
 

 

 
Abstract 

 
We present an effective real-time approach for 

automatically estimating 3D human body poses from 
monocular video sequences. In this approach, human body 
is automatically detected from video sequence, then image 
features such as silhouette, edge and color are extracted 
and integrated to infer 3D human poses by iteratively 
minimizing the cost function defined between 2D features 
derived from the projected 3D model and those extracted 
from video sequence. In addition, 2D locations of head, 
hands, and feet are tracked to facilitate 3D tracking. When 
tracking failure happens, the approach can detect and 
recover from failures quickly. Finally, the efficiency and 
robustness of the proposed approach is shown in two real 
applications: human event detection and video gaming. 
 

1. Introduction 
Reconstructing 3D human poses from a monocular 

view has broad applications in human-computer interface, 
virtual reality and video surveillance. However, great 
challenges are still remained in automatically estimating 
3D human poses from video sequences, due to the intrinsic 
depth ambiguity from monocular view, the large variations 
of human poses in motion, and the high degree of freedom 
(DOF) of articulation. Many approaches have been 
proposed to solve these problems [1], which can be 
categorized as either model-based or model-free ones. In 
model-based approaches, a 3D human body model is 
explicitly used, and the best fit is estimated between the 
model and image features derived from 2D image frames. 
A data-driven model-based approach is proposed in [2], 
where body components detection and human kinematics 
model are integrated to estimate 3D poses. Stochastic 
sampling, another model-based scheme, is applied in [3] to 
resolve the ambiguities and to escape from the local 
minima. In [4], dynamic models are incorporated into the 

human body tracking process to get a full 3D 
reconstruction of golf swing motion sequences. 
Conversely, in model-free approaches, the data mapping 
between 3D poses and 2D image features are directly 
learned. Different features such as contour [5] and edge 
[6] are commonly used as feature vectors that can robustly 
reflect human pose variations.  

However, much less researches have been done in 
applications with real-time constraints for automatically 
tracking 3D human poses. Recently, a learning-based 
method is presented in [7], where 3D poses are estimated 
by hierarchically evaluating observation likelihood from 
image silhouettes. But learning-based methods may fail 
due to wide variations of poses and external parameters. 
Although a more flexible algorithm is given in [8] for 
monocular multi-cues tracking by using a loose-limbed 
body model and particle filters interacting through belief 
propagation on a factor graph, it cannot meet the real-time 
requirement. 

In this paper, we extend our prior work [12] and 
present an approach for automatically estimating 3D 
human poses from monocular videos with real-time and 
robust performance. We follow an analysis-via-synthesis 
strategy and decompose human body in different parts [9]. 
Only body parts that have been detected as moving are 
tracked by using multiple cues such as silhouette, edge and 
color. In the tracking stage, results of 2D feature (the 
location of head, hands, and feet) tracking are integrated 
with 3D tracking to improve the robustness and efficiency 
of our approach. In addition, tracking failures are well-
handled so that the approach is less sensitive to 
accumulated tracking errors over long video sequences.  

The paper is organized as follows: Section 2 introduces 
the overview of the proposed system whose modules are 
discussed in the following sections. Section 3 discusses 
the human body detection module. The 2D feature 
extraction module is introduced in Section 4. Then, 2D 
feature tracking is mentioned in Section 5. In Section 6, 
the mechanism of 3D tracking is discussed. The result of 
validation is presented in Section 7. Then the experimental 
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2. Overview of Proposed System
 

Figure 1: Overview of the propose
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3. Human Body Detection
 

Figure 3: The flow chart of 
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3.1. Human Region Detection 
At the step of human region detect

is extracted from the input frame by
subtraction method with the learned b
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mean ),( yxiμ  and standard deviatio
difference between the frame and the 
with the empirical parameter M  (=10 i
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4.2. Skin Pixel Detection 
Skin color is classified in a speci

color space, that is, if the color satisf
where r and g denotes the red and gr

separately, and 1t and 2t are predefined
be classified as skin color [10]. 

The skin image SkinI  
( )SubMotBSkinSkin IIII ∪∪∩0 , where SI

classified foreground skin pixel im
background skin image, MotI is th
(difference image) between current f
frame, and SubI is the background subtra

4.3. Silhouette Extraction 

The silhouette image SilI  

SkinEdgeSub III ∪∪ . An example of silh
shown in Figure 7. 

 

Figure 7: The silhouette image SilI  i
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where ( )1−kLi
 is the number of consecutively lost tracking 

frames as measured at frame 1−k , andα  is a predefined 
constant. 

5.4. Short-Sleeved Detection 
For the special case of human wearing short-sleeves, 

the short-sleeved event is detected if the area of the skin 
blobs of hands is greater than a predefined threshold. Once 
short-sleeved scenario is triggered, the areas of hands skin 
blobs of hands are weighted by a factor f, which is 
empirically set as the area of head/10 and the centers of 
the skin blobs of hands are moved downward according to 
the proportion of the radius of the hand skin blob to the 
length of the arm. In this way, the centroids of hand blobs 
can represent the fist locations for long-sleeved and short-
sleeved cases. 

5.5. Temporal Tracking 
The temporal tracking checks for the current 2D 

tracking states, which are defined as ACTIVE, LOST or 
OCCLUSION. Then, a temporal tracking list for 
lost/occluded hypotheses is created. For each candidate

iTr in the tracking list, the unassigned blob jB with 

shortest Euclidean distance to iTr  is assigned to iTr , and 
the unassigned blob jB  is deleted. 

5.6. Lost/Occlusion Recovery 
A valid candidate is an object in temporal tracking list 

with the number of consecutive tracking frames greater 
than ( )sgpMMINTRACKFR −1* , where MMINTRACKFR  
is a constant that controls the minimum number of 
tracking frames required for selecting a valid candidate. 
The cost of assigning a lost/occluded hypothesis iH  to a 

candidate jTr  is defined as (6). Finally, a pair is selected 

from ( )0,0  to ( )TRH MM ,   that maximizes the cost ( )jiC , , 
where TRH MM ,  are maximum number of lost hypotheses 
and candidates in the temporal tracking list. 
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D
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jiC img
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⎝

⎛
−=      (6) 

5.7. Hand-Hand Mis-Assignment Recovery 
The hand-hand mis-assignment happens when both 2D 

hand tracking states are ACTIVE, but either of 3D 
tracking is lost consecutively for a certain number of 
frames. If hand-hand mis-assignment is detected, the cost 
of hand-hand re-assignment is computed as (7), where 0C  
is the original configuration cost, and 1C  is the swapped 
hands configuration cost (see Figure 10). If 01 CC > , hand-
hand assignment is swapped. 
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+
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Figure 10: The computation for hand-hand assignment. 

5.8. Foot Hypotheses Assignment 
Foot occlusion is detected when the Euclidean distance 

between two feet position candidates, 0p  and 1p , is 
smaller than a threshold. The foot hypotheses assignment 
cost is computed as (8) for non-occlusion case and (9) for 
occlusion case. If 10 CC > , 0p  is assigned to right foot, 

1p  to left foot. On the contrary, if 01 CC > , 0p  is assigned 
to left foot, 1p  to right foot. 
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6. 3D Tracking 

Figure 11: The flow chart of 3D

6.1. Scale Change Detection 
The scale change, see Figure 11,
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Figure 12: When the scale is so large that pr
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6.2. Motion Part Detection 
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dy tracking is used. 

as TORSO, RLEG 
B (Right Limb) and 
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6.3. Tracking Lost Recover
Once a human body is dete

will start four trackers with
RightArm, LeftArm, RightLeg a
tracking [13, 14]. One example
is shown in Figure 13. 

 

Figure 13: An example of four tar
including right arm, left arm
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Figure 14: The code chip to upd
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Figure 15: A tracking los
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(see Section 6.4 for details). 
le is shown in Figure 15. 

 
st recovery example. 
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6.4. Minimize Cost Function 
The 3D pose reconstruction is esti

match configuration of limbs, torso a
downhill simplex algorithm [11] to 
function. The cost function ( image SSF ,
feature points and 3D model positions 
composed of silhouette score, edge s
and feature points score, which is defin

 
( ) edgesilelimage CwCwSSF 10mod, ++=

Silhouette Score: (XORsil SNC =
Edge Score: ( imAndedge ENC −=

Motion Score: (Andmotion MNC −=
Feature Points Score: (∑

=
=

5

1i
if fdC

where sil
imageS  is the silhouette image 

model projection image, imageE  is th

elEmod  is the model outline image, M
motion image, i

imagef  are human body

and i
elfmod  is human body model m

weights 3210 ,,, wwww are set to be 1, 
experiments.) 
 

Based on the cost function, the 
algorithm is applied to fit the 2D featu
by four operations, i.e., reflection
dimensional contraction and multipl
order to increase the computational effi
pose is searched in a hierarchical way
and Torso as a base followed by four 
Figure 16. 

 

Figure 16: The 3D pose is searched 

7. Validation 
Videos with ground truth values are 

The disparity is calculated by a two-ca
can be used to calculate the depth
compare 13 joints of the result of ou
with the ground truth values. All the 1
body are shown in Figure 17. 
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Figure 17: All 13 joints
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Figure 19. 

 

 
Figure 18: MSE and depth for He

 
 

Figure 19: Snapshots 

 
s of a human body. 
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8. Experimental Results 
The system is implemented in C++ and run on a laptop 

(CPU Intel Core 2 Duo T8100 2.1 GHz, RAM 3 GB, 
Windows 7). The image resolution is 320x240 pixels and 
the real-time frame processing rate is 26~32 fps. Figure 20 
shows the long-sleeved and short-sleeved cases. Besides, 
two applications are shown as follows. 

 
(a) Long-sleeved case 

 
(b) Short-sleeved case 

Figure 20: 3D tracking for long-sleeved and short-sleeved cases. 

8.1. Event Detection 
The 3D tracking result is sent to event detection 

module for object tracking and detecting various 
behaviors. As shown in Figure 21, when the person lifts a 
purple bag, the event detection module is triggered and 
tracks the purple bag. 

 
Figure 21: An event of lifting a purple bag. 

8.2. Video Gaming 
A simple video game is implemented in OpenGL as 

shown in Figure 22. The avatar, which is real-time 
generated by the derived 3D poses result of the proposed 
system, is controlled to hit balls so as to get scores or to 
avoid attacks from flying balls. 

 
Figure 22: A 3D video game console. 

9. Conclusion and Future Work 
We have proposed a real-time system for tracking 3D 

human poses from videos by decomposing the human 
body model into different parts and integrating different 
kind of cues. The difficult cases such as tracking lost and 
occlusion are effectively dealt with in the proposed 
system. In the future, the system can be further improved 
to recognize more challenging behaviors from different 
camera viewing perspectives and to solve the problem of 
occlusion between the objects and the human body. 
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