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ABSTRACT

Image classification is an important research task in multi-
media content analysis and processing. Learning a compact
dictionary easying to derive sparse representation is one of
the focused issues in the state-of-the-art image classification
framework. Most existing dictionary learning approaches as-
sign equal importance to all training samples, which in fact
have different complexity in terms of sparse representation.
Meanwhile, the contextual information ”hidden” in different
samples is ignored as well. In this paper, we propose a self-
paced dictionary learning algorithm in order to accommo-
date the ”hidden” information of the samples into the learn-
ing procedure, which uses the easy samples to train the dic-
tionary first, and then iteratively introduces more complex
samples in the remaining training procedure until the entire
training data are all easy samples. The algorithm adaptively
chooses the easy samples in each iteration, while the learned
dictionary in the previous iteration is in turn used as a basis
for the current iteration. This strategy implicitly takes ad-
vantage of the contextual relationships among training sam-
ples. The number of the chosen samples in each iteration is
determined by an adaptive threshold function proposed in
this paper. Experimental results on benchmark datasets, in-
cluding Caltech-101 and 15-Scene, show that our algorithm
leads to better dictionary representation and classification
performance than the baseline methods.
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1. INTRODUCTION
In recent years, with the exponential growth of the variety

of web images, efficient retrieval for the huge amount and
diverse image data has become a grand challenging task. To
tackle this issue, many researchers are now turning to study
image classification [3, 6, 14, 17], which is one of the fun-
damental challenges in computer vision and targets at auto-
matically assigning predefined class labels to images based
on their visual features.

Dictionary learning, which has attracted more and more
researchers’ interests, is one of most successful method used
in image classification tasks [16, 11]. It models input data
with linear combinations of a few bases of a learned dic-
tionary, and leads to sparse representation for input data.
The performances of the state-of-the-art methods in the lit-
eratures [15, 7] have shown that sparse representation is
very suitable for representing image data. Particularly, for
a dataset X ∈ Rm×n, this problem seeks for an optimal dic-
tionary D ∈ Rm×k in which each item xi ∈ Rm in X can be
well represented by a sparse linear combination of column-
s. Quite a few efficient algorithms aiming to find such a
dictionary have been proposed in the past years. For in-
stance, Yang et al. [15] proposed the ScSPM, a hierarchical
model inspired by the Bag-of-Features model, which adopt-
ed the efficient sparse coding algorithm proposed in [10] to
learn a compact dictionary on the local SIFT descriptors
densely sampled from images. After obtaining the sparse
coefficients of local descriptors, a spatial pyramid max pool-
ing step was used to form the final image representation.
Although the ScSPM achieves state-of-the-art performance,
it is computational expensive to effectively solve the cor-
responding optimization problem, especially for large-scale
datasets. Mairal et al. [12] presented an online dictionary
learning algorithm aiming to minimize the expected cost in-
stead of the empirical cost. Based on first-order stochas-
tic gradient descent, the algorithm scaled up gracefully for
large-scale dataset. In order to further improve the perfor-
mance, supervised information such as class labels, has been
used in recent work. A back-propagation based dictionary
learning approach was presented in [16], which adopted lin-
ear classifier and attempted to minimize the classification
error. Mairal et al. [11] proposed a general formulation
and an efficient algorithm for supervised dictionary learn-
ing, which was adapted in a wide variety of tasks. In [7], a
label-consistent K-SVD (LC-KSVD) method was presented
to learn a discriminative dictionary. By introducing the con-
straint of ”discriminative sparse-code error” and combining
it with the reconstruction error and the classification error,
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the algorithm assigned each feature with the same class la-
bels by using similar sparse codes.
However, most existing methods treat dictionary learning

as a one-pass ”batch”procedure, by implicitly assuming that
all training samples are equally important in learning, and
all information relevant to learning is available at the first
beginning. Furthermore, the contextual relationships among
samples are ignored as well. Recent work in [2] presented
curriculum learning for training with non-convex objectives
and advocated a well-defined training order which used easy
samples first and gradually expanded to more complex ones.
But it required to identify the easy and the hard samples in
advance, which is difficult in many real-world applications.
In order to overcome this problem, Kumar et al. [8] proposed
a self-paced learning mechanism for latent variable model-
s. It simultaneously selected the easy samples and learned
new parameters for a latent structural SVM. Inspired by
the above work, we propose a self-paced dictionary learning
algorithm, in which the self-paced learning mechanism is in-
troduced into unsupervised dictionary learning procedure.
To our best knowledge, this is for the first time that the
contextual information among samples and the meaningful
training order are considered simultaneously in the dictio-
nary learning studies. Our approach iteratively chooses the
easy samples as the training set for the current dictionary
learning, in which any efficient dictionary learning algorithm
can be employed. Furthermore, an adaptive threshold func-
tion is adopted to identify the easy samples, thus we may
control the sampling procedure in each iteration flexibly. We
also relax the sampling criterion as iteration increases, there-
fore more and more easy samples are selected until the whole
training set is regarded as ”easy”. Our approach converges
when all samples have been processed and the change of
objective function is below the pre-defined tolerance value.
The rest of this paper is organized as follows. Section

2 presents the proposed algorithm in detail. Experimental
results are reported in Section 3. Finally, we conclude this
paper and discuss future work in Section 4.

2. SELF-PACED DICTIONARY LEARNING

2.1 Problem Statement
Given a finite set of the local descriptors extracted from

training images X = [x1, ..., xn] ∈ Rm×n, where xi ∈ Rm is
the local descriptor, dictionary learning techniques used for
image classification are intended to minimize the empirical
cost function in Eq.(1).

fn(D)
∆
=

1

n

n∑

i=1

l(xi, D), (1)

where D = [d1, ..., dk] ∈ Rm×k is the dictionary, and di ∈
Rm is a basis vector. Generally the dictionary is over-
complete, i.e. k > m. Suppose that l(x,D) is a loss func-
tion which measures whether D is ”good” at representing
the local descriptor x. As shown in the ScSPM method [15],
we consider l(x,D) as the minimum of the l1-sparse coding
problem:

l(x,D)
∆
= min

α∈Rk

||x−Dα||22 + λ||α||1 (2)

where l1-norm yields a sparse solution for α, and λ is the reg-
ularization parameter balancing two items in Eq. (2). This

sparse coding problem (also known as Lasso [13]) is exten-
sively studied in the past few years, and many algorithms
have been proposed to solve it, such as LARS [5].

Herewith, the dictionary learning problem can be rewrit-
ten as a joint optimization problem with respect to the dic-
tionary D and the sparse codes A = [α1, ..., αn] ∈ Rk×n.

min
D,A

1

n

n∑
i=1

||xi −Dαi||
2
2 + λ||αi||1

s.t. ||dj ||
2

2
≤ 1, j = 1, ..., k

(3)

where the constraint is to prevent D from arbitrarily large.
It is not jointly convex, but instead convex with respect to
each of D and A when the other is fixed. Similar to most of
the existing methods, we can alternately optimize between
D and A by minimizing one while keeping the other fixed.

2.2 Self-Paced Dictionary Learning
Our algorithm employs a self-paced mechanism for dic-

tionary learning. It enables the algorithm itself learn the
dictionary using a fixed training order, i.e. from the easier
samples to the harder ones. Throughout the learning pro-
cess, we maintain two disjoint subsets of the original training
set: (1) E, the easy samples chosen before the current iter-
ation; and (2) H, the remaining hard samples before the
current iteration. E and H are initialized as an empty set
and the training set X respectively.

The proposed method iterates the following four main
steps: (1) find the easy samples from H, and add them into
E ; (2) perform sparse coding by using E as the training set;
(3) update the dictionary with fixed sparse coding results;
(4) update the threshold used to identify the easy samples.

2.2.1 Finding the Easy Samples

In order to judge the ”easiness”of a sample, we need to de-
fine a scoring function according to the current dictionary. A
natural formulation is the objective function l(x,D) shown
in Eq.(2). Under this formulation, the easy samples corre-
spond to small function values, while the hard samples re-
late to large function values. Consequently, we may choose
an appropriate threshold σ to identify the easy samples. A
sample xi is viewed as ”easy” if l(xi, D) ≤ σ. To avoid over-
fitting, we should set the initial threshold appropriately such
that no less than half of the samples are considered ”easy”
in the first iteration. It is worth to note that other score
function can also be used in our general framework, such as
elastic-net formulation [18]:

l
′

(x,D)
∆
= min

α∈Rk

||x−Dα||22 + λ1||α||1 + λ2||α||
2
2 (4)

2.2.2 Sparse Coding

The sparse coding stage searches the sparse coefficients α
based on a signal x and a fixed dictionary D. The spars-
est representation can be obtained by solving the following
optimization problem:

min
α
||α||0

s.t. ||x−Dα||22 ≤ ε
(5)

where ‖ · ‖0 denotes l0 pseudo-norm, the number of nonze-
ro elements of a vector. However, to accurately determine
the sparsest representations proves to be an NP-hard prob-
lem [4]. A well known approximation approach is using con-
vex l1-norm to replace l0 pseudo-norm as shown in Eq.(2).
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Moreover, it has been empirically proven to be better in
general sense. We use the efficient feature-sign search algo-
rithm [10] to solve the l1-norm sparse coding problem. The
algorithm turns out to be adequately efficient to deal with
large data sets.

2.2.3 Dictionary Update

With the fixed sparse coefficients AE of the ”easy”training
samples, dictionary updating can be defined to solve a least
square problem with the following quadratic constraints:

min
D
||XE −DAE ||

2
2

s.t. ||dj ||
2
2 ≤ 1 j = 1, ..., k

(6)

A Newton method on the Lagrange dual as used in [10] is
adopted to update the dictionary.

2.2.4 Threshold Update

Unlike using a fixed annealing factor µ in [9] to update the
threshold σ, i.e. σt+1 = σt · µ, we regard µ as a monotone
increasing function of iteration t, which guarantees more
easy samples can be chosen as the iteration continues. We
define the threshold as in the following equation:

σ = f(π, t) = π + log(π2 + c)t (c ≥ 1) (7)

where π denotes the median of the objective function scores
l(x,D) of all training samples. This simple threshold func-
tion has at least three characteristics: (1) σ0 satisfies the
condition that no less than half of the samples are consid-
ered easy in the first iteration; (2) parameter c controls the
growth rate of easy samples over time; (3) the threshold is
more adaptive to the current dictionary and objective func-
tion value.
Our algorithm is detailed inAlgorithm 1. Because l(x,D)

is used as the ”easiness” of score function, our approach in-
tegrates the search of the easy samples and sparse coding
into one step. On the whole, the algorithm draws the easy
samples as training set, and solves two convex optimization
problems in one iteration. As iteration continues, more and
more easy samples are identified. When the entire training
set are regarded as ”easy”, the algorithm becomes the stan-
dard dictionary learning algorithm for the training set, but
it uses a well trained initial dictionary Dt. The algorithm
will be terminated when the decrease of objective function
in Eq.(1) is below a predefined tolerance ε.
As mentioned above, the optimization problem in Eq.(1)

is non-convex with respect to D without fixing sparse coef-
ficients. The alternating optimization strategy can decrease
the value of empirical cost function monotonically, which
makes the algorithm able to return a locally optimal dic-
tionary. However, monotonicity seriously degrades the al-
gorithm’s convergence speed under some circumstances [1].
Instead, the self-paced dictionary learning algorithm uses
only an easy subset for training in one iteration, and the val-
ue of the objective function no longer decreases all the time.
Therefore, it is a kind of non-monotonic approach. Besides,
the self-paced mechanism empirically leads to a better lo-
cally optimal solution to the non-convex problem in Eq.(1),
which is consistent with the results achieved in [8].

Algorithm 1 Self-Paced Dictionary Learning

Input: Training samples X = [x1, ..., xn] ∈ Rm×n; regular-
ization parameter λ ∈ R; threshold parameter c ∈ R;
initial dictionary D0 ∈ Rm×k

Output: Learned dictionary Dfinal ∈ Rm×k

1: initialization: E =∅; H = X; t← 0
2: repeat

3: Find the easy samples and perform sparse coding using
the dictionary Dt:
for each xi ∈ X do

perform sparse code using feature-sign search
algorithm;
if l(xi, Dt) < σ
xi is an easy sample ;
add it to E: E = E ∪ {xi};

end if

end for

4: Update dictionary using Lagrange dual method;
5: Update the threshold using the function defined in E-

q.(7);
6: t← t+ 1;
7: until All training samples have been processed as ”easy”

and the decrease of objective function in Eq.(1) is below
tolerance ε.

8: return Dfinal

3. EXPERIMENTAL VALIDATION
In this section, we evaluate the proposed approach on the

Caltech-1011 and 15-Scene2 dataset. More specifically, we
implemented our algorithm and the ScSPM, in which the
same sparse coding approach and dictionary updating strat-
egy are adopted. The latter, together with Wang’s algorithm
are regarded as the baseline methods. The SIFT descriptors
used in our implementation are extracted from 16×16 pixel
patches and densely sampled on a grid with a step size of
8 pixels. We set the size of dictionary as 1,024 except the
last experiment on Caltech-101. Furthermore, in order to
select the easy examples at the first round of Algorithm 1,
we need an appropriate initial dictionary. Accordingly, we
compare two implementations of initial dictionary: one is
obtained by K-means clustering and the other is construct-
ed by performing 5 iterations of sparse coding and dictio-
nary update on the entire data. Empirically, there are slight
differences between them in terms of classification accura-
cy. Therefore, the initial dictionary obtained by K-means is
used in our experiments. We set λ = 0.15 and c = 1 for all
experiments. Our approach adopts max pooling to build the
image representation and employs the linear SVM classifier
for classification. The experiments are repeated 10 times
with different random splits on the training and testing im-
ages in order to obtain reliable results, and the average clas-
sification accuracies are finally reported. By following the
common experimental settings on the Caltech-101 dataset,
we trained 5, 10, 15, 20, 25 and 30 samples per category and
test the remainder. The detailed comparisons of the results
are shown in Table 1. Our approach consistently outper-
forms the baseline methods, empirically demonstrating that
the self-paced dictionary learning mechanism is able to lead
to improved performance. Furthermore, in order to show

1http://www.vision.caltech.edu/Image Datasets/Caltech101/
2http://www.cs.unc.edu/̃lazebnik/research/scene categories.zip/
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Table 1: Performance comparisons on Caltech-101
Num. of Samples 5 10 15 20 25 30

Wang [14] 51.1 59.7 65.4 67.7 70.1 73.4
ScSPM [15] 52.4 61.9 66.6 69.6 71.5 73.2

Ours 53.1 62.2 67.0 69.9 72.2 73.7
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Figure 1: Objective function values and classifica-

tion performance

that a better dictionary can be learned by our algorithm, we
analyze the objective function values, as shown in Eq.(1), for
the training data and randomly sampled testing data, which
is adopted as a criterion in [11, 12]. As can be seen from
Fig.1(a), our algorithm returns a smaller object value than
the ScSPM in both training and testing procedures, showing
that a better dictionary and sparse representation of input
data can be achieved by our method. In addition, we ran-
domly selected 30 images per category as training data and
performed our approach by using different dictionary size:
256, 512 and 1,024 respectively. The comparisons on the
average classification accuracy with the ScSPM are shown
in Fig.1(b), illustrating that our algorithm outperforms the
ScSPM on both the small and the large codebook size.
We also compare our algorithm with the ScSPM on the 15

natural scenes dataset, which is widely used to verify the ef-
fectiveness for scene categorization task (Wang’s algorithm
has not been tested on this dataset). The average classifica-
tion accuracy of our method is 81.6%, slightly higher than
80.7% achieved by the ScSPM, showing that our method
also achieves good performance on scene categorization.

4. CONCLUSION AND FUTURE WORK
In this paper, we propose an efficient self-paced dictionary

learning algorithm for image classification. Our approach
introduces a better training order for dictionary learning.
Since dictionary learning is a non-convex optimization prob-
lem, our algorithm can lead to a better locally optimal dic-
tionary. Experimental results have shown that our algorith-
m consistently outperforms the baseline methods.
To further improve the classification performance, we are

interested in developing a self-paced discriminative dictio-
nary by combining the self-paced learning mechanism with
supervised learning methods. Moreover, integrating the self-
paced learning mechanism with online learning methods is
also another meaningful issue.
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