2010 Seventh IEEE International Conference on Advanced Video and Signal Based Surveillance

Real-Time 3D Human Pose Estimation from Monocular View
with Applications to Event Detection and Video Gaming

Shian-Ru Ke, LiangJia Zhu,
Jeng-Neng Hwang
Department of Electrical Engineering
University of Washington, Box 352500
Seattle, WA 98195, USA

{srke, zhulj, hwang}e@u.washington.edu

Abstract

We present an effective real-time approach for
automatically estimating 3D human body poses from
monocular video sequences. In this approach, human body
is automatically detected from video sequence, then image
features such as silhouette, edge and color are extracted
and integrated to infer 3D human poses by iteratively
minimizing the cost function defined between 2D features
derived from the projected 3D model and those extracted
from video sequence. In addition, 2D locations of head,
hands, and feet are tracked to facilitate 3D tracking. When
tracking failure happens, the approach can detect and
recover from failures quickly. Finally, the efficiency and
robustness of the proposed approach is shown in two real
applications: human event detection and video gaming.

1. Introduction

Reconstructing 3D human poses from a monocular
view has broad applications in human-computer interface,
virtual reality and video surveillance. However, great
challenges are still remained in automatically estimating
3D human poses from video sequences, due to the intrinsic
depth ambiguity from monocular view, the large variations
of human poses in motion, and the high degree of freedom
(DOF) of articulation. Many approaches have been
proposed to solve these problems [1], which can be
categorized as either model-based or model-free ones. In
model-based approaches, a 3D human body model is
explicitly used, and the best fit is estimated between the
model and image features derived from 2D image frames.
A data-driven model-based approach is proposed in [2],
where body components detection and human kinematics
model are integrated to estimate 3D poses. Stochastic
sampling, another model-based scheme, is applied in [3] to
resolve the ambiguities and to escape from the local
minima. In [4], dynamic models are incorporated into the
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human body tracking process to get a full 3D
reconstruction of golf swing motion sequences.
Conversely, in model-free approaches, the data mapping
between 3D poses and 2D image features are directly
learned. Different features such as contour [5] and edge
[6] are commonly used as feature vectors that can robustly
reflect human pose variations.

However, much less researches have been done in
applications with real-time constraints for automatically
tracking 3D human poses. Recently, a learning-based
method is presented in [7], where 3D poses are estimated
by hierarchically evaluating observation likelihood from
image silhouettes. But learning-based methods may fail
due to wide variations of poses and external parameters.
Although a more flexible algorithm is given in [8] for
monocular multi-cues tracking by using a loose-limbed
body model and particle filters interacting through belief
propagation on a factor graph, it cannot meet the real-time
requirement.

In this paper, we extend our prior work [12] and
present an approach for automatically estimating 3D
human poses from monocular videos with real-time and
robust performance. We follow an analysis-via-synthesis
strategy and decompose human body in different parts [9].
Only body parts that have been detected as moving are
tracked by using multiple cues such as silhouette, edge and
color. In the tracking stage, results of 2D feature (the
location of head, hands, and feet) tracking are integrated
with 3D tracking to improve the robustness and efficiency
of our approach. In addition, tracking failures are well-
handled so that the approach is less sensitive to
accumulated tracking errors over long video sequences.

The paper is organized as follows: Section 2 introduces
the overview of the proposed system whose modules are
discussed in the following sections. Section 3 discusses
the human body detection module. The 2D feature
extraction module is introduced in Section 4. Then, 2D
feature tracking is mentioned in Section 5. In Section 6,
the mechanism of 3D tracking is discussed. The result of
validation is presented in Section 7. Then the experimental
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results and two applications are shown in Section 8.
Finally, a short conclusion and future work are discussed
in Section 9.

2. Overview of Proposed System

Input Video
I
| l
Background Human Body Skin Color
Model Detection Model
Mean Shift 2D Feature
Tracking Model Extraction
N |
2D Feature o
Applications :
Tracking r -pprications:____ b
|
’F/ : Event
| Detection
3D Human 3D Pose 4,:
Body Model Reconstruction o
: Video Gaming
| Interface
|
L

Figure 1: Overview of the proposed 3D system.

The overview of the proposed system is shown in
Figure 1, including human body detection, 2D feature
extraction, 2D feature tracking and 3D pose reconstruction
modules. Initially, a Gaussian model is built for each
location (x,y) in the image plane from a few background

frames. Then, the human body detection module is
triggered to detect whether a person enters into scenes by
skin color model so that the person as the foreground is
segmented. If a person is detected, the 2D feature
extraction module will extract 2D features of the
foreground including silhouette, edge and skin, and mean
shift tracking model [13, 14] (more details in Section 6.3)
will be appropriately initialized. Moreover, face, hands
and feet are tracked in 2D feature tracking module.
According to those 2D features, a 3D human body model
is initialized and 3D poses of each decomposed body part
in each frame are reconstructed by using downhill simplex
search algorithm [11] to minimize the cost between the
projected 2D features from 3D poses and the extracted 2D
features from video frames. The tracking lost and
occlusion events are also handled at the 3D pose
reconstruction module. Finally, the results are sent to the
two proposed applications: one is to detect and recognize
various surveillance events such as lifting a bag. The other
is for 3D video game driven by the 3D tracking results.
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Figure 2: A simplified 3D human body model.

In Figure 2, the human body model is composed of
torso, limbs and head. Four limbs are represented by
cylinders, torso by 2D rectangle and head by circle, with
25 degree of freedoms (DOFs) for poses (global
translations, rotations and joint angles) and 15 DOFs for
shapes (the length and width of each body part). The
orthographic camera model is used for 3D pose
reconstruction and transformed into the world coordinates.

3. Human Body Detection
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Figure 3: The flow chart of human body detection.

For better initialization of a 3D body model, the human
body is initially assumed to enter the camera view in a
predefined region of interest (ROI) with the full body,
stand vertically with hands naturally hanging down, and
face the camera. This assumption is currently being
relaxed based on 2D body tracking, which will be
described in details in other submission. The flow chart of
human body detection is shown in Figure 3. Firstly,
human region is extracted in each frame by using a
background subtraction method. Once human region is
extracted and the verticality is checked successfully, the
skin blobs of the face and hands are classified through a
skin color model. Finally, feet are detected by the gradient
of the input frame.



3.1. Human Region Detection

At the step of human region detection, the foreground
is extracted from the input frame by using background
subtraction method with the learned background model.
Threshold (u,(x,y)-0,(x,y)+ M) is determined by the

mean g (x,y) and standard deviation g (x,y) of the

difference between the frame and the background image
with the empirical parameter A/ (=10 in our experiments).
The pixels of any channel value ¢, (x,¥) with

¢,(x,y)> 1(x,y)—0,(x,y)+M are labeled as foreground

pixels. Then, a Gaussian model is used to smooth the
foreground pixels.

Moreover, foreground pixels are grouped as
foreground regions and the largest foreground region is
selected as the human body region at the ellipse fitting
step. Then the parameters such as ellipse width, height,
rotation angle and proportion of the human body region
are used to verify possible human body occupied region.

3.2. Verticality Detection

The possible human body region is equally separated
into 6 sub-regions shown in Figure 4. The standard
deviation of the centroids of sub-regions along vertical
direction is calculated. If the standard deviation is smaller
than a predefined threshold, the person is regarded as
standing vertically.

Figure 4: The detection of human standing vertically.

3.3. Front View & Feet Detection

The skin regions of the foreground are segmented
based on skin color model (the skin pixel detection will be
introduced in next section). Too large or too small skin
regions are disregarded. The valid largest three ones are
selected as candidates for face and hands. Then the
distance between left/right hands and face, dord,, is

_min(d,,d,), is used to
max(d,,d, )
check for possible geometrical configuration of the initial

computed. The distance ratio,
d

face-hand position. If 7, lies within the predefined range,

one face blob and two hand blobs are validly found.
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For feet detection, firstly, a reference point (cx, cy) is

defined, where cx is the x component of the face blob
and cy is the mean value of the y component of two hand

blobs. Two tip points (x,,y,) and (x,,y,) are searched in

the lower part of gradient of the current frame with the
largest Euclidean distance from (cx,cy) and its X

component being greater or less thancx. If abs(y, — y,) is

smaller than a predefined constant, then the detected two
points, (x,,y,)and(x,,y,), are selected as feet positions as

shown in Figure 5.

Figure 5: Identification of feet locations.
4. 2D Feature Extraction
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Figure 6: 2D features including edge, skin pixel and silhouette
are extracted and used for face-hand and feet tracking.

After the human body is detected, 2D features
including edge, skin pixel and silhouette are extracted and
used for face-hand and feet tracking (see Figure 6).

4.1. Edge Detection

Firstly, the first order derivative images of the current
frame in X and Y directions are calculated by using the
Sobel operator. Then, the two resulting derive images are
subtracted by two background derivative images,
separately. Moreover, the gradient magnitude image is
then computed from the subtracted derivative images.
Finally, the resulting image is thresholded to obtain the
edge image / Fdge of the human body.



4.2. SKkin Pixel Detection

Skin color is classified in a specified region in R-G
color space, that is, if the color satisfies #, <r—g <¢,,
where 7 and g denotes the red and green color channels

separately, and 7, and ¢, are predefined thresholds, it will

be classified as skin color [10].
The  skin  image defined

]SkinO N (IBSkin v IMm‘ v ]Suh ) 2 Where ]SkinO iS the Original
is the

Lo 18 as

classified foreground skin pixel image, I,

background skin image, [, ,is the motion image

(difference image) between current frame and previous
frame, and [, is the background subtracted image.

4.3. Silhouette Extraction
The Iy, defined

Tg, U1 g g, - An example of silhouette extraction is

silhouette  image is as

shown in Figure 7.

Isub ledge Iskin Isil

Figure 7: The silhouette image [, is composed as

ISub % IEdge o [Skin

5. 2D Feature Tracking
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Figure 8: steps of 2D feature tracking.
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5.1. Skin Blob Labeling and Gradient Probability

First of all, as shown in Figure 8, the connected areas
in [, —are labeled as skin blobs. For each skin blob B, ,

the blob gradient probability is calculated based on (1),
where the normalization term N(B,) is the number of

pixels in B, . The blobs with low p,, are eliminated.

Z[Edge(xi9yi)

(x5, By

1
NG "

Py (Bk ) =

5.2. Image Matching Cost Computation

Image matching cost Cimg(i’ j) is computed based on

(2). As an example in Figure 9, the current maximum

upper and lower arm lengths are computed first. Then, the

image cost is computed in the valid search interval

sampled with uniform step for all possible configurations.

Finally, the maximal one is selected as Cimg G, 7):
IEdge(xp’y,; )

(x, o, ECF (i, 1)

len(CF(i, j,1))

2

Cimg (l’ ]) = max,

where crli.;j.1) is one possible 2D body part configuration,
and len(CF(i,_/‘,l)) is its length.

R Valid search interval

[ for all possible right
L \MLo
\\ - arm configurations

Candidate
Hand Blob

MLO: max upper arm length
MLI: max lower arm length

Figure 9: Image matching cost computation.

5.3. Nearest Neighbor Search

The nearest neighbor is searched along the path from
(0,0) to (M, M ), which has the maximal costC(j, ;) as
(3), where M, ,M ,are of
hypotheses and unassigned blobs. The overall cost C(i, i )

maximum number lost

of assigning a blob B, toa hypothesis 7, is defined as (4),
where the image matching cost Core (s )) and the blob
gradient probability Py (j) are as defined in (1) and (2).
Besides, the maximum moving distance D, at frame k is
defined in (5).



max, ; C(i, j) (3)

c(,-,,»):exp{_d“’ff) 4)

D,(k)={D’(k_l)*a Jf H(k=1) is not lost (5)

J* Cone s )* P, ()
D,(k-D*L,(k-1)*a  ,if H,(k-1) is lost
where [, (k1) is the number of consecutively lost tracking

frames as measured at frame £ —1, and ¢ is a predefined
constant.

5.4. Short-Sleeved Detection

For the special case of human wearing short-sleeves,
the short-sleeved event is detected if the area of the skin
blobs of hands is greater than a predefined threshold. Once
short-sleeved scenario is triggered, the areas of hands skin
blobs of hands are weighted by a factor f, which is
empirically set as the area of head/10 and the centers of
the skin blobs of hands are moved downward according to
the proportion of the radius of the hand skin blob to the
length of the arm. In this way, the centroids of hand blobs
can represent the fist locations for long-sleeved and short-
sleeved cases.

5.5. Temporal Tracking

The temporal tracking checks for the current 2D
tracking states, which are defined as ACTIVE, LOST or
OCCLUSION. Then, a temporal tracking list for
lost/occluded hypotheses is created. For each candidate

Tr,in the tracking list, the unassigned blob B, with

shortest Euclidean distance to 77; is assigned to 77;, and
the unassigned blob B, is deleted.

5.6. Lost/Occlusion Recovery

A valid candidate is an object in temporal tracking list
with the number of consecutive tracking frames greater
than MINTRACKFR M *(1- p,, ), Where MINTRACKFRM

is a constant that controls the minimum number of
tracking frames required for selecting a valid candidate.
The cost of assigning a lost/occluded hypothesis H, to a

candidate 77 r; is defined as (6). Finally, a pair is selected
from (0,0) to (M, ,MTR) that maximizes the cost C(i,j),

where M, ,M ,,
and candidates in the temporal tracking list.

d(H . Tr
c.1)= exp[— (Dr)j “Clin)) ©)

i

are maximum number of lost hypotheses

5.7. Hand-Hand Mis-Assignment Recovery

The hand-hand mis-assignment happens when both 2D
hand tracking states are ACTIVE, but either of 3D
tracking is lost consecutively for a certain number of
frames. If hand-hand mis-assignment is detected, the cost
of hand-hand re-assignment is computed as (7), where C,
is the original configuration cost, and C, is the swapped
hands configuration cost (see Figure 10). IfC, > C,, hand-
hand assignment is swapped.

Img( LH’ zmg( RH’ )

0=

Img( RH 7 ) (7)
(BRH ’ PLShuulder )

lmg( LH ’

1

)+

d( LH > LShuulder ) + d(BRH > PRShqude) )
o)+
)+d

d( LH > RShqude)

C0 =0.063

Figure 10: The computation for hand-hand assignment.

C1=0.068

5.8. Foot Hypotheses Assignment

Foot occlusion is detected when the Euclidean distance
between two feet position candidates, p, and p , is

smaller than a threshold. The foot hypotheses assignment
cost is computed as (8) for non-occlusion case and (9) for
occlusion case. If C, >C,, p, is assigned to right foot,

p, to left foot. On the contrary, if C, > C,, p, is assigned
to left foot, p, to right foot.

Co =abs(p,— Hy:)+abs(p,—H ;)
C =abs(p,—H ;) +abs(p,— Hpy,) ®)
Img (po > ) + szg (Pl s p )
t (Po: RPelvis )+ d(p17 LPerm)
_ lmg (po s ) + Ctmg (Pl > RF) )
1 (pO’ thm)"' d(pI’ RPelvn)



6. 3D Tracking
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Figure 11: The flow chart of 3D tracking.

6.1. Scale Change Detection

The scale change, see Figure 11, is detected when
abs(A,, — Ag,) is greater than a threshold, where 4, is
the area of the projection of 3D human body model with
the previous pose parameters on image plane and A, is

the area of the silhouette image [, . Once the scale change

is detected, the scale of 3D body model is reset to fit the
detected scale. When the scale is large enough so that the
projected feet positions are out of camera range, only
upper body tracking is used (see Figure 12).

Figure 12: When the cale is so large that projected feet positions
are out of camera range, only upper body tracking is used.

6.2. Motion Part Detection

Motion parts that are grouped as TORSO, RLEG
(Right Leg), LLEG (Left Leg), RLIMB (Right Limb) and
LLIMB (Left Limb) are detected. First of all, the motion

skin image [, ... and the motion edge image /,, ..., are

computed as (10) and (11). Then, each pixel with a

positive value in both [, .. and [, . dge 18 assigned to

the nearest body part. Take the body part B, = as an

Torso 18

example, if the number of positive pixels of B
greater than half of the perimeter of B, , the motion flag
of the body part TORSO is marked.
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(10)

]MotSkin = ]Motion N ISkin

IMotEdge = IMotion M IEdge N L skin (1 1)
where [, . = abs(currentFrame, previousFrame)

6.3. Tracking Lost Recovery

Once a human body is detected, the mean shift model
will start four trackers with individual targets, i.e.,
RightArm, LeftArm, RightLeg and LeftLeg, for mean shift
tracking [13, 14]. One example of four mean shift targets
is shown in Figure 13.

Figure 13: An example of four targets for mean shift tracking,
including right arm, left arm, right leg and left leg.

For each feature point, the tracking is detected to be
lost if the weighted distance error between image feature
points and projected model positions is greater than a
threshold. More specifically, the weighted distance error is
computed as d(pjmg, D de])* pr. at the current frame or an

accumulated value in several consecutive frames, where
pr; serves as a reliability factor, which is updated based
on the code chip in Figure 14.

if ( blob,.flag == active)
blob,.pr ==1.0;
else lf( blob,. flag == lost )
blob,.pr == 0.5/(1+ blob, lostNum);
else if ( blob,. flag == occlusion)
blob,.pr ==0.5;

Figure 14: The code chip to update the probability of blobs.

Once one of the four parts, RightArm, LeftArm,
RightLeg and LeftLeg is detected as tracking lost, the
corresponding mean shift tracker is triggered. Based on
the color histogram in the target, the tracker will perform
the mean shift tracking algorithm [13, 14] to identify the
best matched area as ROI (region of interest). Then 2D
feature images will be constrained in the ROI and used in
3D/2D matching cost function (see Section 6.4 for details).
A tracking lost recovery example is shown in Figure 15.

Ly

racking lost in right leg and left leg

Figure 15: A tracking lost recovery

Recovery result

example.



6.4. Minimize Cost Function

The 3D pose reconstruction is estimated for the best
match configuration of limbs, torso and head by using
downhill simplex algorithm [11] to minimize the cost

function. The cost function F(Sl,mge,sm Odel) between 2D

feature points and 3D model positions in the state space is
composed of silhouette score, edge score, motion score
and feature points score, which is defined as follows:

F(Simage s Smodel ) = WOCxil + Wl Cedge + WZCmotian + W3Cf
. . il il
Silhouette Score: C,, = N, (S;;age,Sli'ode,)

Edge SCOI'e: Cedge = _NAnd (Eimageﬂ Emodel)

MOtiOH SCOI'G: Cmotion = _NAnd (Mimage 4 Emod el)

1 . 5 . .
Feature Points Score: ¢, => d( Lo fnlmdel)* o
i=1
sil 3 3 : sil 3
where Simage is the silhouette image and Sy 18 the

model projection image, Eig is the edge image and

e
E mode/

is the model outline image, M image is the edge

motion image, £

image

are human body model parameters
and f! s human body model measurement. (The

weights Wy, w,, W,, W, are set to be 1, 5, 10 and 10 in our

experiments.)

Based on the cost function, the downhill simplex
algorithm is applied to fit the 2D feature for the 3D poses
by four operations, i.e., reflection, expansion, one-
dimensional contraction and multiple contractions. In
order to increase the computational efficiency, the best 3D
pose is searched in a hierarchical way, i.e., taking Head
and Torso as a base followed by four limbs, as shown in
Figure 16.

Scale
Head
Torso
|
L T R
Right Left Right Left
Arm Arm Leg Leg

Figure 16: The 3D pose is searched hierarchically.

7. Validation

Videos with ground truth values are obtained from [15].
The disparity is calculated by a two-camera system, and it
can be used to calculate the depth information. We
compare 13 joints of the result of our proposed system
with the ground truth values. All the 13 joints of a human
body are shown in Figure 17.

j
a human body.

In Figure 18, the mean square error (MSE) of 2D
coordinates of joints is presented. For example, for Head
joint, the average distance between a head point in our
method and one in ground truth is 1.42 pixels. Moreover,
the curve shows depth values along the frame number. We
can see in Figure 18 that the trend of the depth curve of
our method and the depth curve in ground truth is quite
consistent. The snapshots of the test video are shown in
Figure 19.
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8. Experimental Results

The system is implemented in C++ and run on a laptop
(CPU Intel Core 2 Duo T8100 2.1 GHz, RAM 3 GB,
Windows 7). The image resolution is 320x240 pixels and
the real-time frame processing rate is 26~32 fps. Figure 20
shows the long-sleeved and short-sleeved cases. Besides,
two applications are shown as follows.

(b) Short-sleeved case
Figure 20: 3D tracking for long-sleeved and short-sleeved cases.

8.1. Event Detection

The 3D tracking result is sent to event detection
module for object tracking and detecting various
behaviors. As shown in Figure 21, when the person lifts a
purple bag, the event detection module is triggered and
tracks the purple bag.

;L. Ll - . L -
Figure 21: An event of lifting a purple bag.

8.2. Video Gaming

A simple video game is implemented in OpenGL as
shown in Figure 22. The avatar, which is real-time
generated by the derived 3D poses result of the proposed
system, is controlled to hit balls so as to get scores or to
avoid attacks from flying balls.

g Il
P/

Figure 22: A 3D video game console.
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9. Conclusion and Future Work

We have proposed a real-time system for tracking 3D
human poses from videos by decomposing the human
body model into different parts and integrating different
kind of cues. The difficult cases such as tracking lost and
occlusion are effectively dealt with in the proposed
system. In the future, the system can be further improved
to recognize more challenging behaviors from different
camera viewing perspectives and to solve the problem of
occlusion between the objects and the human body.

References

[1] T.B. Moeslund, A. Hilton, and V. Kruger, “A survey of
advances in vision-based human motion capture and
analysis”, Computer Vision and Image Understanding, pp.
90-126, 104, 2006.

M.W. Lee and I. Cohen, “A model-based approach for

estimating human 3D poses in static images”, PAMI, vol.

28, pp. 905-916, 2006.

C.Sminchisescu and B.Triggs, “Kinematic jump processes

for monocular 3D human tracking”, CVPR’03, pp. 69-76.

R. Urtasun, D.J. Fleet, and P. Fua, “Monocular 3D tracking

of the golf swing”, CVPR, vol.2, pp. 932-938, 2005.

A. Agarwal and B. Triggs, “Recovering 3d human pose

from monocular images”, PAMI, vol.28, pp.44-58, 2006.

G.Shakhnarovich, P.Viola, and T.Darrell, “Fast pose

estimation with parameter-sensitive hashing”, ICCV, vol. 2,

pp.750-757,2003.

R. Okada, B. Stenger, “A single camera motion capture

system for human-computer interaction”, Trans. IEICE, vol.

E91-D, No.7, pages 1855-1862, July 2008.

P. Noriega, O Bernier, “Multicues 3D monocular upper

body tracking using constrained belief propagation”,

BMVC, UK, Warwick, 2007.

R. Holt, A. Netravali, T. Huang and R. Qian, “Determining

articulated motion from perspective views: a decomposition

approach”, in Proc. IEEE Workshop on Motion of Non--

Rigid and Articulated Objects, pp. 126-137, Texas, 1994.

[10] Saleh A. Al-Shehri, “A simple and novel method for skin
detection and face locating and tracking”, Lecture Notes in
Computer Science, vol. 3101, pp. 1-8, Berlin, 2004.

[11] W. Press, S. Teykolsky, W. Vetterling, and B. Flannery.
“Numerical recipes in C++: the art of scientific computing”,
Pearson Education, 1992.

[12] Lianglia Zhu, Jenq-Neng Hwang, Chih-Chang Chen, Ming-
Hui Lin, Chen-Lan Yen, “Real-time 3D pose reconstruction
of human body from monocular video sequences”, Taipei,
ISCAS, pp. 717-721, 2009.

[13] Dorin Comaniciu, Visvanathan Ramesh, Peter Meer, “Real-
time tracking of non-rigid objects using mean shift”, CVPR,
vol. 2, pp.2142, 2000.

[14] Dorin Comaniciu, Peter Meer, “Mean Shift: a robust
approach toward feature space analysis”, PAMI, 2002.

[15] J.F. Wang, P.L. Chen, C.P. Liao, Y.Y. Tsai, J. Huang, K.S.
Wang, “Real time depth sensing with automatic determined
depth range for human computer interactive applications”,
IPCV, Las Vegas, NV, 12-15 July, 2010.

(8]

9]



