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Abstract

Calibrated cameras are an extremely useful resource for
computer vision scenarios. Typically, cameras are cali-
brated through calibration targets, measurements of the ob-
served scene, or self-calibrated through features matched
between cameras with overlapping fields of view. This pa-
per considers an approach to camera calibration based on
observations of a pedestrian and compares the resulting
calibration to a commonly used approach requiring that
measurements be made of the scene.

1. Introduction

Camera calibration is a useful task for many computer
vision applications, permitting real-world measurements of
the scene to be made, and more importantly, providing a
robust relationship between the multiple cameras that may
exist and the scene being observed. There are two parts to
any calibration process. The first is to determine the in-
trinsic parameters of the camera. These parameters control
the model of the imaging process, or how a point in space
defined relative to the camera projects to the image. The
second part of the calibration process is to determine the
extrinsic parameters of the camera, or the pose. These pa-
rameters detail the location and orientation of the camera in
space relative to the rest of the environment.

Generally, cameras can be represented by the pinhole
model as described in many textbooks [8], often augmented
by various distortion parameters to account for any warp-
ing introduced by the camera lens. The intrinsic param-
eters of this model are often estimated using one of sev-
eral available toolkits and a calibration target [2]. Often
these approaches will require access to the camera (being
able to get close enough that the calibration target is large
enough in the resulting image), and become impractical in
many surveillance situations when the cameras are already

installed. They also focus more on providing the intrinsic
calibration of the camera, requiring further efforts to deter-
mine the extrinsic parameters.

Surveillance cameras can be robustly calibrated both in-
trinsically and extrinsically using the Tsai method [16], but
this requires, at the very least, measuring the position of sig-
nificant features of the scene visible to the camera(s), and
may require augmenting the scene with suitable features as
well. This takes time and effort, which may need to be re-
peated should the camera be moved due to environmental
effects or maintenance. It may also be less than simple to
make measurements of points in the environment, particu-
larly when the ground is non-planar.

Cameras can also be self-calibrated [10] when one or
more viewpoints is available. In this case, features of the
scene are matched between views, and this leads through
a chain of processing to the calibration of the camera(s).
Such a method is quite reliable for single cameras that move
through the scene, but the automatic matching of features in
wide baselines is difficult even with robust features such as
SIFT [13]. A further complication is that a key stage of
the approach is the estimation of the Fundamental Matrix
which requires that corresponding points in images must lie
on more than one scene plane. Surveillance scenes can of-
ten be relatively large, flat, open spaces best described by a
single plane, meaning the scene may need to be augmented
by the presence of objects of interest before suitable match-
ing features can be acquired.

As such, there has been much interest in calibrating
cameras from information gleaned from tracked pedestri-
ans (a typical object to be added to a surveillance scene),
where [3, 11, 14] are typical examples. This paper will dis-
cuss how a useful calibration can be determined from an
observed pedestrian for a scene with multiple cameras and
overlapping fields of view. The process can be summarised
as 1) gather useful information from observing the pedes-
trian, 2) determine the intrinsic parameters of each camera,
3) determine the relative extrinsic parameters for each pair
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of cameras, 4) combine the cameras into a single camera
network and optimise the calibration parameters through a
bundle adjustment.

2. The Pedestrian
The pedestrian is, potentially, a very useful tool for cali-

brating cameras. Firstly, they are a very flexible and easily
obtained calibration target. Secondly, they are generally of
good scale in any surveillance type scenario. Finally, they
more or less represent a vertical line in space, and it is this
vertical line that first drew attention as being useful for cal-
ibration.

The desired information from the pedestrian is the po-
sition in each image of the top of their head and the point
on the ground directly beneath. When a person is standing,
the point on the ground directly beneath their head will be
where their feet touch the ground. When walking, the point
on the ground becomes much more ambiguous and the per-
son typically tends to lean forwards.

One simple method for determining the desired head and
foot positions is to use a standard background subtraction
method, fitting an ellipse to the blob from the required per-
son, and determining where the major axis of this ellipse
intersects the smallest bounding box that encompasses the
whole of the pedestrian. Fully automating this process be-
comes difficult when the scene can not be emptied of all but
the target person (it is not simple to automatically determine
which person should be observed across numerous images
with no calibration to relate the cameras), however, even
in scenes that are extremely busy it is trivial, if tedious, to
manually acquire a suitable set of points. Figure 1 shows an
example of a set of points extracted for the PETS2009 [6]
dataset. Producing this set of points for four cameras took
less than half an hour, whereas it is reported to have taken
several hours to make the measurements for the Tsai cali-
bration supplied in the dataset.

3. Intrinsic Calibration
There exists significant published work on the intrinsic

calibration of cameras. With respect to observations of a
pedestrian, the significant approach is typically to make use
of vanishing points and vanishing lines [3, 11, 14]. Firstly,
the person is assumed to be a vertical line, and secondly, it
is assumed that the person is walking on a flat ground plane,
the normal of which is parallel to the person’s vertical line.

If the intrinsic parameters of the camera are restricted
to the focal length and principal point, making the reason-
able and common assumption that the camera’s pixel sen-
sors are square and introduce no skew, then it is known that
they can be estimated from three vanishing points, where
each vanishing point is in an orthogonal direction to each
other [8, 9, 14]. If there are two orthogonal lines on the

Figure 1. Extracted head and foot points for a pedestrian in the
PETS2009 dataset.

ground plane which can be extended to infinity and inter-
sected with the horizon visible in the image, then that pro-
vides two of the vanishing points. The third comes from
observations of the person. Alternatively, if the principal
point is assumed to be the centre of the image then the focal
length can be determined from a vanishing point and a van-
ishing line [11], while with two views, the vanishing line -
vanishing point combination can provide focal length and
principal point [3].

Both the vanishing line and vanishing point are, in the-
ory, easily computed from the pedestrian, as shown in Fig-
ure 2.

The vanishing line can be robustly calculated. Any two
positions for the person produces two (head point, foot
point) pairs (h1, f1), (h2, f2). A line lh defined by the two
head points, and a line lf defined by the two foot points will
intersect, and if the person walks on a flat ground plane,
this intersection point will lie on the vanishing line for the
ground plane. Given that the pedestrian can be observed in
many locations, a large number of vanishing points can be
found. A line fit to these vanishing points is a robust esti-
mate of the vanishing line of the ground plane.

The process for estimating a vertical vanishing point for
lines orthogonal to the ground plane is in concept similarly
simple. At any point on the ground plane, the line through
the person’s head and foot extends to infinity. Given suf-
ficient observations of the person the lines should intersect
at the appropriate vanishing point. This process however is
extremely sensitive.

To begin with, a person is never really vertical (the ex-
tracted head and foot points visible in Figures 1 and 3 will
testify to this), and to further complicate matters, the van-
ishing point can very often be a very long distance from the
image centre. Indeed, if the camera is low enough, all the
head/foot lines could be vertical in the image, and the van-
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Figure 2. Short lines indicate lines between synthetically generated
head and foot positions. Cyan lines crossing the image in pairs on
diagonals are lines between two pairs of person positions. One
line of each pair connects the heads, one the feet. The intersection
of the head-head foot-foot lines gives a vanishing point. The two
vanishing points define the horizontal red vanishing line. Long,
near vertical yellow lines are an extention of the head-foot lines of
two positions. These intersect at a vertical vanishing point.

shing point approaches infinity. This means that any slight
inaccuracy in the position of a head or foot point by even as
much as half a pixel can lead to large offsets in the estimate
of the vanishing point. While [11] seeks to improve this ac-
curacy through more robust tracking of the pedestrian, one
still has to consider how lens distortions which have yet to
be considered would affect the result. Thus it is perhaps
simpler and more reliable to use an alternative approach.

If an assumption is made about the principal point of
two cameras, then a simple equation can lead to the focal
lengths when a Fundamental Matrix is known between the
cameras [1]. This too however can be problematic [8] and
can produce unusable values in practice.

As such, this paper proposes, for the sake of practicality,

that the intrinsic parameters of the cameras be completely
set to some assumed value unless they can be internally cal-
ibrated off line prior to installation in the scene. Experience
then suggests that a useful calibration can be achieved by
relying on the bundle adjustment to determine an internal
calibration. The further advantage to this is that one is no
longer constrained to require the pedestrian to move only
on a single plane, and the head and ground point need no
longer actually be vertically aligned – they just have to be
correctly corresponding between views.

4. Relative Extrinsic Calibration
The extrinsic parameters relating two cameras can be de-

termined through use of the epipolar geometry. Estimat-
ing the Fundamental Matrix between two views depends on
knowing a set of point correspondences between the views.
These can be supplied by the observations of the pedestrian,
with each observation supplying two corresponding points
between the views - the head point and the foot point. In
conjunction with a Robust RANSAC process [7], the 8-
Point algorithm [8] can be used to reliably determine the
Fundamental Matrix F for the two cameras.

Ultimately, what is desired is the translation t and rota-
tion R that will take the first camera to the position of the
second camera. These are not directly available from the
Fundamental Matrix, but if the intrinsic parameters for each
camera are known then F can be decomposed to the Essen-
tial Matrix E, and E can be further decomposed to R and
t.

4.1. Decomposing the Fundamental Matrix

Firstly, define the camera matrices K1 and K2 for the
two cameras

K1 =

 f1 0 px1
0 f1 py1
0 0 1

 (1)

K2 =

 f2 0 px2
0 f2 py2
0 0 2

 (2)

where f1 and f2 are the focal lengths of each camera,
and (px1, py1) and (px2, py2) are the principal points of the
two cameras. The Essential Matrix can then be computed
from the Fundamental Matrix F as:

E = KT
2 FK1 (3)

4.2. Decomposing the Essential Matrix

Hartley [8] details the decomposition of the Essential
Matrix using the singular value decomposition,
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E = U

 d 0 0
0 d 0
0 0 0

V T (4)

The translation can be recovered as t = ±v3, where v3

is the final column of V . Note the unknown sign of t.
The rotation is a 3× 3 matrix R, which can be either:

R1 = UWV T (5)

or,

R2 = UWTV T (6)

where,

W =

 0 −1 0
1 0 0
0 0 0

 (7)

It is not often noted in the literature that this decomposi-
tion of E can lead to improper rotations (a rotation matrix
with negative determinant). Such a decomposition is in-
herently wrong. Should either of the possible rotations be
improper, a correct solution can be obtained be negating the
matrix E and repeating the decomposition.

This results in four possible solutions for the pose of the
second camera: (+t, R1), (+t, R2), (−t, R1), (−t, R2).
Only one of these solutions will cause all of the available
point correspondences to project to a position in front of
both cameras. While only one correspondence should be
enough to determine the correct solution, the failure to re-
project all points in any solution can form a good indicator
that the decomposition has failed to produce a good solu-
tion. A total failure in this way generally indicates that the
intrinsic parameters, which up to this point have only been
guessed at, were incorrect. If the decomposition does not
fail, there is still a question of just how accurate the result-
ing translation and rotation can be given the assumed inter-
nal parameters. Experience suggests that if the recovered
translation is generally in the correct direction, the remain-
der of the calibration process will be successful. Typically,
this will be the case when the decomposition is successful
and all the points can be reconstructed in front of both cam-
eras.

5. Extrinsic Calibration
At this stage, there exists a set of pairs of cameras for

which R and t were successfully estimated. A further as-
sumption has been made that the distance between the cam-
eras of each pair is one unit. Though ultimately this will not
be true for all the camera pairs, at this stage, this is not es-
timated, and the remaining stages will correct the distances
between cameras.

Take one camera as the reference camera, and set its po-
sition to be the origin cr = [0, 0, 0]T and to have rotation
the identity matrix Rr = I . This could be the camera
with the largest number of successfully paired cameras, or
the one with the consistently smallest error when estimat-
ing the Fundamental Matrix. This forms the first positioned
camera. Cameras can be iteratively added to the positioned
set if they are part of a pair with one other camera already
positioned. If cp and Rp is the position and orientation of
the camera already in the positioned set, and t and R the
relative translation and orientation of the new camera from
the positioned camera, then the new camera’s position can
be set as cn = cp +Rpt and orientation as Rn = RpR.

With each of the camera poses initialised the aim is now
to optimise this network of cameras such that the camera
calibrations and image point data are consistent and accu-
rate. To achieve this, a bundle adjustment [15] is used.
However, just throwing all the cameras and all the avail-
able points at the optimisation in one go will generally lead
to failure. A superior approach is to increase the complexity
of the optimisation in stages.

Firstly, select the reference camera and one other cam-
era. These two cameras will share a certain portion of the
head/foot points, and the initial pose estimate of the two
cameras can be used to reconstruct these head/foot points in
3D. A first run of bundle adjustment can now be performed
to optimise the parameters of the first two cameras as well as
the 3D points. Once these cameras have been optimised one
can add a third camera, then new points observable from the
third camera, then a fourth camera and so on until finally all
the cameras have been added. Most success has been had
when, out of all the available intrinsic parameters only the
focal length is permitted to change in the initial optimisa-
tions. Only once all of the cameras have been added are the
principal point and distortion parameters added to the opti-
misation. A variety of bundle adjustment implementations
are available for use, the most widely known being [12],
though results for this paper were generated using [17].

5.1. Setting the Scale

The reconstructed 3D points for the pedestrian provide
a mechanism to determine the as yet unknown scale in the
calibration. The distance between the head and foot point
for any one position of the person should be approximately
the actual height of the person. If the person is available,
then their height can be measured, if not, a reasonable esti-
mate of the average height of a person could be used instead,
albeit with the caveat that any measurements made using
the calibration will be innaccurate if the observed pedes-
trian was abnormally tall or short. The distance between
cameras should be scaled such that the average distance be-
tween head/foot pairs equals the chosen height.

Assuming that reasonable care is taken in creating the
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head/foot positions for each image (making sure that cor-
responding image points are actually images of the same
scene point, and that the cameras were reasonably well syn-
chronised) this approximation of the scale factor for the
scene is the largest source of error, at least in terms of mak-
ing accurate length measurements of the scene. In many
surveillance scenarios, making an accurate measurement of
a length is of less importance than correctly relating data
between viewpoints and fusing that data; knowing that a
distance is approximately one metre is typically just as use-
ful as knowing that it is precisely one metre. As such, it
can be said that this pedestrian based approach is useful and
practical in that it fulfills the need to reliably relate data be-
tween the cameras. If more precise measurement is needed,
one could make a few precise measurements of the scene
for the sole purpose of setting the scale.

5.2. Transforming to Preferred Coordinate System

Generally speaking, it is not desirable to describe the
environment in terms of the camera’s coordinate system.
Rather, the cameras should be described relative to some
scene origin. Often the observed scene is approximated by
a plane, and it is desirable to have the scene origin on that
ground plane. If the ground is assumed to be planar, then
each foot point reconstructed during the bundle-adjustment
process should form a plane in space. The aim is to trans-
form this plane to be the ground plane z = 0, in the pro-
cesses transforming the whole camera system to be relative
to the scene origin defined on this plane.

Assuming the scene origin is visible in the view of one
of the cameras, transforming the camera network from be-
ing relative to the initial position of the reference camera
to being aligned with the scene coordinate system is fairly
simple. Let ô be the image of the scene origin as seen by
camera c. To ensure the proper orientation of the final cam-
era network an image of a point on the scene y or x axis also
needs to be known. Let ŷ be the image of a point known to
lie on the scene y axis (that is some point [0, y, 0]T in space,
for any scalar value y ).

The first step is to estimate the ground plane in the ini-
tial camera coordinate system. This is done by simple least
squares fitting to the reconstructed foot points. The cali-
bration of camera c can then be used to back-project the
image of the scene origin ô to the foot plane, providing the
location o of the scene origin relative to the initial camera
coordinate system.

The second step is to translate the camera system such
that o becomes the point [0, 0, 0]T , which is done by apply-
ing the translation t = −o to each camera.

Next, the aim is to ensure that the foot plane becomes the
plane z = 0, which means finding a rotation that will trans-
form the foot plane normal n = [a, b, c] to be [0, 0, 1]T .
If ||n|| == 1.0, then the angle of the rotation can be

determined from the dot product cos(θ) = n · [0, 0, 1]T ,
while the axis of the rotation is given by the cross product
α = n × [0, 0, 1]T . Standard methods exist to convert this
angle-axis representation into a standard rotation matrix R.
If c is the position of a camera in space, then the position of
the camera should be updated to c← Rc. Similarly, the ori-
entation of the cameraRc should be updated toRc ← RRc.
Once transformed, all cameras will have a pose such that the
foot plane is the plane z = 0.

Finally, one needs to ensure that the orientation of the
camera system matches that of the desired scene coordinate
system. This involves ensuring that the normalised direc-
tion from the origin to any point on the y-axis is the di-
rection [0, 1, 0]T . To determine this, back project the image
point ŷ to the foot plane, to determine a point y. If all previ-
ous rotations and translations were correct, then y should be
some point [x, y, 0]T . Let d = y − o, then let dn = |d| be
the normalised direction. Again, the required angle of the
rotation comes from the dot product cos(θ) = d · [0, 1, 0]T ,
while the axis of the rotation comes from the cross product
α = d× [0, 1, 0]T . Applying this rotation to the camera po-
sitions and orientations should now ensure that the camera
system is aligned with the desired scene coordinate system.

6. Evaluation
The practicality of this approach is only valid if the re-

sulting calibration is reliable enough for use. As such, the
approach can be compared to results from a Tsai calibration
of the same scene. Suitable scenarios are provided by the
PETS 2006 [4], 2007 [5] and 2009 [6] data sets, as well as
an airport data set recorded at Toulouse. Useful calibrations
have also been achieved in similar situations where no other
calibration was available for comparison. In each case, the
intrinsic parameters for the cameras were initialised as:

K =

 500 0 w/2
0 500 h/2
0 0 1

 (8)

where w is the width of the image in question, and h the
height.

6.1. Airport Data Set

This data set consists of eight static cameras installed
around an apron at Toulouse Airport. The cameras have
varying degrees of overlap with each other, with one cam-
era suffering significant occlusion of a large portion of the
scene due to presence of the jet-bridge. In this case the
pedestrian walking the scene was explicitly tasked for the
calibration process and traverses a route that covers as much
of the scene as possible. Figure 3 shows most of the path
traversed from the point of view of one of the cameras that
sees most of the scene. Figure 4 shows the reconstruction
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Figure 3. Path walked by the pedestrian in the Airport data set.

Figure 4. 3D reconstruction of the head and foot points of the
pedestrian observed in the Airport data set.

of the head/foot points. As can be seen, these correctly fall
into two planes - one for the heads and one for the feet, with
each pair of head/foot points appearing very closely aligned
vertically.

To get some estimate of the error of the calibration, the
following approach is used. For a single view, each visible
foot point is back-projected using either the Tsai or Pedes-
trian based calibration to the foot plane. The resulting 3D
points are then projected into each other view. Because the
correct corresponding image point is known in each view,
an error can be computed as the difference between the ob-
served image point and the projected 3D point. Thus the
mean error between any two views can be determined. Ta-
bles 1 and 2 show the results of this test on the airport scene
(for space reasons, only the mean against all cameras is
shown rather than the error against each individual cam-
era). In this case the calibration based on pedestrian ob-
servations is significantly more consistent across the views

camera 1 2 3 4
mean 6.064 2.329 3.274 3.519

camera 5 6 7 8
mean 3.176 3.958 3.946 3.781

Table 1. Mean error, in pixels, for each camera against all the other
cameras, for the pedestrian calibration for the Airport dataset.

camera 1 2 3 4
mean n/a 6.315 10.844 6.333

camera 5 6 7 8
mean 5.602 26.006 22.043 4.115

Table 2. Mean error, in pixels, for each camera against all the other
cameras, for the Tsai calibration (calibration not available for cam-
era 1) using the Airport dataset

than that of the Tsai calibration. This is perhaps not too sur-
prising, firstly because the Tsai calibration is performed on
each view independently, and secondly, because a number
of the manually set image points were inaccurately posi-
tioned (they did not correctly correspond to the scene point
for which a measurement was known, in some cases being
as much as ten pixels in error).

To test how well the scale estimate works, and thus how
closely a distance measurement made using the calibration
matches up to a real distance, a further test is undertaken.
It was firstly ensured that the axes and origins of the pedes-
trian based calibration and the Tsai based calibration were
correctly aligned. The measured calibration points used for
creating the Tsai calibration provide actual measurements
of a set of points in the scene. This consists of a set of
ground points in the scene with positions measured rela-
tive to the scene origin, and the correlating image points
in each view. The distance of each measured scene point
from the origin is thus known. For each view, the pedes-
trian based calibration can be used to back-project the image
points onto the ground plane of the scene. The distance of
each of these back projected ground points from the origin
can thus be deduced. Allowing for the fact that some of the
image points were inexpertly placed in the Tsai calibration
data, it was found that the scale of the scene as measured by
the pedestrian calibration was consistently about 0.95 the
scale of the measured scene. The important point here is
the consistency, as this suggests that the difference in scale
arrises primarily from a slight error in the estimate of the
person’s height, and indeed, adjusting the height estimate
saw the calibration fall closer in line with the scale of the
actual scene.

6.2. PETS 2009

This data set consists of four permanently installed
CCTV cameras, as well as four camcorders on tripods. Tak-
ing just the four CCTV cameras, Figure 1 has already shown
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Figure 5. 3D reconstruction of the head and foot points of the
pedestrian observed in the PETS 2009 data set.

the path taken by the observed pedestrian. Figure 5 shows
the reconstruction of the head and foot points in 3D after the
calibration process. Again, the points correctly form two
planes, one for the heads, and one for the feet, and closely
follow the path walked by the pedestrian.

Tables 3 and 4 show the error between each view for both
calibrations. As with the airport scene, the pedestrian based
calibration is comparable with the calibration from the Tsai
method.

One important thing to note in this scenario is that the ob-
served pedestrian was not specifically tasked with traversing
the scene for the sake of the calibration, and as such, they
traverse only that portion of the scene that is the flat planar
road surface. While it is important for the transformation
of the camera system to the desired scene coordinate sys-
tem that the person walks on a planar surface, it is not a
requirement of the remainder of the calibration process that
they do so. Rather, for the calibration process, it is impor-
tant that point correspondences exist between views for as
much of the extents of each view as is possible. The fourth
camera covers the widest area of each of the cameras, and
as such, the path traversed by the pedestrian does not cover
a large extent of the view from camera 4. The result of this
is that the calibration for camera 4 is poor relative to the
other cameras, however, the same problem is observed for
the Tsai calibration. It is also observable that the calibra-
tion starts to lose correctness once observations are made
beyond the paved area. If a person were specifically tasked
with traversing this scene, they could traverse the grassy ar-
eas which are non planar, which would improve the overall
calibration (so long as the transformation to desired scene

camera 1 2 3 4
1 0.000 5.286 3.110 6.418
2 7.022 0.000 6.375 10.139
3 5.657 7.361 0.000 6.088
4 23.719 15.659 8.935 0.000

Table 3. Mean error, in pixels, between each camera, for the pedes-
trian calibration of the PETS2009 data set. Bold values indicate
where this calibration produces a smaller error than the Tsai based
calibration in Table 4.

camera 1 2 3 4
1 0.000 5.214 3.283 8.831
2 7.865 0.000 8.283 12.531
3 5.182 7.237 0.000 6.217
4 26.243 18.630 13.026 0.000

Table 4. Mean error, in pixels, between each camera, for the Tsai
calibration of the PETS2009 data set. Bold values indicate where
this calibration produces a smaller error than the pedestrian based
calibration in Table 3.

camera 1 2 3 4
1 0.000 2.714 11.117 7.654
2 11.280 0.000 17.994 9.775
3 2.682 1.675 0.000 3.080
4 5.247 2.939 8.092 0.000

Table 5. Mean error, in pixels, between each camera, for the PETS
2006 pedestrian calibration. Bold values indicate where this cali-
bration produces a smaller error than the Tsai based calibration in
Table 6.

coordinate system only used those points where the person
was on the planar surface).

6.3. Further PETS calibrations

In the PETS 2006 and 2007 data sets it is more difficult
to pick one single person that traverses a significant por-
tion of the scene. However, the main part of the calibration
process does not need to know that the person is a constant
height, only that there are correlated points between camera
views. The height of the person is used only for setting the
scale, and as such there is no constraint that the same person
must be used for all the head and foot obersvations so long
as suitable care is taken for setting the scale. The relative
errors in the calibration for each camera against each other
camera, using both the pedestrian based calibration detailed
in this paper as well as the Tsai calibrations provided with
the data sets are shown in Tables 5 & 6 and 7 & 8. In each
case, the pedestrian based calibration is again comparable
in quality to the Tsai based calibration, and in some cases
noticeably better.

7070



camera 1 2 3 4
1 0.000 5.748 22.659 7.186
2 15.619 0.000 67.874 20.161
3 8.732 5.595 0.000 6.847
4 7.617 4.303 26.409 0.000

Table 6. Mean error, in pixels, between each camera, for the PETS
2006 Tsai calibration. Bold values indicate where this calibration
produces a smaller error than the pedestrian based calibration in
Table 5.

camera 1 2 3 4
1 0.000 3.519 6.013 6.605
2 3.001 0.000 5.395 6.955
3 3.389 3.702 0.000 4.770
4 8.289 8.194 12.234 0.000

Table 7. Mean error, in pixels, between each camera, for the PETS
2007 pedestrian calibration. Bold values indicate where this cali-
bration produces a smaller error than the Tsai based calibration in
Table 8.

camera 1 2 3 4
1 0.000 5.564 10.412 6.379
2 4.536 0.000 10.943 5.975
3 5.716 7.127 0.000 5.756
4 5.275 7.113 11.603 0.000

Table 8. Mean error, in pixels, between each camera, for the
PETS2007 Tsai calibration. Bold values indicate where this cali-
bration produces a smaller error than the pedestrian based calibra-
tion in Table 7.

7. Conclusion
The results presented here clearly suggest that using a

pedestrian observation based approach to calibrating a net-
work of surveillance cameras such as the one described in
this paper can produce a useful calibration that is at least
as good if not better than using a Tsai based approach that
requires making measurements of the scene.

With respect to the calibration process, it should be ob-
served that estimating the intrinsic parameters of the cam-
era from scene data prior to bundle adjustment is extremely
frustrating, especially with regards to the vansihing point
approach, but experience shows that guessing the intrinsic
parameters is sufficient to initialise the bundle adjustment
and reach a useful calibration, so long as care is taken to
slowly increase the complexity of the bundle adjustment,
and not to throw all the point and camera data at the system
in the first instance.
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