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Abstract

In this paper, we investigate the applicability of the newly
proposed data clustering method, affinity propagation, in
feature points clustering and the task of vehicle detection
and tracking in road traffic surveillance. We propose a
model-based temporal association scheme and novel pre-
processing and postprocessing operations which together
with affinity propagation make a quite successful method for
the given task. Our experiments demonstrate the effective-
ness and efficiency of our method and its superiority over
the state-of-the-art algorithm.

1. Introduction
Vehicle detection and tracking is a fundamental task in

modern intelligent traffic systems. In the computer vision
community, many methods have been proposed in the past
two decades. Based on their technical approaches, they can
be roughly divided into five categories: background sub-
traction [19], foreground segmentation [13, 25], supervised-
learning-based detector [20, 9], edge-model matching [18,
26, 8, 33, 17, 11], feature points tracking and cluster-
ing [23, 15, 3, 2, 1, 24, 21, 30, 16, 14].

Feature points clustering has long been used in vehi-
cle detection and tracking, and some promising results
have been achieved. There are roughly two classes of
approaches: one is from a top-down graph-partitioning
perspective [23, 15, 24], the other features a bottom-up
multi-level hierarchical clustering scheme [2, 1, 21, 16].
McLauchlan et al [23] represent the feature points as an
fully connected graph and use a greedy procedure to gradu-
ally remove the edges according to some predefined heuris-
tic criteria. The remaining subgraphs after edge removal are
considered as vehicle candidates. Using the same graph-
ical representation, Kanhere et al [15] run normalized-cut
algorithm on the graph to automatically segment it into par-

titions. Du and Piater [3] instantiate and initialize clus-
ters using the EM algorithm, followed by merging over-
lapping clusters and splitting spatially disjoint ones. Kan-
here and Birchfield [14] find stable features heuristically
and then group unstable features by a region growing algo-
rithm. Yang et al [30] pose the feature clustering problem as
a general MAP problem and find the optimal solution using
MCMC.

Affinity propagation [5] is a recently proposed data clus-
tering method which can find clusters with much lower er-
ror in less than one-hundredth the mount of time than other
clustering methods. It has since been used in many diverse
fields such as computer vision [29, 4, 28, 6, 7, 22, 34, 10],
image coding [12], speech recognition [32], data min-
ing [31], etc.

In this paper, we propose a vehicle detection and track-
ing method based on affinity propagation feature clustering.
The rest of this paper is organized as follows. First we re-
visit the affinity propagation algorithm in section 2. The
similarity function customized for our task is given in sec-
tion 3. We then discuss the proposed temporal association
scheme in section 4, and preprocessing and postprocessing
steps in section 5. We present and analyze the experimental
results in section 6. The paper concludes in section 7.

2. The Affinity Propagation algorithm
Affinity propagation [5] is essentially a special case of

loopy belief propagation algorithm specifically designed for
data clustering. Taking as input a matrix S of real-valued
similarities between data points, affinity propagation simul-
taneously considers all data points as potential exemplars
(cluster centers), and works by recursively exchanging real-
valued messages between data points until a good set of ex-
emplars and corresponding clusters gradually emerges.

The similarity S(i, k), i 6= k indicates how well data
point k is suited to be the exemplar for data point i, while
S(k, k) is referred to as “preference” and data points with
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higher preference values are more likely to be chosen as ex-
emplars. The preference thus serves as a parameter for con-
trolling the number of identified clusters. If all data points
are equally likely to be exemplars a priori, the preferences
should be set to a common value, usually being the median
of input similarities. ForN data points, the affinity propaga-
tion algorithm can be viewed as a searching process which
tries to maximize the net similarity S =

∑N
i=1 S(i, L(i)),

or to minimize the energy function E = −S, where L(i) is
the index of the exemplar point i belongs to.

Two types of messages are exchanged between data
points, each representing a different kind of competition.
Point i sends point k the “responsibility” R(i, k) which re-
flects the accumulated evidence for the suitability of point i
choosing point k as its exemplar, considering other potential
exemplars other than k. Point k sends point i the “availabil-
ity” A(i, k) which reflects the accumulated evidence for the
suitability of point k serving as the exemplar for point i,
considering the support from other points who choose point
k as their exemplar. From a probabilistic point of view,
S(i, k) can be interpreted as the log-likelihood of data point
i given that its exemplar is point k, and R(i, k) and A(i, k)
can be viewed as log-probability ratios. At any iteration of
the message-passing procedure, the sum R(k, k) +A(k, k)
can be used to identify exemplars, and the corresponding
clusters can be calculated. The whole procedure terminates
after a predefined number of iterations, or if the decided
clusters have stayed constant for some iterations. A sum-
mary of the affinity propagation algorithm is given in Algo-
rithm 1.

Compared to other clustering methods, affinity propaga-
tion has several advantages: (1) Simplicity and speed. The
message update rules involve only simple and local compu-
tations which are easy to implement, and it does not need
multiple restarts to yield a good solution. (2) Accuracy
and robustness. Rather than requiring the number of clus-
ters be prespecified and an initial set of exemplars chosen,
it simultaneously considers all the data points by passing
soft messages around and automatically generates the ap-
propriate clustering configuration, avoiding unlucky initial-
izations and hard decisions. (3) Generality and flexibility.
It can handle arbitrary pairwise similarity functions, being
metric or nonmetric.

3. Similarity function
Our goal is to cluster a set of individually tracked fea-

ture points into separate vehicle hypotheses. Let f ti repre-
sent the image position of feature point i at time t and fτi:ti

its trajectory in image space. With camera calibration and
assuming that all the feature points are at a certain height
(e.g. half the height of a typical vehicle) in the real world,
for feature point i the corresponding real world position F ti
and trajectory Fτi:ti can be calculated. In terms of sepa-

Algorithm 1: Affinity Propagation

Input: similarity matrix S, maxits, convits, λ
Output: exemplar index vector L
iter ← 0, conv ← 0, A← 0, R← 0, L← −∞
repeat

iter ← iter + 1
OL← L
OR← R
forall i, k do

R(i, k)← S(i, k)− max
k′:k′ 6=k

{A(i, k′) + S(i, k′)}

R← (1− λ) ∗R+ λ ∗OR
OA← A
for i 6= k do

A(i, k)← min
{
0, R(k, k) +

∑
i′:i′ /∈{i,k}

max{0, R(i′, k)}
}

forall k do
A(k, k)←

∑
i′:i′ 6=k

max{0, R(i′, k)}

A← (1− λ) ∗A+ λ ∗OA
foreach k do

if R(k, k) +A(k, k) > 0 then L(k)← k

foreach k do
if L(k) 6= k then L(k)← argmax

i:L(i)=i
S(k, i)

if L = OL then
conv ← conv + 1

else
conv ← 1

until iter > maxits or conv > convits

rating moving objects, there are many spatial and temporal
cues which have been used in the past and current research.
With adaptation to feature points grouping, we utilize the
following similarity function:

S(i, k) = −αsds(i, k)− αmdm(i, k)− αbdb(i, k), (1)

which consists of three terms:
ds(i, k) measures the spatial closeness between point i

and point k and reflects the rationale that close points are
likely to belong to the same vehicle:

ds(i, k) = ||F ti −F tk||. (2)

dm(i, k) models the motion similarity between the two
trajectories with the intuition that feature points from the
same vehicle should have similar motion patterns:

dm(i, k) =
t

max
j=max{τi,τk}

||(F ti −F
j
i )− (F tk −F

j
k)||. (3)

db(i, k) calculates the number of background pixels be-
tween the two points and encodes the belief that points
which are more separated by background are less likely to
come from the same vehicle:

db(i, k) =

ft
k∑

f=ft
i

δ
(
Bt(f) = 1

)
, (4)

where Bt is the background mask at time t.
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4. Temporal association
Temporal association is needed for two purposes. The

first is to track vehicles for further applications. The second
is to solve inconsistent clustering results from the two con-
secutive frames caused by unstable image features result-
ing from sensor noise, camera shake, blur, lighting change,
etc. We use a temporal association scheme based on vehicle
model fitting.

First we have a 3D cuboid vehicle model built from
typical vehicle dimension data. With known lane direc-
tion and camera parameters, the mapping of the 3D vehi-
cle model to the 2D image plane is determined by the po-
sition of the model on the ground plane. Suppose Cti =
{f t1i , f

t
2i , . . . , f

t
ni
} is a feature cluster from time t. By pro-

jecting the 3D model from the real world position of the
coordinate center of Cti , we get a 2D vehicle shape mask
MCt

i
at the corresponding image position. A model fitting

criteria is defined for Cti based on the number of feature
points from Cti falling into MCt

i
:

fit(Cti ) =

∑
f∈Ct

i
δ
(
MCt

i
(f) = 1

)
|Cti |

. (5)

Based on the smooth motion assumption, for a vehicle, its
spanned areas at time t and t− 1 should observe a tiny dis-
placement and a big overlap, and the union of the two areas
should still closely resemble a vehicle shape. Thus our asso-
ciation rule is, Cti is associated with Ct−1k that is the largest
cluster at time t − 1 whose union with Cti fits the vehicle
model reasonably well:

k = argmax
j

{
|Ct−1j |

∣∣fit(Cti ∪ Ct−1j ) > βa
}
. (6)

Cti is then merged into Ct−1k and the new cluster inherits
the vehicle label of Ct−1k . For each unassociated Cti , we
remove its features which were already clustered at time
t−1. The resulting cluster is denoted as C̃ti , and is assigned
a new vehicle label if it satisfies fit(C̃ti ) > βn and |C̃ti | >
γn.

By incorporating an empirical vehicle model in finding
the temporal correspondences instead of using schemes that
simply count number of shared feature points, we introduce
some semantics into the process, and avoid undesirable as-
sociations that could lead to cluster drift, dilation and other
meaningless results.

5. Preprocessing and postprocessing
Three preprocessing steps are required before applying

our method: (1) Offline camera calibration by assuming a
planar road surface. (2) For the whole sequence, build a
reference background image bg using simple image aver-
aging; For each frame It, generate the background mask

Bt using simple arithmetic and logical operations (Bt =
¬(|It − bg| > ε)). (3) For each frame, detect and track
KLT [27] feature points, and prune the ones falling in the
background region or out of ROI.

After feature clustering and temporal association, we run
two postprocessing steps to reinforce a plausible and desir-
able output: (1) Cluster shape maintenance. For each clus-
ter Cti , we remove its member feature points that are out-
side the vehicle shape mask MCt

i
or inside the convex hull

of another cluster. This accounts for the situation of outlier
feature points that are either generated by noisy signal or
wrongly clustered particularly along the occlusion bound-
aries, as well as the unfortunate case of having clustered
the feature points on two separating vehicles. (2) Hypothe-
ses verification by dropping small noise-generated clusters
whose sizes are below a predefined threshold γd.

6. Experiments
We use three diversified traffic video sequences for the

purpose of evaluation. The three sequences are from dif-
ferent locations, different camera installations and different
weather conditions. city1 and city2 are two challenging se-
quences of a busy urban intersection with city1 recorded
with a low-height off-axis camera on a cloudy day and city2
with a low-height on-axis camera on a rainy day. They both
contain lots of complicated traffic events during traffic light
cycles such as the typical process of vehicles decelerate,
merge, queue together, then accelerate and separate. The
low height nature of the cameras brings extra difficulties
to the detection task. city3 is recorded near a busy urban
bridge with a medium-height off-axis camera under a sunny
weather. For each sequence, the groundtruth is manually
labeled at approximately ten frames apart. Refer to Table 1
for detailed sequence information.

We compare the performance of our method to the nor-
malized cut approach [15]. We implement both methods
in unoptimized C code and run them on a Pentium IV 3.0
GHz machine. In our normalized cut implementation: (1)
We use the same spatial and temporal cues, and the pair-
wise affinity between point i and point k is defined as
A(i, k) = expS(i, k). (2) For the recursive top-down bi-
partition process, we adopt a model-based termination cri-
teria rather than the original one which is based on the nor-
malized cut value. The partitioning of graphG terminates if
fit(G) = 1. (3) All the feature points are assumed a fixed
height rather than relying on the original novel height esti-
mation procedure which is found to be unstable in our ex-
periments. (4) The same temporal association scheme, pre-
processing and postprocessing steps are applied. For affin-
ity propagation, we set the maximum number of allowed
iterations maxits to 1000, the number of iterations for de-
ciding convergence convits to 10, the damping factor λ to
0.5, the preferences S(k, k) to the median of the input sim-
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sequence
name

camera
position

camera
height

weather
condition

sequence
length

labeled
frames

labeled
vehicles

TPR at 10% FPR running time (ms/frame)
NCut AP NCut AP

v1 v2 v1 v2 v1 v2 v1 v2
city1 off-axis low cloudy 2016 200 2035 0.65 0.61 0.66 0.68 85 136 82 112
city2 on-axis low rainy 2016 200 2592 0.67 0.66 0.73 0.73 108 244 101 182
city3 off-axis medium sunny 1366 136 1509 0.42 0.40 0.45 0.44 64 80 63 76

Table 1: Sequence and performance information. TPR stands for true positive rate, and FPR stands for false positive rate.
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Figure 1: ROCs on the three sequences: from left to right, city1, city2 and city3.
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Figure 2: Convergence.

ilarities S. All the other parameters in the two algorithms
are set by trial-and-error to achieve the best performance.

To facilitate the analysis of the effectiveness and effi-
ciency of our method, we designed two versions for each
of the two methods. We label the individual vehicle lanes
for each sequence beforehand. The first version works on
each lane separately, referred as v1. While the second ver-
sion works on all the lanes combined, referred as v2. The
ROC curves of the two methods each with two versions
on the three sequences are shown in Fig. 1 (please note
the different limits of the vertical axis for the plots). The
performance calculation is based on the comparison with
hand-labeled groundtruth on a strict frame-by-frame basis.
From the curves, we can see that our method performs ei-
ther comparably or better than normalized cut (see also Ta-
ble 1). For both methods, the performance on city1 is worse
than that on city2 because of the more frequent inter-lane
occlusions for off-axis cameras, while the performance on
city3 is worse than that on both city1 and city2 because of
the lower video quality of city3 and specific difficulties in
sunny weather such as shadow cast by vehicles, trees, etc
(see Fig. 5). Generally speaking, for each method, the per-
formance of v1 is better than or equal to that of v2 since by
treating each lane individually we actually introduce some
prior knowledge about separating vehicles from different
lanes. However, city1 gives an exception because in off-axis
cameras feature points from one vehicle usually spill over
two or even more lanes, thus making lane separation a dis-
advantage rather than an advantage. And it seems that affin-
ity propagation can benefit much more from considering all
the lanes together than normalized cut can. Fig. 3 and Fig. 4
give an example where normalized cut does not work well
while affinity propagation does. In this situation, the num-

ber of feature points on a faraway vehicle is much less than
that on a vehicle close to the camera. In trying to regular-
ize the sizes of the partitions, normalized cut segments the
feature set prematurely and ends up with many fragmented
clusters. Affinity propagation avoids premature decisions
by considering all the feature points simultaneously at all
times. We can see from Fig. 4 that affinity propagation fi-
nally reaches the correct result even though the identified
exemplar points do not necessarily have a physical mean-
ing. Fig 2 plots the corresponding value of net similarity
at each iteration for this example, and it takes about only
ten iterations to converge. In terms of running speed, our
method is faster than normalized cut as shown in Table 1.
For each method, the two versions also give us an idea of
how the algorithm scales with problem size. We see from
Table 1 that the running time of normalized cut increases
much faster with problem size than that of our method does.
Fig. 5 gives some example detection results of our method
on the three sequences and Fig. 6 shows some example ve-
hicle trajectories generated.

7. Conclusions
In this paper, we investigate the feasibility of using affin-

ity propagation based feature clustering for vehicle detec-
tion and tracking in road traffic surveillance, and show its
distinct advantages over the state-of-the-art method.

In our future work, we will exploit three directions of im-
provement: the first is to incorporate prior knowledge (such
as the distance to the center of the lane) into the setting of
preference values; the second is to fuse information from
features other than interest points to improve the accuracy
and robustness of the clustering results; the third is to de-
velop a spatial-temporal affinity propagation framework to
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Figure 3: A working example of normalized cut feature
clustering. From left to right, top to down, the images show
the recursive partitioning process.

unify detection and tracking.

Acknowledgement
NICTA is funded by the Australian Government as rep-

resented by the Department of Broadband, Communica-
tions and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

The authors thank Dr. William Uther for useful discus-
sions and RTA (Roads and Traffic Authority), NSW for pro-
viding the video sequences.

References
[1] G. Antonini and J.-P. Thiran. Counting pedestrians in video

sequences using trajectory clustering. TCSVT, 16:1008–
1020, 2006. 1

[2] G. J. Brostow and R. Cipolla. Unsupervised bayesian de-
tection of independent motion in crowds. In CVPR, pages
594–601, 2006. 1

[3] W. Du and J. Piater. Tracking by cluster analysis of feature
points using a mixture particle filter. In AVSS, pages 165–
170, 2005. 1

[4] D. Dueck and B. Frey. Non-metric affinity propagation for
unsupervised image categorization. In ICCV, pages 1 –8, oct.
2007. 1

[5] B. J. Frey and D. Dueck. Clustering by Passing Messages
Between Data Points. Science, 315(5814):972–976, 2007. 1

[6] Y. Fu, Z. Li, X. Zhou, and T. Huang. Laplacian affinity prop-
agation for semi-supervised object classification. In ICIP,
volume 1, pages I –189 –I –192, 16 2007-oct. 19 2007. 1

[7] Y. Gao and Q.-H. Dai. Shot-based similarity measure for
content-based video summarization. In ICIP, pages 2512 –
2515, oct. 2008. 1

Figure 4: A working example of affinity propagation fea-
ture clustering. From left to right, top to bottom, the images
show the clustering results at each iteration up to conver-
gence. Identified exemplars are represented by triangles.

[8] S. Hinz. Detection and counting of cars in aerial images. In
ICIP, pages 997–1000, 2003. 1

[9] O. Javed, S. Ali, and M. Shah. Online detection and clas-
sification of moving objects using progressively improving
detectors. In CVPR, pages 696–701, 2005. 1

[10] Y. Jia, J. Wang, C. Zhang, and X.-S. Hua. Finding image ex-
emplars using fast sparse affinity propagation. In MM, pages
639–642, New York, NY, USA, 2008. ACM. 1

[11] Y. Jia and C. Zhang. Front-view vehicle detection by markov
chain monte carlo method. PR, 42:313–321, 2009. 1

[12] W. Jiang, F. Ding, and Q.-L. Xiang. An affinity propagation
based method for vector quantization codebook design. In
ICPR, pages 1 –4, dec. 2008. 1

[13] S. Kamijo, Y. Matsushita, K. Ikeuchi, and M. Sakauchi. Oc-
clusion robust tracking utilizing spatio-temporal markov ran-
dom field model. In ICPR, pages 1140–1144, 2000. 1

[14] N. Kanhere and S. Birchfield. Real-time incremental seg-
mentation and tracking of vehicles at low camera angles us-
ing stable features. TITS, 9:148–160, 2008. 1

[15] N. K. Kanhere, S. J. Pundlik, and S. Birchfield. Vehicle seg-
mentation and tracking from a low-angle off-axis camera. In
CVPR, pages 1152–1157, 2005. 1, 3

356418



Figure 5: Example detections on the three sequences: from left to right, city1, city2 and city3.

0 50 100 150 200 250 300 350
0

50

100

150

200

250

0 50 100 150 200 250 300 350
0

50

100

150

200

250

0 50 100 150 200 250 300 350
0

50

100

150

200

250

Figure 6: Example vehicle trajectories on the three sequences: from left to right, city1, city2 and city3.

[16] Z. Kim. Real time object tracking based on dynamic feature
grouping with background subtraction. In CVPR, 2008. 1

[17] Z. W. Kim and J. Malik. Fast vehicle detection with proba-
bilistic feature grouping and its application to vehicle track-
ing. In ICCV, pages 524–531, 2003. 1

[18] D. Koller, K. Daniilidis, and H.-H. Nagel. Model-based ob-
ject tracking in monocular image sequences of road traffic
scenes. IJCV, 10:257–281, 1993. 1

[19] D. Koller, J. Weber, and J. Malik. Robust multiple car track-
ing with occlusion reasoning. In ECCV, pages 189–196,
1994. 1

[20] A. Levin, P. A. Viola, and Y. Freund. Unsupervised improve-
ment of visual detectors using co-training. In ICCV, pages
626–633, 2003. 1

[21] Y. Li and H. Ai. Fast detection of independent motion in
crowds guided by supervised learning. In ICIP, pages 341–
344, 2007. 1

[22] S. Ma, W. Wang, Q. Huang, S. Jiang, and W. Gao. Effective
scene matching with local feature representatives. In ICPR,
pages 1 –4, dec. 2008. 1

[23] P. F. McLauchlan, D. Beymer, B. Coifman, and J. Malik. A
real-time computer vision system for measuring traffic pa-
rameters. In CVPR, pages 495–501, 1997. 1

[24] V. Rabaud and S. Belongie. Counting crowded moving ob-
jects. In CVPR, pages 705–711, 2006. 1

[25] X. Song and R. Nevatia. A model-based vehicle segmenta-
tion method for tracking. In ICCV, pages 1124–1131, 2005.
1

[26] T. N. Tan, G. D. Sullivan, and K. D. Baker. Model-based
localisation and recognition of road vehicles. IJCV, 27:5–
25, 1998. 1

[27] C. Tomasi and J. Shi. Good features to track. In CVPR, pages
593–600, 1994. 3

[28] R. Verma and P. Wang. On detecting subtle pathology via
tissue clustering of multi-parametric data using affinity prop-
agation. In ICCV, pages 1 –8, oct. 2007. 1

[29] J. Xiao, J. Wang, P. Tan, and L. Quan. Joint affinity propa-
gation for multiple view segmentation. In ICCV, pages 1 –7,
oct. 2007. 1

[30] J. Yang, Y. Wang, G. Ye, A. Sowmya, B. Zhang, and J. Xu.
Feature clustering for vehicle detection and tracking in road
traffic surveillance. In ICIP, pages 1152–1157, 2009. 1

[31] X. Zhang and C. Furtlehner. Data streaming with affinity
propagation. In ECML, pages 628–643, 2008. 1

[32] X. Zhang, J. Gao, P. Lu, and Y. Yan. A novel speaker
clustering algorithm via supervised affinity propagation. In
ICASSP, pages 4369 –4372, 31 2008-april 4 2008. 1

[33] T. Zhao and R. Nevatia. Car detection in low resolution aerial
image. In ICCV, pages 710–717, 2001. 1

[34] Z.-Q. Zhao and H. Glotin. Diversifying image retrieval with
affinity-propagation clustering on visual manifolds. IEEE
MultiMedia, 16:34–43, 2009. 1

357419


