
 

 

 
Abstract 

 
This paper presents a novel local feature descriptor, the 

Local Directional Pattern (LDP), for describing local 
image feature. A LDP feature is obtained by computing the 
edge response values in all eight directions at each pixel 
position and generating a code from the relative strength 
magnitude. Each bit of code sequence is determined by 
considering a local neighborhood hence becomes robust in 
noisy situation. A rotation invariant LDP code is also 
introduced which uses the direction of the most prominent 
edge response. Finally an image descriptor is formed to 
describe the image (or image region) by accumulating the 
occurrence of LDP feature over the whole input image (or 
image region). Experimental results on the Brodatz texture 
database show that LDP impressively outperforms the 
other commonly used dense descriptors (e.g., 
Gabor-wavelet and LBP). 
 

1. Introduction 
Local image descriptors are employed in many real 

world applications like object detection and view matching 
using local invariant features [1], texture classification 
using micro textons [2], face detection and recognizing 
using local features [3], [4] etc. Every image descriptors 
attempt to describe the image robustly in adverse imaging 
condition like lighting variation, changed view point, 
alteration due to rotation, zooming etc. Descriptors found in 
literature can be classified into two groups: sparse 
descriptor and dense descriptor [5]. The sparse first detects 
the interest points from a given image for sampling local 
image patch around detected interest points then it 
generates a feature vector capable to describe the patch. On 
the other hand, the dense descriptors extract local image 
features pixel by pixel over the whole input image without 
identify the interest points. 

Scale invariant feature transform (SIFT) [1] is the most 
notable descriptor in terms of distinctiveness [6] which 
generates the descriptors with a 3D histogram of gradient 
location and orientation. Several researchers make an effort 
to improve the SIFT descriptor and consequently proposed 

GLOH [7], PCA-SIFT [8], SURF [9] etc. PCA-SIFT use 
PCA to reduce large feature dimension whereas speeded up 
robust features (SURF) builds the descriptors by applying 
the integral image to compute image derivatives. Though 
sparse descriptor is much popular in view matching, it 
sometimes fails to resolve matching ambiguity that occurs 
from locally similar image patches. In addition to that error 
in interest point detection will lead to performance drop. 

Gabor wavelet [10] and local binary pattern are two most 
popular dense descriptors. The first technique applies a 
number of Gabor filters on the image to capture small 
changes in frequency and orientation; finally statistics of 
these micro-features are used to describe the underlying 
texture. Recently LBP feature is gaining much attention as 
a local image descriptor due to its simplicity and excellent 
performance in texture analysis [11] and face image 
analysis [4]. Though LBP is robust to monotonic 
illumination change but it is sensitive to non-monotonic 
illumination variation and also shows poor performance in 
the presence of random noise [12]. Local Directional 
Pattern (LDP), a more robust facial feature, is proposed by 
Jabid et al. [12], which demonstrated better performance in 
different application of facial image analysis [13] [14]. 

This paper introduces LDP as a local image descriptor 
that can work as a dense descriptor. LDP feature considers 
relative edge response value in eight directions around a 
pixel to encode the local neighborhood property of image 
pixel with a binary bit sequence. In this work, we also 
proposed a rotation invariant LDP code which uses the 
largest edge response direction as a starting bit location to 
normalize the orientation change. It is nearly impossible 
that most significant edge response will corrupt in any kind 
of noise or photometric changes, hence generates a robust 
rotation invariant LDP code. 

2. LDP image descriptor 
In this section, after a brief review of local binary pattern 

(LBP) we introduce the local directional pattern (LDP) that 
encode the local micro pattern more efficiently. A 
rotational invariant edition of LDP is proposed and 
analyzed its effectiveness. Finally generation of image 
descriptor using LDP code is described which is used to 
model an image. 
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2.1. Local Binary Pattern (LBP) 
Derived from a general definition of texture in a local 

neighborhood, LBP is defined as a grayscale invariant 
texture measure and is a useful tool to model texture images. 
LBP later has shown excellent performance in facial image 
analysis, in terms of speed and performance. The original 
LBP operator labels the pixels of an image by thresholding 
the 3x3 neighborhood of each pixel with the value of the 
central pixel and concatenating the results binomially to 
form a number. Fig. 1 shows an exemplary illustration for 
generation LBP code. 

Figure 1: The basic LBP operator 

2.2. Local Directional Pattern (LDP) 
Recently researchers use change of gradient magnitude 

in a specific direction around pixels to encode local texture. 
[15], [16]. Instead of comparing neighboring intensity 
value these methods compare neighboring pixel’s gradient 
magnitude along a specific direction and encode it like 
trivial LBP. Consequently, these are unable to encode the 
information which possibly achieved by analyzing different 
magnitude of edge responses in different directions of a 
particular pixel. Rather it considers only one directional 
edge magnitude. Motivated by this observation, we 
proposed the image feature Local Directional Pattern 
(LDP) that computes the edge response values in different 
directions and use these to encode the image texture. 
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Figure 2: Kirsch edge response masks in eight directions 

 
The proposed LDP feature is an eight bit binary code 

assigned to each pixel of an input image. This pattern is 
calculated by comparing the relative edge response value of 
a pixel in different directions. Kirsch edge detector, Prewitt 
edge detector, Sobel edge detector are the representative 
edge detectors which can be used in this regard [17]. 
Among them, the Kirsch edge detector has been known to 
detect different directional edge responses more accurately 
than others because the Kirsch edge detector considers all 
eight neighbors [18]. Given a central pixel in the image, the 
eight directional edge response values {mi}, i=0,1,..,7 are 

computed by Kirsch masks Mi in eight different 
orientations centered on its position. These masks are 
shown in the fig. 2. 

The response values are not equally important in all 
directions. The presence of corner or edge show high 
response values in some particular directions. Therefore, 
we are interested to know the k most prominent directions 
in order to generate the LDP. Here, the top k directional bit 
responses bi are set to 1. The remaining (8-k) bits of 8-bit 
LDP pattern is set to 0. Finally, the LDP code is derived by 
(3). Fig. 3 shows the mask response and LDP bit positions, 
and fig. 4 shows an exemplary LDP code with k=3. 
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where, km is the k-th most significant directional 
response. 
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Figure 3: (a) Eight directional edge response positions. (b) LDP 
binary bit positions. 

 

Figure 4: LDP code with k = 3. 

2.3. Robustness of LDP 
Since edge responses are more stable than intensity 

values, LDP pattern provides the same pattern value even 
presence of noise and non-monotonic illumination changes. 
For instance, fig. 5 shows an original image and the 
corresponding image after adding Gaussian white noise. 
After addition of noise, 5th bit of LBP changed from 1 to 0, 
thus LBP pattern changed from uniform to a non-uniform 
code. Since edge response values are more stable than gray 
value, LDP pattern remains same even presence of that 
noise and non-monotonic illumination changes. 
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(b)

Figure 5: Stability of LDP vs. LBP (a) Original Image with LBP 
and LDP code, (b) Image with noise with new LBP and LDP code 

2.4. Rotation invariant LDP 
Rotational change of any image will lead to alter the 

spatial intensity distribution of that image. As a result edge 
response values of each direction will change and in 
consequence generate completely different LDP code. But 
observing the response values minutely we can conclude 
that relative position of these response values compared to 
strongest edge response will not affected by this rotation of 
the image. For example consider a particular image patch 
with eight edge response value indicated by fig. 6(a). If the 
image is rotated by 900 anticlockwise then intensity value 
of that image patch change which leads to change of edge 
response values. The rotated image patch along with edge 
responses are shown with fig 6(b). If we compare these two 
figures out that edge response values changes their 
corresponding direction by 900 anticlockwise. Observing 
this, we proposed a simple method for achieving rotation 
invariant LDP feature by applying a circular shift operation 
on the original binary code value showed with fig 7. 

For achieving this shift operation, the direction of 
highest edge response is termed as the dominant direction 
of the LDP code. The bit value associated with the 
dominant direction is moved to the right most bit of the 
code. Then, the other bits are circularly shifted with the 
same number of bit position as the dominant direction bit 
shifted to get the right most position. For example, if the bit 
position original code is ‘‘abcdefgh’’ and dominant 
directional bit is at ‘‘c’’ location then bit value of ‘c’ 
position should be shifted 5 place to positioned into right 
most bit. So all other bit will also circularly shifted by 5 
places and finally the normalized code will be ‘‘defghabc’’. 
This procedure generates rotation invariant LDP code 
which is denoted by riLDP and is shown with equation (3). 
This normalization method is based on the assumption that 
to compare similarity between two textures, they should be 
rotated so that their dominant directions are the same. It has 
been proved that image rotation in spatial domain is 
equivalent to circular shift of feature vector elements [19]. 

( , 1)riLDP ROR LDP d= −     (3) 
where d is the bit position of the strongest edge response. 

The LDP operator produces 8
kC  different code values, 

corresponding to the eight bit binary patterns with exactly k 
bit value is 1. But after applying circular shift to get the 
rotation invariance number of LDP code reduces to 7

1kC − . In 
consequence histogram of rotation invariant LDP will have 

7
1kC − bins in comparison of 8

kC  bin in original LDP. 
 

 
(a) 

 
(b) 

Figure 6: Changes in edge responses due to rotation of the image. (a) 
Original image and its edge response values (b) Rotated image along 
with changed edge responses values. 

 

Figure 7: Calculation of rotation invariant LDP code 

2.5. LDP Descriptor 
After generating LDP code in every pixel, we need to 

devise a method to generate an image descriptor using this 
LDP feature. In this regard, histogram has been widely used 
to represent, analyze, and characterize images [20]. Swain 
and Ballard [21] are pioneer in using histogram as image 
descriptor and following their work various recognition 
systems based on histograms were developed. Some of the 
reasons for their importance are that they can be computed 
easily and efficiently, they achieve significant data 
reduction, and they are robust to noise and local image 
transformations. In this work, we form histogram of LDP 
code to describe the image or image patch by accumulating 
the occurrence of LDP feature. So, after computing all the 
LDP code for every pixel ( , )r c , the input image I of size 
M N×  is represented by a LDP histogram H using (3). The 
resultant histogram H is the LDP descriptor of that image. 
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where, τ is the LDP code value. 
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3. Texture classification using LDP descriptor 
The LDP feature which is robust against different 

variations like non-monotonic changes in illumination and 
in random noise is used to represent the texture of the 
images for the application of texture classification. In this 
section, we present the method of using LDP histogram 
feature descriptor for texture classification and compare the 
performance with those of the state-of-the-art methods. 

  
(a) (b) (c) (d) 

  
(e) (f) (g) (h) 

  
(i) (j) (k) (l) 

 

   

(m)    
Figure 8: Primary pictures from Brodatz texture album: (a) Bark, (b) 
Brick, (c) Bubbles, (d) Grass, (e) Leather, (f) Pigskin, (g) Raffia, (h) 
Sand, (i) Straw, (j) Water, (k) Weave, and (l) Wood and (m) Wool. 

 

  
(a) (b) (c) (d) 

  
(e) (f) (g) (h) 

  
(i) (j) (k) (l) 

Figure 9: Some example picture from 112 Brodatz texture namely 
(D1-D112): (a) D13, (b) D15, (c) D26, (d) D27, (e) D35, (f) D40, (g) 
D48, (h) D56, (i) D62, (j) D85, (k) D101, (l) D108 

3.1. Database 
Experiments are carried out with two groups of textures; 

the first group consists of 13 primary textures, collected 
from Brodatz [22] texture album and the second group 
consists of all the 112 textures of Brodatz album. The first 
group of texture images are of size 512x512 used in our 
experiments and those texture of: (i) Bark, (ii) Brick, (iii) 
Bubbles, (iv) Grass, (v) Leather, (vi) Pigskin, (vii) Raffia, 
(viii) Sand, (ix) Straw, (x) Water, (xi) Weave, (xii) Wood 
and (xiii) Wool. Texture classification is done with a total 
of 91 (13x7=91) rotated textures of size 512x512 which are 
achieved by rotating the original image into seven different 
orientations of 00, 300, 600, 900, 1200, 1500 and 2000. The 
rotated textures are of size 256x256, derived from the 
center portion of respective 512x512 size rotated textures. 

The second group of textures comprises all the 112 
textures of size 512x512 from the Brodatz album 
(D1–D112). They are rotated in steps of 100 up to 3600 and 
used for classification, i.e., texture classification is done 
with a total of 4032 rotated texture images (112x36 = 4032). 
The rotated textures are of size 256x256, derived from the 
center portion of respective 512x512 size rotated textures. 

3.2. Classification using LDP histogram 
We choose rotation invariant LDP feature descriptor to 

represent the micro-textons of the given image. Extracted 
rotation invariant LDP features of each pixel of the image 
then combined to generate rotation invariant image 
descriptor using LDP histogram following equation 6. For 
the classification, we use the K-nearest neighbor, which has 
been successfully utilized in texture analysis arena. In our 
case, K=3. To compute the distance between two given 
images I1 and I2, we first obtain their LDP histogram 
features H1 and H2 then measure the similarity between 
those using histogram intersection [21]: 

1 12 2

1
( , ) min( , )

N

i

D H H H H
=

=∑     (6) 

where N is the number of bins in a histogram and it 
calculate the overlapping portion of two histograms. 

3.3. Experimental result 
Experimental results of two groups from Brodatz 

textures database are illustrated in Table 1. The accuracy of 
our method is calculated as a percentage of correct 
classifications which is computed as follows: 

 
#

#
of correct classificationAccuracy

of total images
=     (7) 

As shown in Table 1, we compare our method with 
others popular dense descriptors like Gabor and LBP 
descriptor. We found that our approach performs better 
than those state-of-the-art methods. 
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Table 1: The recognition result with Brodatz database 
Method Texture of Group1 Texture of Group2 

LDP 98.9 96.8 
Gabor 96.7 95.9 
LBP 93.4 91.2 

4. Face recognition using LDP descriptor 
The recent advancement of software and hardware 

technology has created more demand for personalized 
interaction in consumer products. This can be done by 
identifying the users through human face recognition and 
enabling appropriate services such as personalized TV 
program, intelligent digital photography, smart home, and 
may more. The LDP feature descriptor which is robust 
against different variations like non-monotonic changes in 
illumination and in random noise can be effectively used 
for face recognition. 

4.1. Database 
The performance of proposed LDP pattern is tested in the 

face recognition problem in accordance to the Colorado 
State University Face Identification Evaluation System 
[23] with images from the FERET [24] database. In this 
work, only frontal faces are considered with different 
lighting condition, different expression and with aging 
effects on the face image. These facial images can be 
divided into five sets which are known as: (i) fa set, used as 
a gallery set, contains frontal images of 1,196 people. (ii) fb 
set (1,195 images) with an alternative facial expression 
than in the fa photograph. (iii) fc set (194 images) taken 
under different lighting conditions. (iv) dupI set (722 
images) taken later in time. (v) dupII set (234 images) 
subset of the dup I set containing images that were taken at 
least a year after the corresponding gallery image. Images 
from these five groups are shown in fig. 10. Images from 
the FERET database are cropped and normalized to 
100×100 pixels based on the ground truth positions of the 
two eyes and mouth. 

 

   
(a) (b) (c) (d) (e) 

Figure 10:  Example face image from FERET database. (a) Image 
from fa set, (b) Image from fb set, (c) Image from fc set, (d) Image 
from dupI set, (e) Image from dupII set. 

4.2. Classification using LDP histogram 
LDP histogram generated from the whole image will 

lose location information.  Hence to incorporate some 
degree of location and spatial relationship, an extended 
LDP histogram is generated by dividing the image is 
divided into g number of regions 0 1 1, ,..., gR R R − (shown in 

fig. 11) and building the LDP histogram from each 
region iR . These histograms are concatenated to get the 
descriptor vector that represents the face image. 

 
Figure 11: Facial image representation using spatially combined 
histogram 
 

From the pattern classification perspective, a natural 
problem of face recognition is having a large number of 
classes but only a few, sometimes only one, number of 
training sample(s) are available for per class. In this 
situation, more sophisticated classifier is not applicable 
rather simple nearest-neighbor classifier is used in classify 
the face. Several dissimilarity measures have been 
proposed to compare closeness between two histograms 
named as – Histogram intersection, Log-likelihood 
statistics and Chi square statistics (χ2). A weighted 2

wχ  
statistics might be used to give more or less importance to 
particular regions such as eye, nose, and mouth regions. 
Literature shows that weights are set manually based on 
observations. In our case, we opted to use the 2χ statistics 
for template matching. 

( )2
2

,

( ) ( )
( ) ( )

i i
w i

i i i

S M
w

S Mτ

τ τ
χ

τ τ
−

=
+∑ .    (9) 

where, iw  is the weight of region iR . 

4.3. Experimental Result 
In our setup, every image is partitioned into 7x6 sub-blocks. 
We used fa image set as gallery image and other four sets 
(fb, fc, dupI and dupII) as probe images. One image from 
probe set is compared using mentioned dissimilarity 
measure with all the images from gallery image set (fa set). 
The classification result is achieved through the nearest 
neighbor classification method. Table 2 shows recognition 
performance of proposed method along with other methods 
which ascertain the superiority of the proposed method. 
 

Table 2: The recognition result with FERET database 
Method fb fc dupI dupII 

LDP, weighted 0.97 0.85 0.76 0.72 
LDP, 
un-weighted 

0.97 0.82 0.72 0.69 

Gabor 0.97 0.80 0.67 0.64 
LBP 0.97 0.79 0.66 0.64 
PCA 0.85 0.65 0.44 0.22 

5. Conclusions 
This paper introduces a local feature descriptor LDP for 
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object detection. LDP code which compute the edge 
response values in different directions and use this to 
encode the local image property. The discriminative power 
of the LDP descriptor mainly lies in the integration of local 
edge response into a single binary pattern that makes it 
robust and insensitive to noise and non-monotonous 
illumination changes. Experimental results show that LDP 
descriptor shows better classification accuracy on Brodatz 
textures database. It is also found that LDP descriptor 
provides better recognition accuracy in face recognition 
using FERET database. 
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