison. In Fig. 3, we compare our
results with other proposals, extracted from [3] and [1]. The
first four approaches are multi-camera tracking system, the
rest (including ours) are monocular tracking systems. The
results are for view 1 of S2-L1 PETS’09 sequence. We ob-
tained good results with the ATA score in our monocular
system compared with other multi-camera approaches.

6. Conclusion
In this paper, we have first presented a multiple pedes-

trian visual tracking scheme using multiple motion mod-
els within individual particle filters associated to each tar-
get. This IMM-PF allows to handle models of different
nature, with efficiency improvements over other IMM-PF
schemes. Second, we have evaluated several combinations
of motion models, for which, with some particular combi-
nations, our overall algorithm behaves nicely on evaluation
on the PETS09 dataset, although with a rather rough obser-
vation model, and even sometimes in a comparable manner
to much more sophisticated tracking algorithms.
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