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Abstract

In this paper, we present a new and fast technique
for background estimation from cluttered image sequences.
Most of the background initialization approaches developed
so far collect a number of initial frames and then require
a slow estimation step which introduces a delay whenever
it is applied. Conversely, the proposed technique redis-
tributes the computational load among all the frames by
means of a patch by patch preprocessing, which makes
the overall algorithm more suitable for real-time applica-
tions. For each patch location a prototype set is created and
maintained. The background is then iteratively estimated
by choosing from each set the most appropriate candidate
patch, which should verify a sort of frequency coherence
with its neighbors. To this aim, the Hadamard transform
has been adopted which requires less computation time than
the commonly used DCT. Finally, a refinement step exploits
spatial continuity constraints along the patch borders to
prevent erroneous patch selections. The approach has been
compared with the state of the art on videos from available
datasets (ViISOR and CAVIAR), showing a speed up of about
10 times and an improved accuracy.

1. Introduction

Segmentation of foreground objects using motion infor-
mation is a core aspect in many computer vision systems
and in particular in automated visual surveillance. Com-
monly, a foreground/background pixel-wise classification
algorithm is adopted for each frame, relying on a back-
ground model which should be kept updated correctly. A
wide variety of algorithms for background modeling and
updating have been proposed [11, 13]; among the others,
Mixtures of Gaussian [17] or statistical models [4] have
been widely adopted. However, background initialization is
still a challenging problem, in particular when all the frames
contain moving objects and the empty background is never
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seen as a whole. Background initialization should also be
very effective in cluttered video with many moving objects
and fast enough to be used in real time.

Often the problem of background initialization is ne-
glected and it is directly merged into the estimation and
update steps: starting from an unreliable model, errors are
identified and corrected by analyzing the extracted fore-
ground objects. For example, in [4] a rough classification
of the foreground objects is provided with a motion-based
validation step and the “ghosts” (i.e., regions of apparent
motion, but classified as foreground object due to a dirty
background) are used to update the background. Object
size, edges, optical flow or other features can be exploited to
post process the detected foreground regions and to discard
the erroneously detected objects [6, 10].

Broadly speaking, we can distinguish between three
classes of background modeling algorithms, depending on
the spatial level used. All the above described methods
work at a region level, and usually are characterized by a
high computational cost. Conversely, several methods try
to solve the background initialization problem working at
a pixel level, mainly exploiting the pixel intensity temporal
constancy [8]. Even if these methods are very fast, they do
not exploit spatial relations. To mitigate the problem, statis-
tical models for each pixel [17, 18] or multiple background
images have been proposed [1]. Finally, intermediate solu-
tions work at a block (or patch) level [3, 14, 15].

Independently from the spatial level adopted, we can dis-
tinguish between recursive and non-recursive techniques.
Recursive approaches maintain a single background model
that is updated with each new video frame. These tech-
niques are generally computationally efficient and have
minimal memory requirements. Non-recursive techniques,
instead, maintain a buffer of previous video frames and es-
timate a background model based solely on the statistical
properties of these frames. This causes non-recursive tech-
niques to have higher memory requirements than recursive
techniques. However, since they have explicit access to the
most recent video frames they can model aspects of the data
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which can’t be analyzed with recursive techniques.

In [3], for example, when enough frames have been col-
lected, static blocks are selected as reference and directly
included into the background; then the model is completed
by iteratively adding blocks which satisfy spatial consis-
tency and homogeneity constraints. Recently Reddy et al.
in [14] applied a similar approach, using the DCT coeffi-
cients as a core feature to check the homogeneity constraint.
These methods are general and perform very well on differ-
ent types of videos. However, they are computationally too
expensive to be correctly applied in real time. For exam-
ple, the method by Reddy et al. contains an iterative block
selection which prevents parallel solutions and introduces a
long delay when it is executed.

In this work we propose a new fast background initial-
ization method, working at block level in a non-recursive
way, specially conceived for achieving the best background
model using the minimum number of frames as possible.
Similarly to [14] we split each frame into blocks, produc-
ing a history of blocks and searching among them for the
most reliable ones. In this last phase, the method works at a
super-block level evaluating and comparing the frequency
content of each block component. Differently from [14]
which makes use of the DCT coefficients, we propose the
use of the Hadamard Transform [7] which is faster and par-
ticularly suitable for this type of application. In the next sec-
tion we present a brief description of the Hadamard trans-
form and it’s properties. In section 3 we describe the pro-
posed algorithm in detail, and results from real-life surveil-
lance videos are reported in section 4.

2. The Hadamard Transform

The Hadamard transform [7, 9] belongs to the gener-
alized class of Fourier transforms and it is based on the
homonym matrix. The Hadamard matrix is a square array
whose elements can be =1 only and its rows (and columns)
are mutually orthogonal. Its recursive definition is one
of the more interesting properties for our purposes. The
lowest-order Hadamard matrix H; has size 1x1 and it is
defined as H; = [1]. The Hadamard matrices having or-
der N = 27", with n integer, can be recursively defined.
In particular, given the Hadamard matrix of order N, the
Hadamard matrix of order 2V is defined as:

(1

Fig. 1 contains some example of Hadamard matrices of
various orders.

A frequency interpretation of the Hadamard matrix can
be given [12]. Along each row of the matrix, the frequency
is related to the number of changes in sign. This frequency
interpretation of the rows of a Hadamard matrix allows us
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Figure 1: Hadamard matrices of order N = 2"

to consider the rows to be equivalent to rectangular waves
ranging between +1 with a sub-period of 1/N units. Thus,
in this context the Hadamard matrix merely performs the
decomposition of a function by a set of rectangular wave-
forms rather than the cosine waveforms associated with the
DCT.

The aforementioned structure of the Hadamard matrix
shows a key feature that proves extremely useful: let f(x, y)
be an image (or a patch extracted from it) of 2N x2N pix-
els. Its Hadamard transform, F(u, v), is given by the matrix
product

F=M f M )

where M is the Hadamard matrix of order 2NV.

Another way to compute F(u,v) is by means of the
Hadamard transform of constitutive blocks. Let us de-
compose the image f(z,y) into four N xN blocks, called
A, B, C, D respectively. The product of Eq. 2 can be ac-
cordingly decomposed as reported in Eq. 3:
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where H is the Hadamard matrix of order IN. This leads
to:
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f,; = HAH + HBH — HCH — HDH
f,, = HAH — HBH — HCH + HDH.



The elements HAH.HBH ,HCH and HDH in Eq.
5 are the Hadamard transforms of the blocks A, B, C, D.
Therefore, it’s possible to compute the Hadamard transform
of order 2N from the four Hadamard transforms of order
N, something that it’s not possible in the case of the dis-
crete cosine transform.

In addition to the recursive formulation, evaluating the
Hadamard transform is faster than estimating the DCT. For
example, let us consider a 8x8 block: one of the fastest DCT
algorithms requires 94 multiplication and 454 additions [5],
while the Hadamard transform only requires 384 integer ad-
ditions for the same block (see [12] for details on the fast
Hadamard computation algorithm).

Furthermore, a single 32x32 DCT (the usual size for
the super-block in our algorithm) would require on average
18.560 real-arithmetic operation (multiplications and addi-
tions) [16]. By using the Hadamard transform that number
is reduced to 10240 integer additions; finally by exploit-
ing the Hadamard matrix structure by computing the 16x16
Hadamard transforms as soon as a frame is available, the
number of operations required for the 32x32 transform is
reduced to 3072 integer additions.

3. Recursive Hadamard Transform Back-
ground Initialization

Commonly to the other methods which estimate the
background after collecting a statistically sufficient number
of frames, the proposed technique analyze only the first T'
frames I;,t € 1...T of a video sequence. We suppose
that the number 7" of analyzed frames is set high enough to
guarantee that each part of the background is visible in one
frame at least.

Similarly to [14], each frame I; is partitioned into dis-
joint square blocks of 16x16 pixels. Let by’ be the block
extracted from I; at the position (¢, 7). From the above-
mentioned assumptions, we can reasonably assert that the
final background image should be obtained by the compo-
sition of opportunely selected blocks.

To this aim, a three step algorithm is proposed. In the
first step, each block location is independently analyzed
and a set of representative blocks is constructed for each of
them. The blocks belonging to the sets which contain one
element only are automatically selected and fixed as back-
ground. In other words, if a block is stable for all the first
T frames, it is certainly a background block. Then, the sec-
ond step aims at selecting the remaining blocks following a
growing schema at a super-block level. New blocks are iter-
atively added to the background if they are similar enough
to three neighbors which have been already included in the
background.

The super-block should be constructed using the two 4-
connected neighbors and the diagonal block between them.
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Table 1: 8-connected neighbors of block X

In table 1, for example, block X can be estimated thanks to
blocks A,B and C, or blocks C,D, E, and so on.

The block similarity is estimated evaluating the fre-
quency coherence inside a super-block with the Recursive
Hadamard Transform. Finally, all candidate blocks are
checked again using a new refinement step to assure spatial
continuity of the background image along the block borders.
These three steps are described in the following subsections.

3.1. Block candidate sets

For each location (i,j), a representative set R/ =
{ri’j } of unique blocks should be extracted. Each element

ré"j is coupled with a weight WZJ that denotes the number

of occurrences in the image sequence. The blocks of the
first frame are automatically inserted in their corresponding
sets, with an initial weight set to 1. Then, for each frame
I>.. 7 and for each location, the corresponding block is com-
pared with all the elements of the set, looking for the most
similar item. If the new block b;” is unique (i.e., it is dif-
ferent enough from all the other representatives) it is added
to the set with weight 1; otherwise, it is used to update the
most similar block in the set through a weighted mean and
the corresponding weight is incremented by 1.

As proposed in [14], the similarity between two blocks
b; and ry, is checked by means of the cross-correlation (I")
and the MAD (®) coefficients, respectively computed as:

S5 rleny) — pn] - s y) — o]

rz=1y=1

D(ry, be) = (6)

Or,Ob,

1NN
= 53 2 2 Ire ) =@yl @

x=1y=1

(I)(T/m bt)

where 11 and o are the intra-block mean and standard devia-
tion respectively. The two blocks b, and rj, are considered
similar if

D(rg,be) >a A D(rg,b) < )

where o and ( are empirically selected; 3 can also be au-
tomatically estimated using the following approach (as de-
scribed in [14]). Using a short training video, the MAD co-
efficients between co-located blocks of successive frames



are calculated. These values are sorted and only the central
half of them are kept. Calling i and o their mean and stan-
dard deviation respectively, 3 can be set equal to p + 2 - 0.
This ensure that low MAD values (close or equal to zero)
and high MAD values (arising due to object movements)
are treated as outliers and thus ignored.

3.2. Frequency-based block selection

At time 7', when all the frames have been analyzed, the
background image BG can be effectively generated from
the R%J sets. The background is firstly initialized using
stable and unchanged blocks, which are characterized by
W7 = T. These blocks are also quickly identified from
the sets with one element only. Instead, for those sets with
more than one member, the background block is chosen
by analyzing every representative block 7’ and compar-
ing them with their chosen neighborhoods in the frequency
domain.

The background block at the location (i, 7) can be esti-
mated if it is the only missing item in a 2x2 super-block. See
fig. 2 for an example: we have to analyze the X block, given
that the A, B, C blocks have been already estimated. A set
of super-blocks can be constructed based on the elements
of R% and the known adjacent background blocks. The
first super-block (called, base super-block) is constructed
by forcing block X elements to zero, and filling blocks A,
B, C with the known data. It’s 2/N-Hadamard transform
is computed from the N-Hadamard transforms of blocks
A,B and C (the Hadamard transform of a null block is a
null matrix), resulting in a matrix C of size M x M, with
(M = 2N). Then, for each block in the representative
set of X, a super-block is constructed by forcing A, B, C
to zero and filling X with the block data. It’s Hadamard
transform is easily constructed, being the Hadamard trans-
forms of blocks A, B and C' a null matrices. This means that
constructing the Hadamard transform of this super-block re-
quires no arithmetic operations at all. The result is stored in
a M x M matrix Dg. A cost function is then defined as:

M—1M-1

cost(k) = (Z Z |C(u, v) +Dk(u,v)|> A 9)
v=0 u=0

where A\, = e %, with 6 € [0,1] and w, =

W/ Ele ‘W .. The representative block which yields the
minimum value of the cost function is assumed to be the
best candidate as background block.

3.3. Spatial continuity check and selection refine-
ment

After all the previous steps, the chosen blocks are ana-
lyzed again to prevent some errors (as can be seen in Fig.
3a). Actually, the frequency domain constraints embedded
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Figure 2: A super-block of block X

(b) Corrected estimated background

Figure 3: Estimated background before and after block se-
lection correction

in Eq. 9 are not enough to assure image continuity along
each block border. In fact, block’s candidates can have a
very similar frequency content, but a different aspect, in
particular this happens inside flat background parts.

The average gradient along each border is computed,
and if the average gradient of two or more sides is greater
than a given threshold ~, the selected block is discarded
and a new background block is selected among the remain-
ing unique representative blocks of the corresponding set,
using the same algorithm described in section 3.2. The
threshold value v has been empirically set using part of the
CAVIAR dataset [2] (which yields the most errors in our
experiments). Given the sets of correctly and erroneously



selected blocks, v is the mean value of the corresponding
intra-set average gradients.

This final refinement allows to further improve the esti-
mation accuracy.

4. Experimental results

We carried out our experiments on a total of 144 surveil-
lance videos as reported in Table 2. The starting frame of
each sequence was chosen accordingly to avoid trivial con-
ditions like uncluttered scenes and background-only frames.
Few videos were also resized to 384 x 288 from their orig-
inal dimensions to obtain comparable results.

RHT was compared with the DCT-based algorithm pre-
sented in [14] and a trivial median filter approach. The three
methods have been implemented in C++, partially using
the OpenCYV libraries and the Imagelab processing libraries,
and we carried on tests on a 1.6 GHz dual core processor.

Parameters were set as follows: block size was set to
16x16 pixels, o was empirically set to 0.8 as well as ¢
set to 0.5, 3 was automatically set to 10 for the CAVIAR
dataset, and 4 for the ViSOR dataset, v was set to 60.

The DCT algorithm was able to elaborate images at 33
fps, but the actual background computation was done at the
end of the process in 1506 ms (on average). This time is not
compliant with a real time processing and the delay intro-
duced after the frame T is considerable. The median back-
ground has the same drawback, with an even greater delay
due to the sorting algorithm which should be performed on
all the frames. Using the proposed approach, instead, the
computational load is more balanced, images are processed
at 27 fps, while the actual background computation at the
end takes on average 97ms only. Table 3 shows timing re-
sults for the three algorithms.

To evaluate objectively the resulted background images
we used a methodology similar to the one presented in [6],
but extended to color images. In order to compare the re-
sults from the three algorithms the average error (AE) and
the number of clustered error pixels (CEP) are used. AE is
the average of the distances between the pixels of the esti-
mated and true background, while CEP is the number of er-
ror pixels that are 4-connected to other error pixels. A pixel
of the estimated background is considered an error pixel if
the distance from the same pixel of the true background is
greater than 20. Table 4 shows the averaged results for the
CAVIAR dataset [2], while table 5 shows results for the Vi-
SOR dataset [19].

Fig. 4 shows example results from four video sequences,
the first two from the ViSOR dataset and the last two from
the CAVIAR dataset.
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Table 3: Timing results

Frame Background
Update (ms) | Estimation (ms)
Median 46 3133
DCT-based Method [14] 29 1506
RHT 36 97

Table 4: Averaged results using CAVIAR dataset

Average | Clustered
error error pixels
Median 16.00 5451
DCT-based Method [14] 14.12 3822
RHT 12.55 2334

Table 5: Averaged results using ViSOR dataset

Average | Clustered
error error pixels
Median 11.080 1929
DCT-based Method [14] 13.55 1807
RHT 12.62 968

5. Conclusions

We proposed a new background estimation algorithm
which can be effectively used for the initialization step.
Frames are processed in a block wise manner and for each
block the best candidate among the ones coming from all
the analyzed frames is selected. To this aim, we firstly
fix non variable blocks as background; than, the holes
left by moving objects are filled in selecting those blocks
whose frequency spectrum is coherent with the already
fixed neighbors.

Differently from similar approaches which make use of
DCT coefficients to check the block similarity, we adopt
the Hadamard transform, which is as effective as the Dis-
crete Cosine Transform, but its computational load is lower
and, above all, can be split in frame by frame pre-processing
tasks. In such a manner, the final step of block selection
does not introduce any particular delay and the frames can
be processed in real time. Finally, the spatial coherence
along the block borders is also checked and leads to block
rejection if it is not verified.

The method has been tested on different surveillance
videos, coming from some of the most popular dataset (e.g,.
ViSOR [19] and CAVIAR [2]). Moreover, it was added in
our surveillance framework both for background initializa-
tion at the start phase and for background reset whenever
required thanks to its real time performances.



Table 2: Datasets Summary

Dataset Subset Num. of Description Frames Size Parameters
Videos (Start - End)

CAVIAR set 1 28 large indoor 100 (300-400) | 384*288 | « =0.8, = 0.5
room 8 =10,7v=60

CAVIAR set 2cor 26 indoor corridor 100 (0-100) 384%288 | @ =0.8,0 =0.5
side view 6 =10,v=60

CAVIAR set 2front 26 indoor corridor 100 (0-100) 384%288 | @« =0.8,0 =0.5
front view 6=10,7v=60

ViSOR Outdoor Unimore D.I.I. 28 outdoor 100 (100-200) | 384#*288 | o = 0.8, = 0.5
setup - Multicamera large space B=4,v=60

ViSOR Indoor Domotic 16 indoor 100 (100-200) | 384*288 | « =0.8,6 =0.5
Unimore D.LI setup small room 8=4,v=060

ViSOR Video for indoor people 6 indoor 100 (100-200) | 384*288 | a =10.8,6 =0.5
tracking with occlusions small room 8=4,v=60

ViSOR Outdoor Unimore D.LI. setup 14 outdoor 100 (200-300) | 384#288 | a = 0.8, = 0.5
- Multicamera - disjoint views large space B =4,v=60

Figure 4: Examples from two VISOR and two CAVIAR videos: (A,B) two random frames, (C) Estimated background using
the median filter, (D) using the DCT based method of Reddy er al. ( [14] ), (E) Our proposed enhanced method
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