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ABSTRACT
The conversion of monoscopic footage into stereoscopic or
multiview content is a difficult and time consuming task.
A number of semi-automatic methods have been developed
to speed up the process and provide some control to the
user. However these methods require that the user provide
detailed labels indicating the relative depth of objects in the
scene. In this paper we present a method to automatically
estimate depth in such a way that it is amenable to semi-
automatic conversion. The method is designed to simplify
the depth labelling task so that the user does not have to
provide as many depth labels.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis— depth cues, motion, stereo

General Terms
Algorithms

Keywords
2D-to-3D conversion, motion estimation, depth estimation,
computer vision

1. INTRODUCTION
Converting existing monoscopic, or“2D”, content into stereo-

scopic, or “3D”, content has become an active area of re-
search, driven by the recent interest into 3D media by film
studios and display manufacturers. It is currently a manual
process, requiring many hours of labour for a normal feature-
length film. As such, methods need to be developed to speed
up the conversion process by either assisting the animator
performing the conversion or through complete automation.

Current methods for 2D to 3D image conversion can be
loosely grouped into two categories: semi-automated and
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automatic. A semi-automated method is one where the user
has complete control over the resulting depth map but they
must provide some sort of input labelling. There is no as-
sumption about the underlying scene structure, instead it
allows the user to indicate which regions of the scene are
closer or farther away from the camera. A dense depth map
is produced from the user’s labels by using the underlying
image features, e.g. edges, texture, etc. The resulting map
is not metrically correct but perceptually consistent. This is
sufficient for most viewers to find the depth effect to be pleas-
ing. Surprisingly, very little research on semi-automated
techniques has been performed, and can be beneficial for
use in conversion for professional applications. The work by
Guttmann et al [4], Phan et al and Rzeszutek et al [7, 9]
and Wang et al [13] are good examples of semi-automated
approaches.

For automated methods, there is little to no human inter-
action. Rather the user provides the technique with image or
video footage and based on information present in the con-
tent it estimates the depth of elements in the scene. This
problem is a well-studied one in computer vision and a pow-
erful set of tools for solving this is known as Structure from
Motion (SfM) has been developed. SfM can determine the
three-dimensional structure of the scene, and the location
of the camera relative to objects in the scene. This can be
used to accurately extract object surfaces from a collection
of images or a video sequence [3] or generate high quality
depth maps [15]. It has even been used in a semi-automated
manner to assist the user with converting 2D movies [14].

The main downside to SfM is that it is computationally
intensive. SfM computes the camera locations or absolute
point locations while it is often sufficient to determine the
depths of objects relative to the current camera. There are
a number of ways to do this, ranging from producing com-
pletely artificial depths inferred from an image [1] to using
trained classifiers to predict the depth of a particular pixel
[6, 16].

In this paper, we present an automated technique for ex-
tracting the relative depths of a scene that can ultimately
serve as an input into a semi-automated method. Specif-
ically, it is designed to be the input labelling to the semi-
automated method described in [7, 9]. This has two benefits:
the user does not need to provide as many labels and it can
default to a purely automatic method if it is so desired.

2. METHODOLOGY
Our method focuses on estimating the depth of back-

ground elements in video footage. In general, labelling back-
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ground elements tends to be the most tedious task for semi-
automated methods, as these are usually regions containing
many objects and can experience complex motion. However,
if not converted properly, the background can begin to vi-
sually conflict with foreground objects, e.g. background ob-
jects may appear closer to the camera than the foreground.
By estimating background depth, the user can better focus
on foreground objects and ensure their depths appear accu-
rate. The method can be decomposed into these steps: 1)
Preprocessing, 2) Disparity Estimation, and 3) Map Gen-
eration. We assume that the only information available is
a frame sequence with the camera experiencing some arbi-
trary motion. We define this frame sequence as an ordered
set I of N frames such that

I = {I0, I1, . . . , IN−1}, (1)

where Ik is the frame at index k. At the moment we also
assume that the scene is rigid to simplify the development of
the method. We will address how to handle non-rigid scenes
in Section 4.

2.1 Preprocessing
The sequence preprocessing extracts two sets of data: the

forward inter-frame optical flow O and a per-frame labelling
S obtained from the over-segmentation of each frame in I.
As noted by [16], optical flow provides useful information
regarding depth in the image even if it does not directly
map back to disparity. We use a modified Horn-Schunck
variant [11] to obtain the flow fields for the entire sequence.
While more advanced methods are available, we have found
that this variant provides adequate results without requiring
overly long processing times. Similarly, we use a graph-
based segmentation method [2] to generate our segmentation
labelling, as it is extremely fast and quite reliable.

For the disparity estimation, we do not use the entire flow
field. Rather, for each frame k we produce a set of tracks Tk
such that

Tk = {t0, t1, . . . , tNT }, (2)

where the i-th track ti is a set of two-dimensional points
~pj ∈ ti recording how that particular feature moves over
time.

The initial locations of the features t0 are chosen to be the
centroids of the segmented regions in S. This is important
as these centroids are located in homogeneous image regions
and will be useful when generating the dense depth map
later on. The points are tracked using a simplified version of
the Particle Video tracker [10], omitting the point insertion
and position optimization stages as they are not needed.
The relative displacement of the point is far more important
than its absolute position in the context of our application.
Furthermore, the length of the tracks are relatively short so
the cumulative error using only the optical flow is small.

Figure 1 shows how the point locations are generated using
a frame from the “Angkor Wat”1 sequence. The image is
segmented using [2], and the centroid locations are used as
the initial positions of the tracks. Figure 2 shows the point
locations obtained from the region centroids.

1http://www.cad.zju.edu.cn/home/gfzhang/projects/
videodepth/more.html

(a) Original Image (b) Over-segmentation

Figure 1: An example of an over-segmented from the
“Angkor Wat” sequence.

Figure 2: Feature point locations using the region centroids.

2.2 Disparity Estimation
The disparity is estimated by exploiting the epipolar ge-

ometry between pairs of frames along a track. For each
frame pair, Pk,l = {Ik, Il} where k < l, we obtain a set
of point disparities by rectifying the two frames. To per-
form the rectification, we use the polar method described
by Pollefeys et al [8]. This method is not sensitive to the lo-
cation of the epipoles, compared to traditional rectification
methods based on planar homographies.

Given the fundamental matrix Fk,l between the frame pair
the two epipoles, ~ek and ~el, are obtained as the left and right
null spaces of Fk,l. Because all points must map to epipolar
lines in the corresponding image [5], the epipoles can act
as the origin of a polar coordinate system as points “slide”
along epipolar lines. Transforming a point ~p = (x, y) into

its polar representation ~p′ = (ρ, θ) in any particular frame
can be done by ρ = ‖~p−~e‖, and θ = ∠(~p−~e). ~e is the non-
homogeneous coordinate frame’s epipole. Figure 3 provides
an example of two sets of feature points after being converted
into polar coordinates.
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Figure 3: The distribution of feature points in polar coordi-
nates. Under camera motion the distributions will see little
change but the average values of ρ and θ will change.
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The disparity of a point ∆k,l(~p) can be found by

∆k,l(~p) = |ρl − ρk|. (3)

We take the absolute value of the disparity as the sign is
usually an indicator of the direction of the camera motion.
Because ρ indicates the distance from the epipole, this effec-
tively encodes the point’s distance from the camera. Also,
θ encodes the rotation around the epipole, but it can be
ignored when determining disparity.

Zhang et al [16] argue that signed disparity can be used
to infer whether the object is in front of or behind the dis-
play. However, this will cause issues for objects moving at
different speeds and directions in a frame. A well-designed
depth-based image rendering (DBIR) system will be able
to properly project objects to be in front or behind of the
display, and is not required to be modelled during the es-
timation stage. For a static scene, the magnitude of the
disparity is directly related to an object’s distance from the
camera and is an important result.

Due to small baselines and tracking errors, the estimate of
F can be extremely noisy and the disparity between any two
frames will vary wildly. To deal with this, we use “parallel
chaining” [12] that was initially developed for projective fac-
torization. The chaining procedure involves determining the
projective depths between first frame and all other frames,
producing the sequence (1, 2), (1, 3), (1, 4), . . . and so on. For
our application, we produce a parallel chain of disparities for
frame k rather than just a single disparity between the frame
and another frame. This chain is defined as a set of dispar-
ities Dk = {∆k,k+1,∆k,k+2, . . . ,∆k,k+NT−1}. In order to
compare disparities in the chain we scale ∆k,l so that it is
on [0, 1].

Under pure translation the disparities between two im-
ages will always vary by a scaling factor. After rescaling,
the disparities in the parallel chain should be very similar.
This does not hold true for other motions but in those in-
stances the tracks terminate quickly and will approximate
a translation. However, if the tracking is not perfect then
the disparities will not vary by a scaling even under pure
translation. This can be seen in Figure 4. It represents the
parallel chain obtained for the first frame in the Angkor Wat
sequence.
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Figure 4: Overlaid disparities estimates for each frame pair
in the parallel chain. A normalized depth of 1 represents
objects close to the camera while a normalized depth of 0
represents those far away from the camera.

The point cloud is“fuzzy”because of errors in tracking and
errors in estimating Fk,l. But the chain represents multiple
disparity estimates for the same point over multiple frames
and on average the disparities estimates should be correct.

Therefore we assume that the disparity of frame k is the
average of the disparities in Dk. The noticeably cleaner
result can be seen in Figure 5.
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Figure 5: Disparity estimate after averaging the results
of the parallel chain for the first frame of the Angkor Wat
sequence.

2.3 Map Generation
We generate a dense map in one of two ways. The first

method is to simply assign disparity values to the segmenta-
tion of the frame (Figure 1b). This produces an incomplete,
but relatively dense, disparity map that can be used to al-
low the user to quickly preview the results. This is shown
in Figure 6.

Figure 6: Fast disparity map produced by colouring in the
labels shown in Figure 1b.

To produce a complete dense map, we utilize the disparity
values to produce a seed labelling for [7]. The seed labels can
be produced by either assigning single pixels the disparity
value (a sparse labelling) or using the incomplete map in
Figure 6. The difference between using the two label styles
can be seen in Figure 7. The primary difference is that
the sparse labelling tends to look more natural for single
frames though can result in “depth leakage” [9] if volumetric
processing is used.

3. RESULTS
In this section we present our results for the Angkor Wat

sequence against a “ground truth”. We use the results of
[15] as their method provides high quality depth estimates
for rigid scenes. The dense maps were produced by using
the incomplete depth maps from Section 2.3 as seeds to [7]
with the depth priors disabled. The results are in Figure 8.

While our results do not match those of [15], the results
are comparable. Our method is significantly simpler to im-
plement but it is still able to generate depth estimates that
reasonably approximate the ground truth.
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(a) Sparse Seeds (b) Semi-dense Seeds

Figure 7: A comparison between using sparse seeds and
using the incomplete depth representation.

Figure 8: Comparison of results for the Angkor Wat se-
quence. The top row are the results of our method while
the bottom row are the ground truths from [15].

4. CONCLUSION AND FUTURE WORK
In this paper we have presented a method for automated

depth estimation method that can be easily integrated with
a semi-automated pipeline. The depth estimation method
works by using the epipolar relationship between image pairs.
We minimize the overall error by averaging the disparity es-
timates across multiple image pairs. The resulting depth
values can be sent as input into a semi-automated depth
generation system so that the user can add their own labels
as needs.

We are actively investigating methods for dealing with
non-rigid scenes. At the moment, our method will pro-
duce incorrect depths for scenes where objects move inde-
pendently of the camera and the user will be required to
clean these up. However, if the user provides their own la-
bels for the various foreground objects, these can be easily
excluded during the depth estimation. For a more auto-
mated approach, we can use the inliers returned from the
estimation of F, normally done with a robust method such
as RANSAC, so that any feature points not corresponding
to this model to be rejected.
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