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ABSTRACT

Modeling the in-class student social networks is a highly de-
sired goal in educational literature. However, due to the dif-
ficulty to collect social data, most of the conventional stud-
ies can only be conducted in a qualitative way on a small-
scale of dataset obtained through questionnaires or inter-
views. We propose to solve the problems of data collection,
social network construction and analysis with multimedia
technology, in the way that we can automatically recognize
the positions and identities of the students in classroom and
construct the in-class social networks accordingly. With the
social networks and the statistics on a large-scale dataset, we
have demonstrated that the pedagogical analysis for inves-
tigating the co-learning patterns among the students can be
conducted in a quantitative way, which provides the statis-
tical clues about why prior studies reach conflicting conclu-
sions on the relation between the students’ positions in social
networks and their academic performances. The experimen-
tal results have validated the effectiveness of the proposed
approaches in both technical and pedagogical senses.

Categories and Subject Descriptors

J.4 [Computer Applications]: Social and Behavioral Sci-
ences

General Terms

Algorithms, Experimentation, Human Factors, Verification

Keywords

In-Class Social Networks, Pedagogical Analysis

1. INTRODUCTION
In educational literature, social interactions among learn-

ers is of great importance, for its effectiveness to promote the
learning process by facilitating learner-to-learner co-construction
of knowledge and the sharing of information and resources
[1–5]. Therefore, a large amount of effort has been carried
out to identify and investigate the social networks in which
the learners are involved, in the hope of designing proper
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pedagogical strategies accordingly. However, even the pro-
posal of the idea may date back to 1930s [1, 6], most of the
investigations are still limited in a small scale which usually
include less than 100 students (e.g., 25 students in [5], 11
students in [7]), due to the fact that the traditional way for
collecting social data through questionnaires and interviews
is time-consuming and expensive. The rapid development
of online technologies seems to be a new opportunity to ad-
dress this problem for its promise to collect the immense
social data in an automatic manner. In this regard, online
social network analysis has led to tremendous emerging re-
searches in various disciplines such as sociology, pedagogy,
psychology, and computer science.

In contrast with the overwhelming interest among prac-
titioners, as commented by Boyd & Ellison [8], the major-
ity of existing studies on online social networks still remain
both conceptual and empirical, with a few of them having
explored the link between social networks and education.
Furthermore, researches along this line mainly focus on the
“out-of-school” or “after-school” social practices of students
within the “virtual” networking environment (e.g., [7,9,10]),
where they may not behave naturally [8, 9]. By contrast,
the study on the students’ social learning patterns in their
“real-life” at school has not been sufficiently conducted, al-
though it is highly desired even before the birth of the term
“social network” (by Jacob Moreno’s work in 1930s). This is
again due to the difficulty for obtaining social data from the
real-life educational environment. Moreover, most existing
educational researches have been conducted using “qualita-
tive” analysis which samples a small-scale of students from
the whole population for case studies [11]. It is thus easy
to cause conflicting conclusions when the sampling are not
representative in a statistical sense, e.g., Divjak et al. have
reported in [12] that there is no relation between a student’s
position in student social network and her/his academic per-
formance, while most of other researchers believe the exis-
tence of the relation [3,4].

In this paper, we conduct a pilot study aiming to equip
conventional pedagogical analysis with multimedia technol-
ogy, for automatic and large-scale in-class social data col-
lection and analysis. We first propose a novel image-based
method to identify the in-class social networks which encap-
sulates both the student-to-student and student-to-teacher
interaction-ships, on the basis of which we investigate their
relations to the students’ academic performances. The method
can be easily applied to real-life classroom environment.

The framework of our method for in-class social network
mining is shown in Figure 1, which consists of three parts:
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Figure 1: Framework of In-Class Social Network Mining1.

data acquisition, student recognition, and social network
construction. In data acquisition, a teacher takes a set
of photos of the students in the class and the photos are
combined into a single image using image stitching algo-
rithm [13]. The faces in the image are then detected with
their positions (i.e., row and column numbers in the class-
room) identified by the student localization algorithm, on
the basis of which face recognition is employed to identify
the names of the students. In each course under investiga-
tion, we leave 9-13 weeks for the students to form teams
for the course project, so as to encourage them to choose
to sit and discuss with potential teammates. Therefore, at
the end of the semester, the statistics on how each student
sits together with her/his peers for co-learning and her/his
preference of the sitting position can be obtained, for con-
structing the student-to-student and student-to-teacher so-
cial networks respectively. In the framework, the student
recognition and the social network construction are two in-
terdependent parts, in the way that the social network con-
struction needs the information about the students’ identi-
ties and their sitting positions, and the performance of face
recognition can be improved if the social interaction-ship
among students are known a priori. Therefore, we dynam-
ically update the social networks after each class and the
result will be used to help face recognition in the classes
followed. There are several technical challenges which have
been addressed in this framework, including

• Face Recognition in Extreme Conditions: Face recogni-
tion has been intensively studied for over four decades
since 1970s [14] and still remains an active research
topic nowadays. However, its performance is often
limited when applied to real applications, due to the
variations of illuminations, poses, facial expressions,
motions, occlusions, and so on [15–17]. In additional
to all these issues, as shown in Figure 2, we meet an

1All portraits in this paper are used with the consents from
the students.

even worse situation when applying face recognition to
the photos captured in classroom, in the way that the
faces are with various sizes and resolutions, sometimes
being distorted seriously, and possibly with the major-
ity of facial areas missing. According to our study, this
makes most of the state-of-the-art face recognition ap-
proaches work awkwardly, because nearly all of them
are developed on datasets that are acquired in well-
controlled environments [16, 18]. We argue that con-
ventional approaches mainly focus on the facial area of
a person, ignoring the fact that the target’s social con-
text (e.g., the potential teammates he/she often sits
with) is of great help to the identification process. To
address this problem, we propose a social inference

scheme which recognizes a student with the respect
to the identifications of her/his socially related peers
(learnt from the in-class social network), with the hope
that, when the student’s appearance in current photo
is not visually distinguishable, her/his identity can still
be inferred when her/his potential teammates are rec-
ognized at the neighboring seats;

• Large-Scale Labeling Efforts: Like all supervised learn-
ing approaches, before applying face recognition, we
need to annotate a large scale of samples for train-
ing, which, in general, is costly. We bypass the diffi-
culty by encouraging the students to label their faces
by themselves. In particular, an “attendance check-
ing” function for fun is embedded into all course home-
pages, which allows teachers to upload the photos and
automatically stich the photos into a single one, on
which the students (after login for downloading course
materials) can tick their faces to confirm their atten-
dances (if there are no machine-predicted labels avail-
able for their faces) or just to correct (if the predic-
tions are wrong). The attendance records not only
leave a good reference to the pedagogical analysis, but
also accomplish the labeling at the same time. Fur-
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Figure 2: Challenges for face detection/recognition
in an uncontrolled environment.

thermore, the function itself is used for case-study in
several courses related to Image Processing, Pattern
Recognition, Data Mining, or Multimedia Computing.
It has significantly boosted the students’ interest;

• Sitting Position Identification: Detecting where a stu-
dent sits in the classroom from the 2D image is not
a trivial task, as the sitting heights of the students
are diverse and it is impossible to obtain in advance.
Moreover, the stitched images are with highly incon-
sistent view points and are often seriously distorted.
We propose to use linear regression to model the seat
arrangements in the classroom so as to estimate the
positions of students and construct the in-class social
networks. The details will be given in Section 3.2.

The contributions of this paper can be summarized as:
the integration of multimedia technology into pedagogical
analysis, the proposal of a practical approach for large-scale
in-class social network construction, and the introduction of
the social inference scheme into face recognition for working
in extreme conditions.

2. RELATED WORK
The topic of this paper is related to several disciplines

which may include social science, educational research, data
mining, computer vision and computer graphics. Due to the
highly interdisciplinary nature and the space limitation, we
can only provide a brief review with the effort to cover the
related studies to the largest extent.

It has been widely believed that social learning or community-
centered learning within social networks has positive influ-
ence on a student’s academic success [1–5]. Although the
belief may have a much longer history than that of its formal
proposal in 1930s [1, 6], however, due to the lack of large-
scale data for social network modeling and quantitative val-
idation, it has remained conceptual until the emergence of
online social network sites (SNSs, e.g., Facebook, MySpace).
SNSs provide not only a way to attract the students’ partici-
pation, but also a tool to collect social data during the online
communications (e.g., interaction-ship to their peers, mate-
rial/information exchanged) , which in turn initiates a large
amount of emerging researches for sociology, pedagogy, psy-
chology, and computer science [8]. With the help of SNSs,

educational researchers have conducted intensive studies to
explore the relation between the students’ academic perfor-
mances and the social communities they are involved, with
many positive results reported (e.g., researches by Ellison et

al. [19] conducted on Facebook and Kraut et al. on general
Internet communities [20]). However, despite the disagree-
ments which also appear all the time, as stated by Boyd
& Ellison [8], most of these studies are still conceptual and
empirical in nature. Furthermore, many researchers (e.g.,
Walter et al. [21] and Boyd & Ellison [8]) have realized that
the social interaction-ship revealed from the virtual network
environment is significantly different from that of face-to-
face communications in the students’ real life. Therefore,
most of SNSs proponents can only claim a “complementary”
role for their findings to the traditional pedagogical analysis.

In contrast to the studies for the “out-of-school” SNSs,
modeling the students’ social interactions in “in-class” envi-
ronment is always highly desired [22, 23], as it is one of the
essentials of our pedagogical system. Due to the difficulty
of collecting social data again, there are a few studies that
have investigated the relation between the students’ aca-
demic performance and their “in-school” social interactions.
Examples along this direction include [12] which has investi-
gated the relation in two social networks (of “teamwork”and
“material exchanging”), and [5] which conducts a similar in-
vestigation within a social network constructed from social
connections (e.g., friendship, collaboration-ship) reported by
students. In these studies, social network analysis [24] is
employed to measure the different types of networking po-
sitions, such as betweenness, closeness, and degree (which
we will introduce in Section 4), for discovering the social
ties or social capital (the leadership or controllership) in the
communities. However, the data collecting process in these
studies are still following the conventional fashion of ques-
tionnaires and interviews, resulting in none of them having
directly constructed an “in-class” social network. Moveover,
these investigations are still in a small-scale (e.g., 27-52 stu-
dents in [12], 25 students in [5]), making the results not
convincing enough in a statistical sense.

While the studies mentioned above are mainly focusing
on the student-to-student social connections, the student-to-
teacher interaction-ship have also attracted a lot of research
attentions (e.g., [22,25–28]), given the fact that most of our
pedagogical systems are teacher-centered. These studies are
mainly conducted by investigating the influence of seat ar-
rangement in a teacher-centered classroom on the students’
performances, in the sense that students sitting at different
positions can have different chances to receive instructions
from or to interact with the teacher, which determines their
achievement at the end of the semester. The data of these
studies are usually collected by fixing the students’ sitting
positions so as to investigate the effect of the arrangement on
the students’ academic performances [27,28]. Even with ev-
idential correlation between seat arraignment and academic
performance reported, these studies are all conducted in a
qualitative way, which cannot quantitatively answer ques-
tions like: how far (the exact distance) the student sitting
from the teacher would be an advantage/disadvantage? Fur-
thermore, the method for collecting data is questionable, be-
cause forcing a student to sit in a fixed position can distort
her/his natural behaviors during learning.

In this paper, we propose to address the social data col-
lecting problem with multimedia technology, with the hope
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that the social data can be collected in an automatic man-
ner, and the in-class networks can be captured in a natural
way (the students are allowed to choose where to sit freely).
The method will not bias the students’ social preferences and
is applicable to large-scale investigation at the same time.
Technically speaking, our methods for student localization
and recognition are related to techniques of image stitch-
ing/alignment [13] and face recognition [15–17] respectively.

Image stitching is developed to compose images with vary-
ing degrees of overlap into a single one for providing a wider
view of the target. To this end, nearly all approaches uti-
lize the assumption that one image is the result of a linear
transformation from another image within the Homogeneous
Coordinate System, which can be modeled by a transfor-
mation matrix. Therefore, once the matrix is learnt, we
can transform one image back to the same plane where an-
other image lies in (this has been sophisticatedly developed
in Computer Graphics) so as to compose the two image into
a single one. The transformation matrix is learnt by finding
correspondence between points in the overlapping areas of
two images. Various features have been proposed for detect-
ing the correspondence (matching points) [13], among which
the Scale Invariant Feature Transform (SIFT) by Lowe’s [29]
is considered one of the state-of-the-art. We adopt the same
feature in this study. Due to space limitation, the reader is
referred to [29] for more details.

Face recognition is one of the most intensively studied
technologies in computer vision, with new approaches emerg-
ing every year and encouraging results reported. According
to recent survives [15–17], however, most existing studies are
conducted on data captured in controlled environment. It
makes the successes of those approaches limited to real ap-
plications, where the variations of illuminations, poses, facial
expressions, motions, occlusions and so on always raise big
challenges for both face detection and recognition. As most
of those challenges are still considered as open questions,
generally, there is no conclusion on which approach(es) can
perform the best. Nevertheless, there are some approaches
are more popularly employed than others. For example, the
Viola-Jones detector [30] is considered the start-of-the-art
for face detection in a survey [17] mainly written for Viola-
Jones detector and its variations. For face recognition, the
methods using Eignfaces [31], Fisherfaces [32] and Sparse
Coding [33] are popularly adopted as baselines. In this pa-
per, our aim is not to solve the open questions of face recog-
nition in a general sense, but instead to bypass those difficul-
ties in a classroom sitting with the help of the contextual in-
formation obtained from the in-class social networks. Since
in our framework the student recognition and the construc-
tion of the in-class social networks are two interdependent
processes, we will introduce the recognition first and then
turn to social network construction.

3. STUDENT RECOGNITION
To stitch multiple photos, we adopt the method proposed

in [10], which automatically find the matching points be-
tween two photos using SIFT features, and compose them
into a single image accordingly. The resulting image will be
used for face detection, student localization and recognition.

3.1 Face Detection
We detect the faces in the stitched image mainly using

the Viola-Jones detector [30] which is considered the state-

Figure 3: Student localization by linear regression

and image alignment ( a|b
c |d): (a) faces in the stitched

image for the first class (the source image) are man-
ually associated to row and column numbers, on the
basis of which a line indicator (yellow line) is trained
for each row or column using linear regression; (b)
the matching points between a newly taken image
(the target image) and the source image are detected
(as connected with green lines); (c) the source image
is aligned to the target with all line indicators be-
ing transformed; (d) RANSAC algorithm is applied
on each transformed line indicator to obtain its new
model in the target.

of-the-art in a recent survey [17] and has been implemented
in OpenCV. However, due to the difficulties introduced in
Section 1 and the fact that the OpenCV implementation
is mainly trained on frontal faces, it can only detect 78%
of the faces in our experiment. To deal with this problem,
we implement the simple skin-color based detector [34] and
pool the results from both detectors. The teachers will help
to filter out the non-facial areas (less than 3% of those in
the pool) with tiny effort before the student localization and
recognition being carried out.

3.2 Student Localization
Prior to face recognition, we detect where (i.e., row and

column numbers) each student sits in the classroom. There
are mainly two difficulties, namely the diversity of the stu-
dents’ sitting heights and the inconsistency of view-points
across the stitched images. To tackle the first issue, we
manually annotate the row and column numbers of each
student in the image taken in the first class (call source im-
age hereafter), and use linear regression for the centers of
faces appearing at the same row (column). As shown in the
upper-left of Figure 3, the result is a line (the yellow ones) for
each row (column) indicating the places where the face cen-
ters will likely to appear, so that, under the assumption that
all the lines can be correctly detected in a newly taken im-
age (call target image hereafter), we can assign a face to the
nearest line(s) to identify its row (column) number(s). To
detect the lines in the target image, we use the method [29]
again (which we employ for image stitching) to find match-
ing points between the source and target images (see the
green lines from the upper-left to upper-right in Figure 3),
and to calculate the coordinate transformation matrix, on
the basis of which we transform the source image into the
coordinate plane of the target (as shown in the bottom-left
of Figure 3). This process is called image alignment in litera-
ture [13], which also transforms each row (column) indicator
(i.e., line) into the target coordinate plane, so that we can
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Figure 4: Result of student localization and a partial
view of the face graph G.

use Random Sample Consensus (RANSAC) [35] to find the
regression model for each of the transformed row (column)
indicator and then apply to the target image. To avoid being
biased by noises or outliers when using all points for regres-
sion, RANSAC automatically searches a set of points which
can represent the distribution of the majority of the data, so
that, in our case, using RANSAC for regression can filter out
the points lying in the distorted parts of each transformed
row (column) indicator (see the bottom-left of Figure 3).
The result of RANSAC is shown in the bottom-right of Fig-
ure 3. Since the image alignment is a comparably matured
technique, we skip the details here for space limitation. The
reader is referred to [29] for more details. Note that the
alignment has solved the inconsistency issue of view-points
at the same time. As shown in Figure 4, the result of stu-
dent localization can be represented as a face graph G for
further analysis, where three types of extra nodes, i.e., the
“empty seats”, “aisle” and “wall”, are automatically added
for providing more precise neighboring information. To tra-
verse the face graph conveniently, we define a function N (x)
on G, which returns a set of faces that are the neighbors for
any given x within an 8-neighbor system.

3.3 Face Recognition within A Social Context
Our scheme for recognizing the identities of students in-

clude two stages: a local classification stage which recognizes
each student individually by only considering her/his visual
features, and a social inference stage which infers the iden-
tity of a student regarding to those of her/his neighbors in
current classroom, with the hope that further considering
the social context of a student can help improve the per-
formance of weak classifiers in the local stage. This can be
formulated as an iterative process as

p
(i+1)(x) = λSocial(i)(x) + (1− λ)Local(x) (1)

where the superscript (i+1) indicates the iteration number,

x represents an observation of a face, p(i+1)(x) is a vector
encapsulating a posterior probability distribution p(lk|x) at

the (i + 1)-th iteration over a set of identity labels (e.g.,

names, student IDs) L = {lk}
|L|
k=0, Local(.) and Social(.)

are functions for local classification and social inference re-
spectively, and λ ∈ [0, 1] is a factor to control speed of
converging and to balance the influence of the two func-
tions at the same time. The process will converge when
‖p(i+1)(x) − p

(i)(x)‖ → 0. There are two strategies which
have been considered to utilize the social context of x for
improving student recognition. First, the process iteratively
fuses the result of social inference into that of the local clas-
sification, so that the classification results of the weak local
classifiers can be improved through collaborative learning
with the neighboring classifiers. Second, the process will be
performed on the face graph G (see Figure 4) which defines
the neighboring interaction-ship. This enables the effort of
collaboration to be propagated to the whole classroom, with
the hope that, once the process converges, the identity la-
bels assigned to faces are the most consistent one to both
the neighboring interaction-ship in the face graph and the
social context encapsulated in the social network. In the rest
of this section, we describe our methods for implementing
the local classification and social inference functions.

3.3.1 Local Classification Function Local(.)

The local classification can be implemented by employing
any state-of-the-art face recognition approach developed in
Computer Vision. In our case, we choose the one proposed
by Wright et al. [33], which picks several sample images from
each student to compose a dictionary, and represents each
instance x as a linear combination of the samples in the dic-
tionary by associating each sample with a coefficient through
Sparse Coding. This results in a set of coefficients with a
minimized number of non-zero entities assigned to the sam-
ples that are most similar to x. Therefore, we can calculate
the posterior probability that x is from a given student by
accumulating the coefficients of her/his sample images. By
repeating this for all the students, the output of Local(.) is
a vector q(x) which encapsulates another posterior proba-
bility distribution q(lk|x) over L.

3.3.2 Social Inference Function Social(.)

To utilize the in-class social context for student recogni-
tion, a basic belief is that a student would likely to appear
if her/his potential teammates appear at the neighboring
seats. Let us temporarily assume this co-occurrence can be
learnt form the in-class student-to-student social network
(the details of the network construction will be given later
in Section 4). The interaction-ship of any label pair (lk, ln)
can thus be represented as a conditional probability π(lk|ln)
indicating how likely lk will be observed when ln appear
at its neighboring seats. The pair-wise interaction-ship can
be encapsulated into a matrix R|L|×|L| where each entity
equals to Rk,n = π(lk|ln). The social inference function is
then implemented as

Social(i)(x) =
1

|N (x)|

∑

y∈N (x)

R · p(i)(y) (2)

where N (x) is the neighboring function we define in Sec-
tion 3.2. Eq. (2) is intuitively a function which summarizes
the recognition results of x’s neighbor nodes on G. Later in
Eq. (1), the summarized result will be iteratively prorogated
to x after fusing with the output of Local(.).
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It is worth mentioning that this iterative recognition scheme
might be closely related to the Random Walk Model, and
also possible to be extended to Markov Random Field or
Conditional Random Field. To keep this pilot study as sim-
ple/straightforward as possible, we leave these for future in-
vestigation.

Once the iteration is converged, we can obtain a vector
p̂(x) for each face, indicating its identity potentials over the
label set L. Now we need to make a decision by assigning
x to a determined identity label, which can be represented
as an unit vector e over the label set L. The components
of e are all zeros excepting the k-th one, indicating the as-
signment of x to the k-th label in L. The rationality of
the assignment can then be measured by the inner product
< p̂(x),e >, on the basis of which we can use Dynamic Pro-
gramming to maximize the sum of rationalities of all faces,
and therefore complete the recognition process.

4. SOCIAL NETWORK CONSTRUCTION

AND PEDAGOGICAL ANALYSIS
In this section, we construct two in-class social networks,

namely the student-to-student and student-to-teacher net-
works respectively, on the basis of which we perform peda-
gogical analysis following some of the educational literature
(e.g., [5,12,22,25–28], where the analysis are conventionally
conducted by questionnaires/interviews).

4.1 Student-to-Student Social Network
With the positions and identities recognized in last sec-

tion, the construction of student-to-student network can be
performed by using students as vertexes and connecting two
vertexes according to the frequency (or co-occurrence) of the
corresponding students sitting in neighboring seats (i.e., the
joint probability π(lk, ln)). We also record the frequency of
the attendance for each vertex as it can be used as the prior
probability for each label (i.e., π(lk)). This will make the
calculations of π(lk|ln) and π(ln|lk) in Section 3.3 be easily
carried out using Bayes’ formula. Note that, for the first
class, when the position indicators and the face detectors
have not been trained yet, these probabilities are calculated
from the results of manual annotation (i.e., positions identi-
fied by teachers and labels provided by the students during
attendance checking).

Following the main stream of pedagogical studies using
social network analysis (SNA) [24], to measure the “sense of
community” of each student, we calculate the betweenness,
closeness and degree (which are commonly adopted mea-
sures in educational research, e.g., [5, 12]) for each vertex
in the student-to-student social network. Linear regression
analysis can then be applied on these measures to investigate
their relation to students’ performance (the final grades).

Let us denote V the set of vertexes in the network. The
betweenness (usually called betweenness centrality in litera-
ture) is defined as

Betweenness(v) =
∑

s6=v 6=t, s,v,t∈V

gst(v)

gst
(3)

where gst is the number of shortest paths from s ∈ V to
t ∈ V, and gst(v) is the number of shortest paths from s
to t that v ∈ V lies in. In SNA theory, the betweenness

measures a student’s connectivity by further considering the
“neighbors” she/he is indirectly connected with, which gives

a higher value to those bridging social groups. A “between”
student is the cutpoint in the shortest path connecting two
other students, and thus might control the flow of informa-
tion/resource exchange. The larger betweenness a student
has, the higher centrality she/he is in the community.

The closeness is measured by

Closeness(v) =





∑

v 6=t, v,t∈V

d(v, t)





−1

(4)

where d(v, t) = d(t, v) is the shortest distance (called geodesic

distance in SNA) between two vertexes v ∈ V and t ∈ V.
The closeness is intuitively the inverse of the sum of geodesic
distances from a students to her/his peers, which reflects
the ability of a student to access information through other
community members.

The Degree(v) of a student is defined as the number of
students with whom v is directly connected. It is a local
measure of centrality of a student within the small social
group she/he is directly involved.

4.2 Student-to-Teacher Social Network
As introduced in Section 2, in educational literature, the

student-to-teacher interaction-ship is usually inferred from
the students’ preference of sitting positions. The corre-
sponding network is thus a star shaped graph with the teacher
at the center, connected by the students through edges weighted
by their in-class distances to the teacher (as shown in Fig-
ure 1). With the student localization method proposed in
Section 3, we can calculate the distances more accurately,
rather than a qualitative measure by “far” or “close” (in-
dicated by which row a student sits) in conventional stud-
ies [22, 25–28]. Furthermore, once the distances are deter-
mined, we can employ linear regression analysis again to
investigate the “quantitative” relation between the students’
sitting preference and their academic performances, which
is not easy to be obtained in conventional studies.

Suppose a student is sitting at the i-th row and j-column
in the classroom. With two additional “virtual rows” added
in front of the first row and every aisle being considered as
a “virtual column”, the student’s distance to teacher can be
estimated by her/his geometric distance to the center of the
podium (where most teachers usually stand at) as

Distance(i, j) =

√

i2 + (j −
c

2
)2 (5)

where c is the total numbers of columns, and the podium is
assumed to be placed at the 0-th row and the ( c

2
)-th column.

5. EXPERIMENT-I: DOSE THE APPROACH

TECHNICALLY WORK?
In this section, we validate the practicability of the pro-

posed framework with a technical perspective, while the ped-
agogical effectiveness will be evaluated in next section. All
the experiments are conducted on a dataset collected from 6
courses (related to Image Processing, Pattern Recognition,
Data Mining, or Multimedia Computing) at two universi-
ties across two semesters, which include 379 students aging
from 20 to 24 with 5,040 faces captured at 132 classes. Dis-
cussions between students are highly encouraged in class so
as to observe the co-learning patterns. The ground-truth
is composed of labels provided (when no machine labels
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Figure 5: Results of student localization in a sparse,
normal and dense classroom respectively.

are predicted) or corrected (when machine predictions are
wrong) by the students themselves through the “attendance
checking” website. The dataset can be downloaded at our
demonstration page2.

5.1 Student Localization
With method introduced in Section 3.2, we are able to

detect the positions of students accurately. Figure 5 shows
three examples form the sparse, normal, and dense class re-
spectively. It is easy to see that the localization method
works well for the students located at the central-front ar-
eas, even when the density is considerably high. In general,
columns are easier to be correctly detected than rows. To
further evaluate the accuracy, we manually check the local-
ization results for 11 classes of the most dense course, where
631 positions in total need to be recognized. The precision
is as high as 83.77%, and 94.17% of the errors are caused
by mis-assignments of the student with only one row shift
to front or back. Due to the 8-neighbor system adopted in
face recognition (cf. Section 3.3), the influence of the one-
row mis-assignment errors is not significant for the processes
after localization.

5.2 Face Recognition with Social Inference
To evaluate our social network (SN) based face recognition

scheme, we use three popularly employed baselines: sparse
coding method (Sparse) [33], Eigenfaces [31], and Fisher-

faces [32]. All baselines are integrated into the proposed
scheme to create three network-based versions as Sparse+SN,
Eigenfaces+SN, and Fisherfaces+SN (with the the λ in Eq. (1)
empirically set to 0.85). Since in our study, the students
will provide the labels for theirs faces after each class, the
number of training examples for each student is then in-

2http://www.cs.cityu.edu.hk/∼xiaoyong/in.class.sn/
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Figure 6: Comparison of recognition rates.

creasing periodically, and the corresponding classifier will
be retrained with the same manner.

The result of performances comparison is shown in Fig-
ure 6, where the recognition rate is defined as the rate of
students being correctly recognized across all classes at the
point of time. The maximal number of classes in Figure 6 is
9 because the minimal number of classes for a course is 10
in our dataset. It is easy to see that, with the help of the
in-class social network, the recognition rates of the baselines
are significantly improved by 28.28%±18.56, 32.79%±16.33,
and 34.74% ± 18.75, for Sparse, Eignfaces and Fisherfaces,
respectively. The accuracies of the network-based versions
are all approaching 65% after the 4-th class (i.e., there are
generally 4 training examples for each student), which tech-
nically means that more than 3/5 of the students no longer
need to label their faces. It has largely reduced the annota-
tion effort.

For the three baselines, Sparse, Eignfaces and Fisherfaces

have all demonstrated moderate performances with the fi-
nal recognition rates less than 70%, which are much lower
than those reported in literature (e.g., generally over 80%
for all of them in [33]). It might confirm the hypothesis
in several recent surveys [15–17] that most of the conven-
tional approaches may work awkwardly in an uncontrolled
environment. Nevertheless, Sparse still appears to work
slightly better than the other two, which may attribute to
its “example-based”nature. In a scenario where the training
faces are scarce and are with high diversity, “summarizing”
the examples with holistic features may even cause confu-
sion, which sequentially affects the performances of Eign-

faces and Fisherfaces. By contrast, without the modeling
process, example-based methods like Sparse may work bet-
ter in this case, with the hope that a new instance can be
matched to some of the training examples with high prob-
ability when the corresponding student occasionally sit at
the similar position in the classroom where she/he sits pre-
viously, so that her/his pose to the camera, even might be a
difficult case for conventional face recognition, is similar to
those of the training examples. However, the slight favorite
of Sparse disappears when all the baselines are upgraded to
their network-based versions. This again confirms that the
employment of social inference is the biggest contributor to
the recognition rate improvement.
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Figure 7: Student-to-student social network con-
structed from the course with the highest density.
The edges with weights smaller than 0.3 are removed
for better visualization.

5.3 Social Network Construction
With the students’ positions localized and their faces rec-

ognized, the construction of the in-class social networks are
straightforward by following the methods introduced in Sec-
tion 4. Figure 7 shows the student-to-student social network
for the most dense course including 66 students, where the
students who are closely related in the network are those fre-
quently sitting near to each other, while the students apart
from the center of the community are those who choose their
seat randomly. The student-to-teacher social network has
also been successfully constructed, which is simply a star
shaped graph as shown in Figure 1. We skip its presenta-
tion here for space limitation. The whole graph can be found
on our demonstration page2.

To validate the ability of the social network to model the
students’ relationship in real-life, a quick email survey has
been conducted involving all the students by asking them
to a) rate the top-5 classmates she/he most communicates
with; b) give classmates (up to 5) she/he builds friend-
ship with. Till the time of writing, 324 students have re-
sponded. Using the data as ground-truth, we observe that
the student-to-student social network can predict the in-
class interaction-ship with mean average precision (MAP)
as high as 96.67% and the real-life friendship with 87.23%.

6. EXPERIMENT-II: DOSE THE PEDAGOG-

ICAL ANALYSIS MAKE SENSE?
In this section, we investigate the students’ positions in

the two in-class social networks in related to their academic
performances. All measures (i.e., betweenness, closeness, de-
gree, distances, and final grades) are normalized into the
range of [0, 1]. Regression analysis is adopted to study the
relations.

6.1 Student-to-Student Interaction-ship
Figure 8 shows the students’ final grades over their be-

tweenness to investigate whether the betweenness can be a
predictor for the academic performance (as in [5,12]). While
a positive correlation between the two variables can be seen
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Figure 8: Regression analysis on the relation be-
tween the students’ betweenness and final grades.

apparently, we conduct a linear regression following the work
in [5]. The model fits the data well, further confirming the
positive correlation between the performance and the be-

tweenness. Note that in [5], the authors have observed a
negative correlation between these two variables. This is
not conflicting to our result, in the way that the student
social network in [5] is constructed from the communica-
tion logs (of an online forum) where the students having
high betweenness might be those who have spent compa-
rably more time online and who are enthusiastic about re-
plying the posts of others. Our result further suggests the
difference between the students’ behaviors in their “virtual”
and “real” lives. Compared with the result reported in [12]
where the network is learnt from the questionnaires in which
the students rate their interaction-ship to others, our result
is consistent to the first conclusion the authors have made
that the successful students are those with high between-

ness because they are willing to communicate with others
and benefit from the co-learning. However, the authors have
also concluded that the students with high betweenness are
not necessarily those successful in school, because one excep-
tion has been observed in their study. On the basis of the
fact that the conclusions in [12] are made on only 4 students
with high betweenness, we argue that the one exception is
possibly one of those outliers (can also be found in bottom-
right of Figure 8) which makes the conclusion statistically
unfair. Nevertheless, we treat our result not conclusive. It
needs investigations in larger scale and interdisciplinary col-
laborations. In addition, we have also conducted the regres-
sions with logarithmic and quadratic models, as shown in
Figure 8, in which the logarithmic model demonstrates the
best ability to fit the data than the other two.

For the closesness and degree, the regression results shown
in Figures 9 and 10 have demonstrated similar relations.
This suggests that a student is tend to success in school if
she/he has an averagely shorter path to access the knowl-
edge of others, or if she/he has more “friends” to provide
immediate information for learning. The results is consis-
tent to those reported in [12] and [5]. Moreover, the linear,
logarithmic and quadratic have demonstrated similar abili-
ties for regression analysis in both Figures 9 and 10.

646



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Closeness

F
in

a
l 
G

ra
d

e

Data (Closeness vs. Final Grade)

Quadratic Model

Linear Model

Logarithmic Model

Figure 9: Regression analysis on the relation be-
tween the students’ closeness and final grades..

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Degree

F
in

a
l 

G
ra

d
e

Data (Degree vs. Final Grade)

Quadratic Model

Linear Model

Logarithmic Model

Figure 10: Regression analysis on the relation be-
tween the students’ degrees and final grades.

6.2 Student-to-Teacher Interaction-ship
Figure 11 depicts the relation between the students’ final

grades and their average distances to the teachers. Com-
pared to the relations observed in the student-to-student so-
cial network, the data are more sparsely distributed, which
makes none of the linear, quadratic, and logarithmic regres-
sion model it well. At the first glance, this seems contra-
dictory to the conventional belief among educational re-
searchers that successful students sit at the central-front
of the classroom. However, after investigating 10 students
(randomly picked) who achieve high grades but do not al-
ways sit at the central-front, we find 80% of them prefer
to communicate with the teachers by asking questions after
the classes. According to the study by Waller [1], those stu-
dent can represent the self-starters who do not depend too
much on teachers for learning, so that they may not always
choose the central-front to sit. In this case, we perform a
RANSAC algorithm [35] to search the best model which ex-
plains the majority of the data. The resulting model named
“Majority Model” in Figure 11 indicates that in a general
sense, the closer the students sit to the teachers, the better
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Figure 11: Regression analysis on the relation be-
tween the students’ distance-to-teacher and their fi-
nal grades.

achievement they obtain in school. In fact, Figure 11 pro-
vides a statistical explanation to the dispute about whether
the seat preference determines the academic success, in the
way that using qualitative approaches on only several sam-
ples, it is easy for conventional studies to reach the conclu-
sions that there is no correlation between the seat preference
and the academic performance (like in [28] and our first at-
tempt) when one models the whole population with linear
model, and that the two are closely related (like in conven-
tional belief and those reported in [22,25–28]) when samples
are mainly picked from the main body of the population.
In other words, in conventional studies, it is thus easy to
be confused when the statistical evidences on a large-scale
population are not available.

6.3 Test of Generalizability
We have conducted two leave-one-out cross validation ex-

periments to validate the generalizability of the results in
Sections 6.1 and 6.2. Given one class for testing and the rest
of classes for training, we check a) if the distribution learnt
from the training is statistically form the same distribution
of the class for testing using two-sample Hotelling T-Square
test; b) if the regression model learnt from the training can
explain that of the class for testing. The answers for a) are
all YES at significance level 0.01, with the answers for b) are
all YES as well indicated by the goodness-of-fit measured by
R2 all above 86.34%.

7. CONCLUSION
We have conducted a pilot study for equipping conven-

tional pedagogical analysis with multimedia technology. With
the image-based approach proposed in this paper, we are
able to collect the large-scale in-class social data in an au-
tomatic manner, and conduct the pedagogical analysis in
a quantitative way. The experimental results have vali-
dated both the technical and pedagogical effectiveness of
the approach. In addition, we have demonstrated that,
with the support of the large-scale statistics, it is possible
to find why some educational researchers reach conflicting
conclusions on the relation between the students’ positions
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in social networks and their academic performances. Fur-
thermore, compared with the student-to-teacher interaction-
ship, the student-to-student interaction-ship seems a more
reliable predictor for the students’ academic performances.
However, since the focus of this paper is mainly on the prac-
ticability of utilizing multimedia technology for educational
studies, the results of the pedagogical analysis reported in
between are thus not conclusive. It needs more interdisci-
plinary collaborations to explain. Moreover, we believe that,
with more sophisticated data mining techniques, there are
more valuable information which can be explored from the
in-class social networks constructed in this paper.
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