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Abstract

This paper presents a novel method to count people for
video surveillance applications. Methods in the literature
either follow a direct approach, by first detecting people and
then counting them, or an indirect approach, by establish-
ing a relation between some easily detectable scene features
and the estimated number of people. The indirect approach
is considerably more robust, but it is not easy to take into
account such factors as perspective or people groups with
different densities.

The proposed technique, while based on the indirect ap-
proach, specifically addresses these problems; furthermore
it is based on a trainable estimator that does not require
an explicit formulation of a priori knowledge about the per-
spective and density effects present in the scene at hand.

In the experimental evaluation, the method has been
extensively compared with the algorithm by Albiol et al.,
which provided the highest performance at the PETS 2009
contest on people counting. The experimentation has used
the public PETS 2009 datasets. The results confirm that the
proposed method improves the accuracy, while retaining the
robustness of the indirect approach.

1. Introduction

The estimation of the number of people present in an
area can be an extremely useful information both for secu-
rity/safety reasons (for instance, an anomalous change in
number of persons could be the cause or the effect of a dan-
gerous event) and for economic purposes (for instance, op-
timizing the schedule of public transportation system on the
basis of the number of passengers). Hence, several works
in the fields of video analysis and intelligent video surveil-
lance have addressed this task.

The literature on people counting presents two conceptu-
ally different ways to face this task. In the direct approach
(also called detection-based), each person in the scene is in-

dividually detected, using some form of segmentation and
object detection; the number of people is then trivially ob-
tainable. In the indirect approach (also called map-based or
measurement-based), instead, counting is performed using
the measurement of some features that do not require the
separate detection of each person in the scene; these fea-
tures then have to be put somehow in relation to the number
of people.

The direct approach has the advantage that people de-
tection is often already performed on a scene for other pur-
poses (e.g. detecting events based on a person’s position or
trajectory), and as long as people are correctly segmented,
the count is not affected by perspective, different people
densities and, to some extent, partial occlusions. On the
other hand, correct segmentation of people is a complex
task by itself, and its output is often unreliable, especially in
crowded conditions (which are of primary interest for peo-
ple counting). The indirect approach instead is more robust,
since it is based on features that are simpler to detect, but
it is often not easy to find an accurate correspondance be-
tween these features and the number of people, especially if
people may appear in the scene at different distances from
the camera, and in groups with diverse densities.

Recent examples of the direct approach are [13], [4] and
[15]. For the indirect approach, recent methods have pro-
posed, among the others, the use of measurements such
as the amount of moving pixels [6], blob size [9], frac-
tal dimension [11] or other texture features [12]. Two re-
cent methods following the indirect approach have been
proposed by Albiol et al. in [2] and by Chan et al. in [5].
Both methods have been submitted to the PETS 2009 con-
test on people counting and have obtained very good per-
formance among the contest participants. In Albiol’s paper,
the authors propose the use of corner points (detected using
the Harris’ algorithm [8]) as features. Static corner points
(likely belonging to the background) are removed by com-
puting motion vectors between adjacent frames. Finally, the
number of people is estimated from the number of moving
corner points assuming a direct proportionality relation.
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Figure 1. The effect of perspective on the number of detected interest points. In a) it is reported the graph of the number of SURF points
associated to the person denoted with the box in a video sequence whose first and last frames are shown in b) and c).

Altough Albiol’s method has proved to be quite more ro-
bust than its competitors, the accuracy it can attain is limited
by the fact that it does not take into account perspective ef-
fects, nor the influence of people density on the detection of
corner points. Also, Harris’ corner detector can be some-
times unstable for objects moving towards the camera or
away from it.

In this paper we propose a method that, while retain-
ing the overall simplicity and the robustness of Albiol’s ap-
proach, tries to provide a more accurate estimation of the
count by considering also these factors. Furthermore, the
estimation is obtained through a trainable regressor (using
the ε-SVR algorithm) that can be easily adapted to the char-
acteristics of a new scene.

2. The proposed method

The approach we propose in this paper is based on the
indirect approach. In particular, it uses as its features the
moving interest points, where the interest points are first de-
tected using a feature detector from the state of the art, and
then the static ones are filtered out on the basis of a motion
vector estimation. Under this respect the method is con-
ceptually similar to the one by Albiol et al. [2], which has
proved to be very successful at the PETS2009 people count-
ing contest. However, while Albiol’s algorithm assumes a
very simple relation between the number of detected points
and the number of persons (a direct proportionality), our
method uses a more sophisticated estimation technique that
takes into account several factors that could affect the rela-
tion between points and persons.

The first problem addressed is the the effect of perspec-
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tive, which causes that the farther the person is from the
camera, the fewer are the detected interest points. An exam-
ple of the occurrence of this problem is shown in Figure 1.
Let us consider the woman denoted with the box that enters
the scene (top right corner of the frame in Figure 1.b), goes
progressively closer to the camera (up to the bottom left
corner of the frame in Figure 1.c); from the graph in Fig-
ure 1.a it is evident how the closer is the box to the camera
the higher is the moving SURF point associated to it.

In order to account for this effect, our algorithm com-
putes the distance of each person or group of persons from
the camera. To obtain this information, we first partition
the detected points into groups corresponding to different
groups of people. This can be treated as a clustering prob-
lem, but with the peculiarity that the shape of the clusters,
their number and their densities are not known a priori. Be-
cause of this, commonly used clustering algorithms such as
k-means and DBSCAN cannot be applied. So, to perform
this task we have adopted the graph-based clustering algo-
rithm presented in [7], which provides a good partitioning
when the clusters are reasonably separated, without requir-
ing any a priori information about the clusters.

Once the detected points are divided into clusters, the
distance of each cluster from the camera is derived from
the position of the bottom points of the cluster applying an
Inverse Perspective Mapping (IPM). The IPM is based on
the assumption that the bottom points of the cluster lie on
the ground plane. The inverse perspective matrix can be
derived by calibration, using the images of several persons
located at different distances from the camera and assuming
that they have an average height.

Another factor our algorithm takes into account is the ef-
fect of people density in a group. The more the persons in
a group are close to each other, the more partial occlusions
occur, reducing the visible part of the body, and thus the
number of interest points per person. To consider this effect
we compute a rough estimate of the people density by mea-
suring how close are the interest points in the group. More
precisely, we measure the ratio between the number of in-
terest points in the group and the area covered by the group
itself.

Given the need to consider not only the number of points,
but also the distance from the camera and the density, the re-
lation between these measurements and the number of peo-
ple cannot be a simple direct proportionality as in Albiol’s
method. Actually, even if a single measurement were in-
volved, the relation might have been non linear, at least in
principle; with three measurements, there is the problem of
understanding their relative weights and how they interact
with each other to determine the count estimate.

Since this problem cannot be easily solved analytically,
we have chosen to learn this relation by using a trainable
function estimator. More precisely, we have used a variation

of the Support Vector Machine known as ε-Support Vector
Regressor (ε-SVR for short) as our function estimator. The
ε-SVR receives as its inputs the number of points of a clus-
ter, the distance from the camera and the point density of
the cluster, and is trained (using a set of training frames) to
output the estimated number of people in the cluster. The ε-
SVR is able to learn a non linear relation and shows a good
generalization ability.

A further problem that is addressed in our method is the
stability of the detected interest points. The points found
by the Harris corner detector are somewhat dependent on
the perceived scale and orientation of the considered object:
the same object will have different detected corners if its
image is acquired from a different distance or when it has a
different pose.

To mitigate this problem we have chosen to adopt the
SURF algorithm proposed by H. Bay et al. in 2006 [3].
SURF is inspired by the SIFT scale-invariant descriptor
[10], but replaces the Gaussian-based filters of SIFT with
filters that use the Haar wavelets, which are significantly
faster to compute. The interest points found by SURF are
much more independent of scale (and hence of distance
from camera) than the ones provided by Harris detector.
They are also independent of rotation, which is important
for the stability of the points located on the arms and on the
legs of the people in the scene.

As with the Albiol’s method, the output count is passed
through a low-pass filter to smooth out oscillations due to
image noise.

Thus, Figure 2 shows the architecture of the proposed

Moving SURF points detection

SURF points Clustering

Features Extraction

ε− SV R Regression

?

?

?

?

?

video frames

moving salient points

clusters of salient points

features vector per cluster

estimated number of
persons per cluster

Figure 2. System architecture.
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algorithm; an outline of the method is described by the fol-
lowing steps: Moving SURF points detection, SURF point
Clustering and Feature extraction and regression.

2.1. Moving SURF points detection

In order to detect interest points associated to people we
make two basic assumptions: persons within the scene are
not static and there are no other moving elements in the
scene. Thus, if we compute the interest points of the image
and the associated motion information, the above assump-
tions guarantee that only the interest points with a non null
motion vector must be associated to people.

As proposed in [2], the interest points associated to peo-
ple are extracted in two steps. First, we determine all the
interest points within the frame under analysis. Then, we
prune the points not associated to persons by taking into ac-
count their motion information.

Interest points are determined by using the SURF algo-
rithm [3] and not the Harris corner detector as in the paper
by Albiol et al. [2].

In order to remove the static interest points (that are not
associated to people), for each point detected by the SURF
algorithm we estimate the motion vector with respect to the
previous frame by using a block-matching technique. Then
we distinguish between static and moving interest points on
the basis of the following rule:

p(x, y) =
{

moving point if |~v(x, y)| > β
static point if |~v(x, y)| ≤ β (1)

where p(x, y) is the interest point at the x, y coordinates,
|~v(x, y)| is the magnitude of the motion vector calculated in
x, y with respect to the previous frame; β is a bias value (in
our experiments we set β = 0.0).

2.2. SURF point Clustering

In order to compensate for changes in the number of
points due to perspective and to partial occlusions, the al-
gorithm needs to partition the detected points into clusters
corresponding to separated groups of persons, so as to be
able to compute for each group its distance from the camera
and its density.

The faced clustering problem is characterized by the fact
that we do not have any a priori knowledge about the num-
ber and the shape of the clusters to be found. As observed
in [14], the clustering algorithms based on graph theory are
well suited to face clustering problems where no assump-
tions can be made about the clusters. In particular, we
adopted the technique presented in [7], since (differently
from other algorithms in the graph-based clustering family)
it requires no parameters to be tuned or adapted to the par-
ticular application.

This algorithm represents the set of points as a graph in
which each point corresponds to a node and each edge is
labeled with the distance between its endpoints. The min-
imum spanning tree (MST) of the graph is computed; this
tree will contain some edges that are between nodes in the
same cluster (intra-cluster edges) and other edges between
nodes of different clusters (inter-cluster edges). Assum-
ing that the clusters are well separated, it can be expected
that the intra-cluster edges are shorter than the inter-cluster
edges. So the algorithm uses a thresholding to divide the
edges in two sets (the ones below the threshold, say it λ,
and the ones above the threshold λ). The edges in the sec-
ond set are deleted, and the remaining connected compo-
nents are the clusters output by the algorithm.

The use of a fixed value for the threshold λ would be
problematic, since the threshold would need to be adjusted
depending on the resolution, the distance from the camera
and so on. Instead, we have used a threshold proportional
to the average edge length, computed as:

λ = γ · 1
N

N∑
i=1

xi (2)

where γ is the proportionality factor, N is the number of
edges of the spanning tree, while xi is the weight of the
i-th edge of the tree. We have experimentally found that
the choice γ = 2.0 works adequately for all the considered
scenes.

2.3. Feature extraction and regression

In this stage of the algorithm, a feature vector is com-
puted from each cluster detected in the previous step, and is
fed into a regressor. The output of the regressor is the es-
timated number of persons in the group represented by the
cluster.

The basic idea of the method in [2] is that the average
number of interest points associated to each person is a
global property of scene. Thus, once the scene has been
defined, it is possible to assume a simple direct proportion-
ality relation between the number of points and the number
of persons.

We reasonably assume that when the density of people
increase, the detected points get closer to each other. So we
can consider the density of the points as related to people
density, and we can indirectly take into account people den-
sity by establishing a relation between the average number
of points per person and the point density.

the relation between the number of interest points and
the number of people appears more complex than a direct
proportionality, as we have to take into account also the dis-
tance of the people from the camera and the point density.
We can formulate this relation as:

npeople = f(npoints, ρ, d) (3)
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where:

• npeople is the estimated number of people;

• npoints is the number of interest points within the clus-
ter;

• ρ is the average density of the points in the cluster:
the value is obtained as the ratio between the number
of points into the cluster and the area of the bounding
box. Note that the area of the bounding box is com-
puted with respect to real world coordinates. This al-
lows us to normalize the average density of the points
to the value it would have if the cluster were moved to
a predefined distance from the camera;

• d is the distance of the cluster from the camera: as-
suming that the bottom points of the bounding box lie
on the ground plane, the calculation is done by apply-
ing an Inverse Perspective Mapping and is referred to
the center of the bottom edge of the cluster’s bounding
box.

Since we do not know the analytical form of f , we have
chosen to learn this function from a set of labeled examples
by using an ε-SVR regressor. Once trained, the ε-SVR acts
as a function estimator; for each detected cluster it receives
as its input the above features and outputs the estimated
number of people within the cluster. So the total number
of persons in the frame (or in a predetermined region of
interest) is obtained by summing the number of people cal-
culated for each cluster.

Finally, in order to smooth out the oscillations in the
number of the counted persons among consecutive frames,
we employ a low-pass filter. Specifically, the final count
of the persons within the scene is calculated as the average
value of the people count on the last k frames of the video.

3. Experimental Results
The performance of the proposed method has been as-

sessed using the PETS2009 dataset [1]. The dataset is or-
ganized in four sections, but we focused our attention pri-
marily on the section named S1 that was used to benchmark
algorithms for the ”‘Person Count and Density Estimation”’
PETS2009 contest. The main characteristics of the subset
of video sequences of the PETS 2009 dataset used for as-
sessing the performance of the proposed method are sum-
marized in the Table 1 in terms of their length, number of
people in the scene (minimum, maximum and average num-
ber) and other elements as density of the crowd, illumina-
tion conditions, etc.

The videos reported in Table 1 refer to two different
views obtained by using two cameras that contemporane-
ously framed the same scene from different points (see Fig-

ure 3 for an example frame of each view). For our exper-
imentations, we used four videos of the view 1, which are
also the same videos that were used in the people counting
contest held in PETS2009. The videos in the second set re-
fer to the view 2 which is characterized by a wide field depth
that makes the counting problem more difficult to solve.

For all the sequences we calculated the number of people
in the whole frame.

In order to use the proposed system for people counting,
we had first to train the ε-SVR regressor. The minimum
size of the training set needed to achieve an acceptable per-
formance, as the statistical learning theory by Vapnik and
Chervonenkis has demonstrated, depends on both the com-
plexity of the problem and the complexity of the estimator
to be trained. The method by Albiol et al. uses a very sim-
ple estimator, so that a single frame per sequence is suffi-
cient for the training. Our estimator is more complex, so it
needs more training frames. The training set was built by
manually collecting some samples of people groups from
a subset of the test frames. For each selected box we cal-
culated the feature vector and the associated ground truth,
i.e. the true number of persons that are inside the box. Sam-
ples were carefully selected in order to guarantee that all the
possible combinations in terms of number of persons in the
group, points density and distance from the camera were ad-
equately represented in the training set. It is worth pointing
out that the required number of training frames has not to be
very large to achieve a good performance level (in our tests
we used about 30-40 training frames, which correspond to
about 5% of the frames within the whole dataset), by taking
into account also the fact that a single frame usually con-
tains several people clusters at different distances, so it may
cover several cases of the function to be learned.

Testing has been carried out by comparing the actual
number of people in the video sequences and the number
of people calculated by the algorithm. The indices used to
report the performance are the Mean Absolute Error (MAE)
and the Mean Relative Error (MRE) defined as:

MAE =
1
N
·

N∑
i=1

|G(i)− T (i)| (4)

MRE =
1
N
·

N∑
i=1

|G(i)− T (i)|
T (i)

(5)

where N is the number of frames of the test sequence and
G(i) and T (i) are the guessed and the true number of per-
sons in the i-th frame, respectively.

The MAE index is the same performance index used also
to compare the performance of the algorithms that partici-
pated to the PETS2009 contest. This index is very useful
to exactly quantify the error in the estimation of the number
of person which are in the focus of the camera, but it does
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Number of people
Video sequence View Length

(frames)
Conditions Min AVG Max

S1.L1.13-57 1 221 medium density crowd, overcast 5 22.61 34
S1.L1.13-59 1 241 medium density crowd, overcast 3 15.81 26
S1.L2.14-06 1 201 high density crowd, overcast 0 26.28 43
S1.L3.14-17 1 91 medium density crowd, bright sunshine and shadows 6 24.34 41
S1.L1.13-57 2 221 medium density crowd, overcast 8 34.19 46
S1.L2.14-06 2 201 high density crowd, overcast 3 37.10 46
S1.L2.14-31 2 131 high density crowd, overcast 10 35.19 43
S3.MF.12-43 2 108 very low density crowd, overcast 1 4.99 7

Table 1. Relevant characteristics of the four sequences of the PETS 2009 datasets used for assessing the performance of the proposed
method.

(a) (b)

Figure 3. Examples of the frames of the video sequences used for the test: a) S1.L1.13-57 (view 1), b) S1.L2.14-31 (view 2)

not relate this error to number of people; in fact, the same
absolute error can be considered negligible if the number of
persons in the scene is high while it becomes significant if
the number of person is of the same order of magnitude. For
this reason, we introduced also the MRE index which takes
into account the estimation error related to the true people
number.

The performance of the proposed method on the adopted
dataset is reported together with that of the Albiol’s method,
for which we have provided our own implementation. The
motivation behind the choice of comparing our technique
with respect to the Albiol’s method is twofold. First, it con-
stitutes the base from which we started for the definition
of our method; thus, the comparison allows us to quantify
the improvement provided by the proposed modifications.
Secondly, Albiol’s method has already been compared to
other algorithms based either on the direct or the indirect
approach, in the PETS 2009 contest on people counting, and
has consistently outperformed them. Since our test dataset
contains also the video sequences used for the PETS 2009
contest on people counting, we can reasonably expect that,

at least on that kind of scene, also our method should show
an improvement over those other algorithms.

It is worth noting that also the Albiol’s method requires a
training procedure for determining the optimal value of the
interest points per person ratio. This value was determined
by minimizing the MAE on the same set of frames already
used for training our method.

From the results reported in Table 2 it is evident that the
proposed method always outperforms Albiol’s technique
with respect to both MAE and MRE performance indices.

In order to have a deeper insight into the behavior of the
considered algorithms, Figure 4 shows the estimated num-
ber of people with respect to time for both our algorithm
and Albiol’s over two video sequences.

The different behavior of the considered algorithms can
be explained by considering that the Albiol’s method hy-
pothesizes a linear relation between the number of detected
interest points and the number of persons without taking
into account the perspective effects and the people density.
As a result this method provides better results when it is
tested on videos characterized by conditions that are simi-
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Video (view) Albiol Our Rel. impr. %
S1.L1.13-57 (1) 2.80 (12.6%) 1.92 (8.7%) 31.4% (31.0%)
S1.L1.13-59 (1) 3.86 (24.9%) 2.24 (17.3%) 42.0% (30.6%)
S1.L2.14-06 (1) 5.14 (26.1%) 4.66 (20.5%) 9.3% (21.4%)
S1.L3.14-17 (1) 2.64 (14.0%) 1.75 (9.2%) 33.6% (34.3%)
S1.L1.13-57 (2) 29.45 (106.0%) 11.76 (30.0%) 60.1% (70.7%)
S1.L2.14-06 (2) 32.24 (122.5%) 18.03 (43.0%) 44.1% (64.9%)
S1.L2.14-31 (2) 34.09 (99.7%) 5.64 (18.8%) 83.4% (81.1%)
S3.MF.12-43 (2) 12.34 (311.9%) 0.63 (18.8%) 94.9% (94.0%)

Table 2. Performance of the Albiol’s algorithm and of the proposed one. In each cell there are reported the values of the MAE and of the
MRE (in parenthesis) performance indices for both Albiol’s and our people counting method, while in the last column there are reported
the relative improvements.
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Figure 4. Curves of the number of people estimated by the Albiol’s and our algorithms in each frame together with the ground truth on the
video sequence S1.L1.13-59 view 1 (a) and S1.L1.13-57 view 2 (b). On the x-axis it is reported the frame number.
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lar to those present in the training videos. Conversely, the
proposed method is more robust with respect to the above
problems.

In particular, the Figure 4.a refers to the view 1 of the
video sequence S1.L1.13-59: this video is characterized by
a group of persons that gradually enters and crosses the
scene. In this view all the persons move in a direction that
is ortogonal to the optical axis of the camera, so that their
distance from the camera do not change significantly during
their permanence in the scene. Consequently the main con-
tribution to the performance improvement provided by our
method can be abscribed to the fact that it takes into account
the problem of the occlusions of the persons by means of
points density. In fact, from the figure it is possible to note
that the higher is the number of people, the higher is the
estimation error of the method of Albiol.

In Figure 4.b, that refers to the view 2 of the sequence
S1.L1.13-57, the persons move in a direction that is almost
parallel to the optical axis of the camera; thus in this case
the correction of the perspective effects plays a fundamen-
tal role in the performance improvements obtained by the
proposed method. In fact, in this case the method of Albiol
et al. tends to overestimate or underestimate the number of
persons when they are close to or far from the camera while
it provides a good estimate only when the persons are at an
average distance from the camera (this is evident by consid-
ering the Albiol and the ground truth curves in the figure).
On the contrary the proposed method is able to keep the
estimation error low along almost all the sequence. The ex-
ception is represented by the last part of the sequence where
the method tends to underestimate the number of the per-
son: however, this can be explained by considering that in
this part of the video the persons are very far from the cam-
era and most of their interest points are considered static.

4. Conclusions

In this paper, we have proposed a novel method for
counting moving people in a video-surveillance scene. The
method has been experimentally compared with the algo-
rithm by Albiol et al. that was the winner of the PETS 2009
contest on people counting, highlighting the effectiveness of
its enhancements. The experimentation on the PETS 2009
database has confirmed that the proposed method is in sev-
eral cases more accurate than Albiol’s but retains compa-
rable robustness and computational requirements that are
considered the greatest strengths of the latter. As a future
work, a more extensive experimentation will be performed,
adding other algorithms to the comparison and enlarging
the video database to provide a better characterization of
the advantages of the new algorithm.
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