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ABSTRACT 
Running a SURF (Speeded Up Robust Features) detector on 
mobile devices remains too slow to support emerging applications 
such as mobile augmented reality. Porting it without adapting the 
algorithm to account for mobile platform limitations could result 
in significant runtime degradation.   In this paper, we identify two 
mismatches between the SURF algorithm and the mobile 
hardware that cause substantial slow-down of the point detection 
process: 1) mismatch between the data access pattern and the 
small cache size, and 2) mismatch between the huge amount of 
branches and high pipeline hazard penalty. 

To address the mismatches, we propose two techniques: tiled 
SURF and gradient moment based orientation assignment. Tiled 
SURF improves data locality and greatly reduces memory traffic. 
A method for determining the optimal tile sizes, named content-
aware tiling, is designed to minimize runtime and maximize 
detection accuracy. To avoid the penalties caused by pipeline 
hazards, we replace the original orientation operator with 
branching-free gradient moment computations. 

The proposed techniques are tested on three mobile platforms. 
Comparing to the original SURF, the accelerated SURF achieves 
a 6x~8x speedup without sacrificing recognition accuracy. 
Meanwhile, it achieves 59%~80% reductions in the runtime ratio 
of the detector running on mobile platforms compared with on 
x86-based PCs.  

Categories and Subject Descriptors: I.4.7 [Image 
Processing and Computer Vision]: Feature Measurement – feature 
representation. 
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SURF, point detection, acceleration, mobile phones, data access 
patterns, cache miss, branch prediction, pipeline hazards penalty  

1. INTRODUCTION 
With the pervasive presence of low-cost, high quality cameras on 
mobile devices such as smartphones, we are witnessing an 
explosive growth of embedded computer vision applications like 
mobile augmented reality, mobile object recognition and image 
search. Interest point detection is a common task for these 
applications. Over the past decades, several detectors [1, 2, 3, 4, 
5, 16] have been developed. The SURF detector [1], which stands 
for Speeded Up Robust Features, is arguably one of the best 
detectors for achieving both high efficiency and robustness.  

However, even with enormous advancements in the application 
processor (AP), the computing power and memory bandwidth of 
mobile devices are still limited. These limitations are exacerbated 
when running a SURF detector on a mobile platform, leading to 
much higher performance overhead than other lighter-weight 
detectors. As shown in Table 1, running an ORB (Oriented Fast 
and Rotated BRIEF) detector [3], a state-of-the-art detector 
designed primarily for efficiency, takes 170ms on a Motorola 
Xoom1 and 40ms on an i5-based laptop, yielding a 4x speed gap. 
However, running a SURF detector on them takes 2156ms and 
143ms respectively, indicating a 15x speed gap.  

Although some light-weight detectors [3, 4, 5] are more efficient 
than SURF, none of them can match SURF’s robustness [22]. 
They generally cannot achieve satisfactory performance for those 
mobile applications which demand high accuracy or require 
handling content with large photometric/geometric changes. 
There are also several techniques for improving SURF’s 
efficiency by exploiting coherency between consecutive frames 
[8], employing graphics processing units (GPU) for parallel 
computing [10] or optimizing various aspects of the 
implementation [9]. However, none of them analyzes the causes 
for a SURF detector’s poor efficiency on a mobile platform.  

We argue that the efficiency capability of a SURF detector on 
mobile platforms is considerably undervalued. In this paper, we 
identify and analyze two mismatches between the computations 
used in the existing SURF algorithm and common mobile 
hardware platforms, which are the sources of significant 
performance degradation: 

1) Mismatch between data access pattern and small cache size of 
a mobile platform. A SURF detector relies on an integral image 
and accesses it using a sliding window of successively larger size 
for different scales. But a 2D array is stored in a row-based 
fashion in memory (cache and DRAM), not in a window-based 
fashion; pixels in a single sliding window reside in multiple 
memory rows (see Figure 1 (a)). The data cache size of a mobile 
AP, typically 32KB for today’s devices, is too small to cache all 
memory rows for pixels involved in one sliding window, leading 
to cache misses and cache line replacements and, in turn, 
incurring expensive memory access. 

2) Mismatch between a huge amount of data-dependent branches 
in the algorithm and high pipeline hazard penalty of the mobile 
platform. To identify a dominant orientation, a SURF detector 
analyzes gradient distribution around an interest point via a 
gradient histogram. During this analysis, every pixel around an 
interest point is mapped to corresponding histogram bins via a set 
of branch operations. The total number of pixels involved in this 

Table 1. Comparison of ORB and SURF Detector on  
mobile device (Motorola Xoom1) and PC (Thinkpad T420) 

         Time 
Detector Phone (ms) PC (ms) Speedup 

ORB 
SURF 

170 
2156 

40 
143 

4x 
15x 
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analysis is huge. Thus, the entire process involves an enormous 
amount of data-dependent branch operations which are not easily 
predicted. However, the branch predictor and the speculation of 
out-of-order execution of an ARM (Advanced RISC Machines) 
based mobile AP are usually not as advanced as that of a laptop or 
desktop processor. Consequently, it incurs high pipeline hazard 
penalties, yielding significant performance degradation. 

In this paper we propose two techniques, namely tiled SURF and 
gradient moment based orientation assignment, to effectively 
address the above mismatches.  Tiled SURF divides an image into 
tiles (see Figure 1 (b)) and performs point detection for each tile 
individually to exploit local spatial coherences and reduce 
memory traffic. Selecting proper tile size is essential to the 
success of the tiled SURF technique. In this paper we propose a 
content-aware tile size selection method, based on which a set of 
heterogeneous tile sizes can be automatically selected to minimize 
memory traffic and maximize recognition accuracy. To avoid 
pipeline hazards penalties, we replace the original gradient 
histogram method with a new branching-free orientation operator 
based on gradient moments. The two proposed techniques can be 
seamlessly integrated into a single SURF point detection 
framework and respectively speed up the two steps (i.e. point 
detection and orientation estimation) of the process.   

The proposed techniques are evaluated using three mobile 
platforms. Experimental results demonstrate an overall 6x~8x 
speedup comparing to the latest OpenCV SURF implementation 
[14] and 59%~80% reductions in the runtime ratio of the detector 
running on mobile platforms compared with those on an Intel i5-
based PC. For mobile recognition tasks with 228 objects, the 
accelerated SURF achieves similar detection rate and precision 
compared to the original SURF and 58% improvement relative to 
an ORB detector.  

The following paper is organized as follows: Sec. 2 gives an 
overview of the related work. Sec. 3 discusses the two causes for 
the inferior performance of SURF on mobile platforms, and Sec. 4 
provides details of two proposed solutions. In Sec.5, we provide 
empirical results on three mobile platforms for speed and 
robustness evaluation. Sec. 6 concludes the paper. 

2. RELATED WORK 
There are several light-weight point detectors designed primarily 
for high efficiency on mobile devices. Among them, the FAST 
(Features from Accelerated Segment Test) detector [4, 5] and its 
variants have been proven quite successful for many real-time 
mobile applications such as mobile pose tracking [6] and mobile 
panoramic mapping [7]. FAST is efficient and can find interest 
points with a reasonable accuracy, but it is neither scale-invariant 
nor rotation-invariant. To address these limitations, ORB [3] 
augments FAST with an image pyramid scheme for scale and an 
orientation operator based on intensity moments. Although FAST 
and ORB are faster than SURF, both of them are less robust with 
respect to photometric and geometric changes. In practice, FAST, 
ORB and SURF provide alternative detector choices to meet 
specific requirements for various mobile applications. 

There have been several successful attempts to speed up SURF. 
Ta et al. [8] proposed a SURFTrac algorithm which exploits 
coherency in video frames to quickly detect interest points at 
constrained locations. They achieved a 5x speedup compared to 
the original SURF, but their approach can only be used for 
applications with continuous image frames. Chen et al. [9] 

proposed a series of implementation optimizations and achieved a 
30% speedup over the baseline implementation. In particular, 
their optimizations include adjusting the sampling rate to reduce 
computations for local maximum extraction, using approximation 
for the arctan function and reducing floating point computations 
in the orientation computation phase. Terriberry et al. [10] 
described an efficient SURF implementation on GPUs using 
OpenCL. However, to date, mobile GPUs only support OpenGL 
ES and thus porting an implementation from desktop-based GPUs 
to mobile GPUs remains a tedious task. As mentioned before, 
none of these techniques identifies the bottlenecks and causes for 
the slow-down of running a SURF detector on mobile platforms. 
In this paper, we focus on understanding these reasons and 
addressing them. 

Several attempts have been made to improve the performance of 
mobile computer vision through optimization of mobile hardware. 
The authors in [12] provided a mobile computer vision 
benchmarking suite, called MEVBench, to understand mobile 
vision processing characteristics at the architectural level. Silpa et 
al. [13] attempted to improve the performance by patch memory 
optimization when using texture memory in mobile GPUs. 
Clemons et al. [11] proposed an embedded heterogeneous 
multicore design named EFFEX for feature extraction. EFFEX 
incorporates a new patch memory architecture which stores data 
in region-order, rather than scan-line order, leading to high spatial 
locality in data access. Their goal of improving data locality is 
similar to our tiled SURF. However, they leverage new hardware 
design, while we rely on software adaptation and optimization.  

3. SURF ON MOBILE DEVICES 
In this section, we analyze the two causes for the substantial slow-
down of running a SURF detector on mobile platforms. 

3.1 Mismatch of Data Access Pattern and 
Small Cache Size of Mobile Platforms 
In this subsection, we first review the relevant terms and features 
of cache miss and reuse. Then we briefly describe the SURF 
detection process and its data access pattern. After that we discuss 
why this data access pattern could cause high cache miss on 
mobile platforms.   

3.1.1 Background  
A cache miss refers to a failed attempt to read or write a piece of 
data in the cache, resulting in a main memory access with much 
longer latency. It can be divided into three categories: 

 

Figure 1. Illustration of data locality and access pattern in (a) 
the original SURF detector, and (b) the tiled SURF. Each 
color represents data stored in a unique DRAM row. In the 
original SURF, a sliding window needs to access multiple
DRAM rows, leading to frequent cache misses, while in tiled 
SURF, all required data within a sliding window can be 
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 Compulsory miss – Occurs when a cache line is referred for 
the first time. These misses are inevitable. 

 Capacity miss – Occurs due to the finite size of the cache. 
When a program’s working set size is larger than the cache 
size and a cache line containing data that will be reused is 
replaced before it is reused, a capacity miss occurs when the 
displaced data is referenced again. 

 Interference miss – Occurs due to a conflict of cache 
mapping, i.e. a cache line that contains reusable data is 
replaced by another cache line that is mapped to the same 
location. Interference misses on arrays can be divided into 
two categories: 1) self-interference misses that are caused by 
an element in the same array. 2) cross-interference misses that 
are caused by an element in a different array. 

Reuse can be divided into two categories: 

 Spatial reuse – accesses to the same cache line by references 
to neighboring data elements. 

 Temporal reuse – accesses to the same data element multiple 
times.  

3.1.2 Review of SURF Point Detection  
A SURF detector selects interest points based on the determinant 
of Hessian matrix ( , )H X  : 

( , )  ( , )
( , )

( , )  ( , )

xx xy

xy yy

L X L X
H X

L X L X

 


 
 

  
  

 

where ( , )X x y is a pixel location in an Image I,  is a scale 
factor, ( , )xxL X  is the convolution of the Gaussian second-order 
derivative at location X and similarly for ( , )xyL X   and ( , )yyL X  . 

To speed up the process, a SURF detector approximates the 
Gaussian second-order derivatives with a combination of box 
filter responses, computed using the integral image technique. 
The approximated derivatives are denoted as Dxx, Dxy and Dyy and 
accordingly the approximate Hessian determinant is:  

2det( ) (0.9 )approx xx yy xyH D D D   

A SURF detector computes Hessian determinant values for every 
image pixel i over scales using box filters of successively larger 
size, yielding a determinant pyramid for the entire image. Then it 
applies a 3x3x3 local maximum extraction over the determinant 
pyramid to select interest points’ locations and corresponding 
salient scales. Pseudo Code 1 shows the process of Hessian 
determinant pyramid construction.  In each iteration of the outer 

loop S, one layer of Hessian determinant pyramid is constructed 
based on a reuse of integral image array Iintegral_img. In the inner 
loop P, elements of Iintegral_img are accessed using a sliding window 
for computing Dxx, Dxy and Dyy of every image pixel sequentially. 

3.1.3 Data Access Pattern of SURF Leads to Many 
Self-Interference Misses 
The data access pattern of SURF is determined by the box filter’s 
type and size. For example, a 9x9 box filter for Dyy accesses 8 
elements in a 9x9 rectangle in each iteration, e.g. element-
sets={A,B,C,D,E,F,G,H} in Figure 2 (a). In the next iteration P, 
the box filter is shifted one pixel to the right and accesses the 8 
elements located to the right of element-set, e.g. element-set’ = 
{A’,B’,C’,D’,E’,F’,G’,H’} in Figure 2 (a). 

We use a simple example to illustrate cache activities, shown in 
Figure 2 (b), caused by this data access pattern. Consider the 
layout of a 200x200 array Iintegral_img in a direct mapped cache that 
can hold 1024 elements of Iintegral_img (see Figure 3 (a)). Without 
loss of generality, we assume the first element of Iintegral_img falls 
in the first position of the cache and element-set = 
{A,B,C,D,E,F,G,H} is used for the first 9x9 Dyy box filter. The 2D 
Iintegral_img array is stored in a row-based order in the cache and 
sets are defined as groups of consecutive rows that can 
concurrently reside in the cache. In the example of Figure 3 the 
first set consists of rows 1 thought 5 and the first 24 elements of 
row 6. 

As SURF detection starts, the first set is loaded into the cache, as 

shown in Figure 2(b)-①, enabling references to {A, B, C, D}, 

which are located in the 1st and 4th rows. Then to access {E, F, G, 
H} which are in the 7th and 9th rows, the second set needs to be 

Figure 3. Row layout in a 1024-element cache for (a) 200x200 
Iintegral_img and (b) tiled Iintegral_img, tile size is (8*5+1) rows * 24 
columns  

Pseudo Code 1: Determinant Pyramid Construction  

    Input:            scales: total number of scales 
                         img_pixels: total number of image pixels 
    Output:         detpyr:  Hessian determinant pyramid   
    Variants:       Iintegral_img:  integral image array 
                         Dxx, Dyy, Dxy:  approximate Gaussian second-    
                         order derivatives in x, y and x-y directions 

procedure  ConstructDeterminantPyr 
     construct integral image Iintegral_img 

        for S = 1: scales 
          for P = 1: img_pixels 
              access 8 elements of  Iintegral_img   compute Dxx 
              access  8 elements of  Iintegral_img  compute Dyy 
              access 12 elements of  Iintegral_img  compute Dxy 
              compute det  write back to detpry[S][P] 
           end 
     end  

 

Figure 2. Illustration of (a) one exemplar data access pattern 
on an integral image, and (b) corresponding activities in 
cache. In (a) the grey, white and black colors indicate that 
corresponding values are multiplied by 0, 1 and -2 
respectively. Each color in (b) represents a unique set of
consecutive rows that can concurrently reside in a cache. 
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fetched from memory and replaces the first set (see Figure 2(b)-

②). When shifting the box filter one pixel to the right, adjacent 

elements of {A, B, C, D} need to be accessed again (see Figure 

2(b)-③).  But at this moment, the first set has been replaced, and 

a self-interference miss occurs. In the worst case, every access to 
the first four elements of a box filter replaces cache lines that 
contain the latter four elements. Then accessing elements adjacent 
to the first four elements would cause another self-interference 
miss. As a result, sequentially computing 9x9 Dyy box filter 
responses based on a 200x200 integral image leads to as many as 
80,000 cache misses and cache line replacements. Similarly, 
computing Dxx and Dxy would also cause a similar amount of self-
interference misses. The self-interference miss would become 
more significant for both larger box filters and larger images. For 
instance, computing a 15x15 box filter response on a 200x200 
image or a 9x9 filter response on a 400x400 image, each set can 
only contain two elements of a box filter, resulting in twice as 
many cache misses. 

Today’s mobile devices, for example Motorola’s Xoom1 tablet, 
typically feature a 32KB L1 data cache, a 512KB L2 data cache 
and a 1280x800 display. An integral image size of 1281x801 (one 
pixel larger in width and height to store the sums of all pixels left 
and above a 1280x800 image) includes 1,026,081 elements. Since 
each element of an integral image is a 4-Byte integer, 32KB L1 
cache and 512KB L2 data cache can only hold up to 8,000 and 
128,000 elements, i.e. 16 rows and 99 rows of the array, 
respectively. As a result, box filters larger than 16x16 and 99x99 
would lead to L1 and L2 cache misses in the worst case. In 
practice, operating systems and other programs inevitably occupy 
some of the cache, thus there is even smaller available cache size 
for user applications. As a result even smaller box filters than the 
above-mentioned would incur cache misses.   

3.2 Mismatch of Branches and High Pipeline 
Hazards Penalty of Mobile Platforms 
In this subsection, we first briefly review the orientation 
computation used in a SURF detector. Then we discuss why this 
computation incurs a large penalty in mobile platforms.   

3.2.1 Review of SURF Orientation Assignment 
SURF relies on gradient histograms to identify dominant 
orientations. First, the entire orientation space is quantized into N 
histogram bins, each of which represents a sliding orientation 
window covering an angle of / 3 . Then we compute gradient 
responses of every pixel in a circular neighborhood of an interest 
point. Based on the gradient orientation of a pixel, we map it to 
the corresponding histogram bins and add its gradient response to 
these bins. Finally, the bin with the largest responses is utilized to 
calculate the dominant orientations of interest points. Pseudo 
Code 2 illustrates an OpenCV2.3.1 implementation of this 
process.   

3.2.2 Pipeline Hazard Penalty 
A large number of pixels are involved in the orientation analysis. 
Assuming that an interest point involves ~100 pixels in its 
neighborhood, then for ~2000 interest points, there would be 
~200k pixels involved in total. According to Pseudo Code 2, each 
pixel is mapped to the corresponding histogram bins via a series 
of branch operations, i.e. “If-then-else” expression. Accordingly, 
the entire process involves a huge number of branches.  

Branches cause control hazards (also called branch hazards) in a 
hardware pipeline, i.e. when a branch instruction is fetched, the 
next instruction location is not known until the branch instruction 
finishes execution. Mis-predicting locations of the subsequent 
instructions would require flushing the entire pipeline and thus 
incur a penalty. Modern mobile processors usually use a deep 
pipeline to increase the CPI, which increase the penalty of each 
mis-prediction. Moreover, for mobile processors, the branch 
predictor hardware and other hazard solutions (e.g. out-of-order 
execution), while improving for each new generation, are still not 
as sophisticated as desktop and laptop processors (e.g. Intel cores 
i5 and i7). A conventional SURF implementation involves a huge 
number of branching operations which cause a substantial penalty 
due to pipeline hazards and degrade its performance on a mobile 
platform. 

To evaluate the impact of control hazard penalty on the runtime, 
we implemented another version, i.e. hist-lookup table, using a 
lookup table which stores the correlations between each 
orientation and the corresponding histogram bins. Without 
changing the functionality and other computations, the new 
implementation replaces branches with a lookup table thus avoids 
control hazards. We compare the time cost of the two 
implementations on three mobile platforms, Motorola Droid, HTC 
Thunderbolt, and Motorola Xoom1 tablet.  

The results are summarized in Table 2, from which two 
observations can be made. First, comparing the time cost of hist-
branch vs. hist-lookup table on three mobile platforms and an i5-
based laptop, hist-lookup table can greatly reduce the runtime by 
52% on a Droid, 60% on a Thunderbolt, and 32% on a Xoom1. 
But it only achieves a 9.6% runtime reduction on a T420 laptop. 
This result confirms that branch hazard penalty has a much 
greater runtime impact on a mobile platform than on a PC. 

Pseudo Code 2:  Orientation by Histogram of Gradient 

    Input:      interest-pts: interest points 
                    step: orientation increase step 
    Output:   dominate-oris:  dominant orientations   
    Variants: histgradient:  gradient histogram 
                    pixelsneigh:  neighboring pixels of interest point       
                             responses: gradient response array of  pixelsneigh 

                            oris: gradient orientation array of  pixelsneigh 

procedure: ComputeDominateOris 
     for Pt = interest-pts 
           compute responses 
           compute oris 
           for Ori = 0: step: 360 
                 for P = pixelsneigh 
                       if (–PI/6 < (oris[P]-Ori) <= PI/6) 
                             histgradient [Ori/step] +=  responses[P] 
                        endif 
                  end 
           end 
            dominate-oris [Pt] = argmax( histgradient ) 
      end  

Table 2. Runtime of Orientation Computation based on 
Gradient Histogram on Mobile Devices and Thinkpad T420 

Time Cost (ms) Droid Thunder-
bolt 

Xoom1 ThinkPad 
T420 

hist-branch 
hist-lookup table 

2954 
1401 

1295 
518 

717 
485 

75 
83 
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Therefore, avoiding such penalties is critical for a mobile 
implementation. Second, we observe that the hist-lookup table 
version achieves larger runtime reduction on the Droid and 
Thunderbolt than Xoom1. This is because the mobile processors 
in three devices have different degrees of pipeline hazard penalty. 
Droid uses a Cortex-A8 processor and Thunderbolt uses a 
Scorpion, both of which have a 13-cycle branch mis-predict 
penalty, while Xoom1 features a Cortex-A9 processor that 
shortens the pipeline to 8 cycles.   

While this simple adjustment in implementation to a large degree 
alleviates the problem, the performance of hist-lookup table is 
still too slow for some mobile applications such as augmented 
reality. In the following section, we present a new method to 
further improve SURF’s speed. It should also be pointed out that 
although we use SURF to illustrate the problem, the mismatch 
also exists in several other computer vision algorithms so the 
proposed solution is applicable to a broader spectrum of mobile 
applications.   

4. PROPOSED TECHNIQUES 
In this section, we introduce two techniques, namely content-
aware tiling based SURF and gradient moment based orientation 
assignment, to address the mismatches discussed in Section 3. 

4.1  Content-Aware Tiling based SURF 
Tiling has been extensively studied and applied to graphics 
rending [17] and complier optimization [18]. In graphics, tiled 
rendering divides an image into regular grids in the image space 
to exploit local spatial coherences and reduces the hardware 
resources required in graphic rendering. In compiler optimization, 
tiling (also known as blocking) is performed on nested loops to 
move accesses to reused data closer together in the iteration space 
to eliminate capacity misses. 

Our problem is similar to a loop optimization problem. However, 
advanced compliers cannot solve our problem because compiler 
optimization requires loops being tillable, i.e. no cross data 
references between tiles. For our problem, box filters inevitably 

access neighboring pixels which may be located in a different tile.  
Although the loop-permutation and skewing techniques can 
remove cross-references to some extent, varying cross-reference 
patterns arising from up-scaling box filters make it impossible for 
compliers to find a solution for our target problem.  

4.1.1 Tiled SURF 
Tiled SURF is conceptually similar to tiled rendering and is 
remarkably simple. We divide an input image into non-
overlapping regular grids (i.e. image tiles), and an integral image 
for each image tile (i.e. integral image tile), is generated. After 
that, we construct the Hessian determinant pyramid based on each 
integral image tile and perform point detection and scale selection 
for every image tile individually.  

Tiling reduces the volume of integral image data accessed 
between reuses of an element, so that the data can remain in the 
cache for re-access. Figure 3 (b) illustrates the raw layout of a 
tiled integral image array in a 1024 element cache. In this 
example, the chosen column size of a tile is 24, so that 8 rows of 
24-element columns can fit into a cache space which would 
otherwise accommodate only one row of a 200-element column. 
Including the first 24 elements of the 6th row, 41 rows of 24-
element columns can fit in the cache without any interference.  
Therefore, any box filter smaller than 24x41 would not incur any 
self-interference misses in the 1024-element cache. 

4.1.2 Content-Aware Tile Size Selection 
The objective of tile size selection is to choose the optimal tile 
size to minimize memory traffic. The results are platform-
dependent and image-size-dependent. We could utilize existing 
tile size selection algorithms [18] based on a given cache size and 
cache line size. The problem, however, is that the cache size 
allocated for user applications is usually smaller than the total 
cache size and is unknown to application developers. Therefore, 
using the entire cache size for calculation of the optimal tile size 
would not be accurate. Empirical selection by running exhaustive 
experiments on all reasonable tile sizes would be too laborious.   

Another problem is that tiling the image would result in loss of 
interest points at tile borders. This is because a box filter cannot 
process pixels at borders if at these locations the box filter 
exceeds the boundary of tiles. Figure 4 (a) and (b) display interest 
points detected without tiling vs. with 96x96 tiling. Obvious point 
discontinuities at tile borders can be observed for 96x96 tiling. 
Overlapping adjacent tiles can compensate interest point loss, but 
it incurs redundant computational costs due to processing pixels at 
borders twice.   

Intuitively, a larger tile size should incur fewer lost interest points 
and a smaller accuracy drop than a smaller tile size. But according 
to a recognition experiment using a set of tile sizes we observe 

 
    (a) Points without Tiling          (b) Points with 96x96 Tiling 

 
     (c) Image Overlaid with                    (d) Points with    
       Content-Aware Tiling                  Content-Aware Tiling  

Figure 4. Illustration of interested points detected on an image 
(a) without tiling, (b) with 96x96 tiling, (c) original image 
overlaid with content-aware tiling, (d) interest points detected 
on it with content-aware tiling 

 

Figure 5. Recognition accuracy when varying tile size 
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that a larger tile size not always guarantee superior recognition 
accuracy to a smaller tile size.   Figure 5 shows the recognition 
accuracy of tiled SURF using different tile sizes over 109 images 
size of 480x480. The tile sizes 120x120 and 96x240 achieve local 
optima for recognition accuracy. Increasing the tile size from 
120x120 to 120x160 or from 96x240 to 160x240, adversely 
decreases the accuracy. This is because an improper tile size may 
separate coherent contents (e.g. a continuous text paragraph) into 
several parts, resulting in informative content residing at tile 
borders, and the loss of such interest points causes reduction of 
recognition accuracy. To address this problem, we design a 
content-aware tile size selection method which uses the following 
two principles: 1) fitting the reused SURF data into the cache as 
much as possible, thereby reducing memory access, and 2) 
minimizing information loss by taking content continuity into 
consideration. 

We use entropy based on intensity probability to represent the 
amount of information within an image region, where i is an 
intensity value ranging from 0 to 255 and P(i) is the probability of 
intensity i within an image region: 

0 255

( ) log( ( )) .
i

entropy P i P i
 

    (1) 

We define an image region is the maximum continuous region 
(MCR for short) if enlarging each sub-region within it can 
increase the entropy of the sub-region; while further increasing 
the size of the MCR would not further increase the entropy. We 
select a set of MCRs which cover the entire image and each MCR 
in the set is selected as an image tile for the following SURF 
detection process. 

The selection of MCRs starts from the top left corner of an image. 
To reduce the search space, we limit potential tile sizes to a set of 
pre-determined choices and set the initial size as 96x96. We first 
compute the entropy for the initial tile. If its entropy is too small, 
implying little information in the current tile, we skip point 
detection for this tile. Otherwise, we enlarge the tile to the next 
larger size and compute the entropy of new tile. The process 
iterates until the entropy stops increasing as tile size increases or 
it reaches the largest candidate tile size. The size at which the 
iteration stops is selected as an MCR. Then we move to the next 
non-overlapping tile and repeat the process. Pseudo Code 3 shows 
the selection process of MCRs. Figure 4 (c) and (d) displays an 
exemplar image with content-aware tiling and corresponding 
detected points on the image.  This example exhibits that our 
method can automatically place larger tiles in long blocks of text, 
reducing the information loss in these regions. In addition, our 
method can remove unnecessary processing for non-informative 
regions (e.g. blank regions), as indicated by the red bold 
rectangles in Figure 4 (c).   

It is worth mentioning that content-aware tiling may also result in 
a loss of large-scale features, i.e. features whose scale size are 
larger than the tile size. But according to our experiments on 228 
images (details of the dataset please see Section 5.3.2) using the 
default SURF setting, there are only 0.8% of the features with 
scale size larger than the smallest tile size 96x96.  In addition, 
among all the large-scale features, only a portion of them can be 
correctly matched in object recognition tasks. Therefore, the 
impact of such loss on the final performance is negligible. Object 
recognition results in Sec. 5.3 will further confirm this argument. 

4.2 Orientation by Gradient Moments  
In Section 3.2.2, the implementation using a lookup table 
demonstrates 30%~60% time cost reduction for computing 

dominant orientations. But updating gradient histograms still 
takes a significant amount of time. In addition, the lookup table 
increases memory cost. In this section, we propose an alternative 
orientation operator based on the gradient moments to further 
accelerate the SURF detector. 

The gradient moment [20] of a patch is defined as: 

,

( , ) .p q
pq

x y

mG x y G x y   (2) 

where G(x,y) is the gradient responses of location (x,y). With the 
gradient moments of a patch, we define the gradient centroid of 
the patch as: 
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The gradient centroid is analogous to the density centroid of an 
object, but it is obtained based on the gradient distribution rather 
than the material density. Much like the density centroid of a non-
uniform object is usually offset from its geometric center; the 
gradient centroid of a corner is offset from its center. According 
to this, we can construct a vector gradientOC


 from the corner’s 

center O to the gradient centroid Cgradient. gradientOC


 is determined 
by the intrinsic characteristic of a corner, thus it is rotation 
invariant and can be used to compute an orientation.  
Accordingly, the orientation of the patch is: 
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The gradient moment based approach does not involve any 
branches, nor extra memory overhead arising from a lookup table. 
Therefore, it completely averts branch hazard penalties and extra 
memory accesses which are inevitable in the gradient histogram 
analysis process. In addition, it avoids the time cost of updating 
the gradient histogram for every pixel. Although the gradient 
moment based approach incurs two additional multiplication 
instructions to compute the gradient moments, i.e. multiplying 
gradients with x and y coordinates, multiplication is reasonably 

Pseudo Code 3: Content-Aware Tile Size Selection  

    Input:         TSCs : tile size candidates 
    Output:      MCRs:  maximum continuous regions   

Variants:    tile-size, tile-sizenext:  tile size before and   
                                 after increase of this iteration       

                       entropy, entropynext: entropy of a tile  
                                     before and after increase 

procedure SelectMCRs 
      Initialize TSCs = {96x96, 96x120,…} 
      for each tile 
            tile-size = 96x96 
            entropy = Entropy( tile-size) 
            if (entropy <  ) 
                  continue 
             for T =  2:end 
                      tile-sizenext =   TSCs [T] 
                      entropynext  =  Entropy( tile-sizenext ) 
                     if ( entropynext > entropy) 
                            tile-size =  tile-sizenext 
                            entropy =  entropynext 
                      else 
                             break 
                       endif    
               end 
         end  
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fast for execution, especially with the DSP accelerators 
commonly available in mobile APs. 

Another option for efficiently computing dominant orientations is 
based on intensity moments, as used in [3]. Computing first order 
intensity moment only needs one instruction, i.e. multiplying x or 
y with image intensity I(x,y):  

,

( , ) .p q
pq

x y

m x y I x y  
(5) 

At first glance, this intensity based approach is faster than using 
gradient moments: computing the gradient responses in x or y 
direction requires 6 operations based on an integral image. 
However, the intensity moment based approach utilizes an image 
pyramid, i.e. a series of down sampled images, for interest points 
at different scales. While the SURF detector replaces the 
expensive image pyramid construction phase by processing the 
original image using up-scaling box filters, no image pyramid is 
generated in SURF detection. As a result, the intensity moments 
based approach cannot be employed in the SURF detector.  

5. EXPERIMENTS AND RESULTS 
In this section, we first describe key features of the mobile 
platforms used in our experiments in Section 5.1. Then we 
examine the speedup achieved by each proposed technique in 
Section 5.2.  In Section 5.3, we apply the proposed techniques to 
mobile recognition tasks. We compare the accelerated SURF with 
the state-of-the-art ORB detector in terms of recognition accuracy 
and efficiency.  

5.1 Experiment Platforms  
We conducted experiments on three mobile platforms: a Motorola 
Droid, an HTC Thunderbolt, and a Motorola Xoom1 tablet.  

The Motorola Droid smartphone runs Android 2.2 Froyo. 
Launched in Q4 of 2009, Droid’ application processor (AP) is TI 
OMAP 3430 SoC which contains 32KB/32KB L1 instruction/data 
caches, a 256KB L2 cache and an ARM Cortex-A8 processor 
running at 600MHz.  The Cortex-A8 has a dual-issue in-order 13-
stage pipeline and program flow prediction hardware, also known 
as branch predictor. With program flow prediction enabled, a mis-
predicted branch incurs a penalty of 13 cycles.  

The HTC Thunderbolt is the first 4G LTE smartphone, which 
runs Android 2.3.4 Gingerbread. It was launched in Q1 of 2011. 
Thunderbolt’s AP is the second generation 1GHz Scorpion 
processor from Qualcomm’s own design, and has a 13-stage 
load/store pipeline and two integer pipelines. One of the integer 
pipelines has 10 stages and can perform simple arithmetic 
operations while the other has 12 stages and can perform both 
simple and more complex arithmetic operations. While the cache 
size of the Scorpion has not been made public, its L1 and L2 
caches should be around 32KB and 512KB respectively. 

The Motorola Xoom1 is an Android-based tablet, which runs 
Android 3.0 Honeycomb. It was first introduced at CES in Q1 of 
2011. Xoom1’s AP is Nvidia’s Tegra 2 SoC which features a 
dual-core ARM Cortex-A9 processor. Each A9 core has its own 
private 32KB L1 instruction and data caches. The L2 cache is up 
to 1MB in size, shared by all cores in the AP. The Cortex-A9 has 
an 8-stage pipeline and follows a dual-issue out-of-order 
architecture, instead of A8’s in-order architecture.  While there 
are multiple cores in the A9, we used only one core in our 
experiments. 

Here, we focus on Android-based platforms. While trying our 
ideas on iOS-based devices could be interesting, neither approach 
proposed in this paper utilizes OS-specific functions for the 
speedup (e.g. setting higher priority for the program in scheduling 
or calling DMA for fast memory access). Therefore, the trend 
observed in the results should be OS-independent. In addition, 
based on the experiments on three different versions of Android 
OS (see Sec. 5.2) we observe that, the resulting trend is similar 
and there is no indication that a different OS would make a 
difference.  

To compare the runtime on mobile platforms vs. x86-based PCs, 
we also run experiments on a Lenovo Thinkpad T420 laptop 
which is powered by an Intel core i5-2410M running at 2.3GHz. 

5.2 Speed Evaluation 
5.2.1 Implementation Details 
All of our experiments are based on the OpenCV2.3.1 
implementation [14] originally released for Windows PCs. Other 
libraries such as OpenSURF can also be used for the evaluation. 
But since we compare SURF and ORB, using OpenCV for both 
detectors provides a more fair comparison: both of them would 
have similar overhead if any due to other modules of OpenCV. To 
make a fair comparison between mobile platforms and x86-based 
PCs, we re-compiled the OpenCV library for all platforms using 
the same source code.  

We tested the runtime of the two proposed techniques using 109 
document images of size 480x480. We used the default scale 
space parameter settings: the initial box filter size is 9x9 and there 
are 3 octaves, each of which contains 4 layers.  Based on these 
settings, the largest box filter size is 156x156 and on average 
2000 points are detected by the original SURF detector.  

We used two versions of SURF detector, U-SURF and O-SURF 
[1]. U-SURF stands for upright SURF, i.e. the dominant 
orientation is not computed. Since most cache misses occur in the 
point detection phase, while few happen in the orientation 
computation phase, we evaluated the tiled SURF based on U-
SURF.  O-SURF stands for oriented SURF, i.e. dominant 
orientation is computed. We evaluated the gradient moment 
orientation operation based on O-SURF. 

Computing gradient responses is the basis of SURF point 
detection and orientation estimation. OpenCV2.3.1 implements 
this computation in a static function called icvCalcHaarPattern, 
incurring huge call stack overhead. To avoid such overhead and 
other complier-related issues, we replaced the function call by 
manually inlining icvCalcHaarPattern. In the following part, we 
denote the original OpenCV2.3.1 implementation as version 1(v1 
for short) and the revised version as version 2 (v2 for short). 

5.2.2 Evaluation of Tiled SURF  
We evaluated tiled SURF using two experiments. In the first 
experiment, we examine the relationship between the tile size and 
the runtime on our three mobile platforms. Two metrics are used 
in this evaluation: 1) time cost and 2) time cost per operation. We 
report time cost per operation because the number of box filtering 
operations varies with respect to tile sizes, i.e. a smaller tile size 
requires fewer operations. Time cost per operation more 
accurately reflects the overhead resulting from memory traffic.  

Six tile-size configurations are considered: 96x96, 120x120, 
160x160, 160x240, 240x240 and 480x480. Figure 6 summarizes 
the results, from which two observations can be made: 1) The 
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time cost decreases monotonically as the tile size decreases for all 
three mobile platforms. These results confirm that using smaller 
tiles can help reduce the time cost. 2) For the curve of time cost 
per operation, there is a turning point. Increasing the tile size 
before reaching this point, cost per operation increases slowly; 
while after this point it increases sharply. The cause of this 
phenomenon is that when space needed for storing the working 
set of a tile exceeds the cache size, the number of cache misses 
increases dramatically, leading to a sudden time cost increase 
resulting from memory access. We also notice that the turning 
point varies for different platforms. For a Droid, the turning point 
is around 160x240, while for a Thunderbolt and a Xoom1, it 
occurs at 240x240. These results are consistent with the cache 
sizes of their APs. The Scorpion and the Cortex-A9 have a larger 
L2 cache than the Cortex-A8, and thus can hold larger data arrays 
than the latter. 

The next experiments focus on examining the speedup achieved 
by the tiled U-SURF with Content-Aware Tiling (CAT) and how 
effective it is in narrowing the speed gap between a mobile 
platform and a x86-based PC. We compare the time cost and the 
Phone-to-PC ratio between the original U-SURF and tiled SURF 
with CAT. The Phone-to-PC ratio is the runtime of a program 
running on a mobile platform divided by that on an x86-based PC, 
which reflects the speed gap between them. 

runtime on mobile platform
 

runtime on x86-based PC 
Phone - to - PC ratio   

The first two rows of Tables 3 and 4 compare the time cost and 
Phone-to-PC ratio of U-SURF without and with CAT. The 
remaining rows of Tables 3 and 4 will be discussed in the next 
subsection. As expected, U-SURF with CAT can greatly reduce 
both time cost and Phone-to-PC ratio, compared to the original 
U-SURF. At the same time, it reduces the Phone-to-PC ratio by 
12.5% - 42.9% on the three devices. The reduction in Phone-to-
PC ratio further indicates that the mismatch of data access 
pattern and a small cache size leads to more severe runtime 
degradation on mobile platforms than x86-based PCs, so 
alleviating this problem is critical for performance optimization 
when porting algorithms to mobile platforms.  

5.2.3 Evaluation of Gradient Moment based Method 
In this section, we first examine the Phone-to-PC ratio and time 
cost for computing orientation alone. Then we integrate the 
gradient moment based method into SURF and compare the 
performance of the accelerated SURF with the original SURF, its 
variant implementations and ORB.  

Results of the first experiment are illustrated in Figures 7(a) and 
(b). First, we compare the Phone-to-PC ratio of hist-branch and 
hist-lookup table in Figure 7(a) to evaluate branch hazard penalty 
on runtime for mobile platforms. The results show that hist-

lookup table greatly reduces the Phone-to-PC ratio, 
demonstrating that the SURF detector running on a mobile 
platform suffers much greater branch hazard penalty than on an 
Intel i5-based laptop. Secondly, we investigate the relationship 
between Phone-to-PC ratio reduction and pipeline depth of 
mobile processors.  Since the Cortex-A8 and the Scorpion have a 
13-stage pipeline, while the Cortex-A9 has a shorter pipeline of 8 
stages, running a SURF detector on the Cortex-A9 has a smaller 
pipeline hazard penalty and thus avoiding such penalty achieves 
smaller improvement to Phone-to-PC ratio.  Thirdly, we inspect 
the runtime improvement achieved by the gradient moment. We 
compare the absolute time costs of gradient moment, hist-branch 
and hist-lookup table in Figure 7 (b). The results confirm that 
gradient moment takes the least amount of time among the three. 
Specifically, it achieves a 14x-28x speedup compared to hist-
branch, and a 6x-19x speedup compared to hist-lookup table on 
these three mobile devices. 

In the second experiment, we incorporate the gradient moment 
operator into O-SURF and examine the overall improvement in 
runtime and Phone-to-PC ratio compared to the three versions of 
the original O-SURF. Runtime and Phone-to-PC ratio are shown 
in the 3th~6th rows of Tables 3 and 4 respectively. Compared to 
the original SURF implementation using gradient histograms (i.e. 
O-SURF v1), the gradient moment based method reduces the 
overall runtime by 80% on a Droid, 75% on a Thunderbolt and 
76% on a Xoom1. At the same time, it improves the Phone-to-PC 
ratio by 65%, 53% and 53% over O-SURF v1, respectively. 
Finally we apply the two proposed techniques to the O-SURF and 
compare it with ORB. The results are listed in the last two rows of 
Tables 3 and 4. Based on the results in 7th and 8th rows of Table 3, 
with the application of these two proposed techniques, the 

 

Figure 7. Comparison of (a) Phone-to-PC ratio and (b) 
runtime on mobile platforms 

Figure 6. Time cost and time cost per operation of tiled SURF (a) on Droid with Cortex-A8, (b) on Thunderbolt with Scorpion, 
and (c) on Xoom1 with Cortex-A9  
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runtime ratio of running a SURF detector to running an ORB 
detector on a mobile platform is reduced to 1.6x-1.9x, from 12x-
13x if the techniques are not applied. Moreover, the Phone-to-PC 
ratio of the accelerated SURF is reduced to 3x-13x which is 
similar to that of an ORB detector. 

5.3 Mobile Object Recognition 
Mobile object recognition is a fundamental task for many 
embedded computer vision applications, including mobile 
augmented reality, mobile image search, etc., thus it would be the 
most effective task to evaluate the performance of the accelerated 
SURF. In this section, we present results on mobile object 
recognition to evaluate the robustness of the accelerated SURF. 

5.3.1 Implementation Details 
We implemented a conventional object recognition pipeline 
similar to [3]: we first detect interest points and extract 
descriptors for a query image and then match them to images in a 
database. We consider the first returned database image with 
sufficient number of matched points as the result for a query 
image.   

We combine the accelerated SURF detector with two widely used 
descriptors, the SURF descriptor [1] and the BRIEF descriptor 
[19], respectively. Each SURF descriptor is a 64-dimensional 
integer vector; we utilize a k-d tree to fast match the SURF 
descriptors. The BRIEF descriptor is a 256-bit binary string; 
correspondingly, we leverage Locality Sensitive Hashing (LSH) 
for fast matching of the BRIEF descriptors. We use the 
OpenCV2.3.1 implementation for the descriptors and the indexing 
structures and set identical parameters for all experiments. 

5.3.2 Database and Testing Images  
Database [21]: our database consists of two types of images – 
109 document images generated from the ICME06 proceedings 
and 119 natural scene images containing buildings and people 
selected from Oxford Building 5K, yielding 228 images in total.  

Testing images [21]: we manually captured two pictures for each 
database image - one of which has ~45o rotation relative to the 
database image and is used for testing orientation operators while 
the other one is upright and used for testing the tiled U-SURF. In 
mobile applications, images are often blurred due to the motion. 
In order to examine the robustness of point detectors with respect 
to such distortions, we implemented motion blur distortions using 
ImageMagick [15] and applied them to all testing images. 
Exemplar testing images are shown in Figure 8.  

5.3.3 Results 
We first focus on investigating the robustness by comparing 
between: 1) the original SURF vs. the tiled SURF; 2) the original 
SURF and the tiled SURF vs. the lighter-weight detector ORB. In 
this experiment we use testing images without rotations. For each 
detector, we combine it with the SURF descriptor and the BRIEF 
descriptor, yielding 6 different combinations in total.  

Figure 9 displays the detection rate and precision of the 6 
detector-descriptor combinations. Two conclusions can be drawn 
from the results. 1) Original SURF vs. Tiled SURF: tiling does 
not degrade on the robustness of a SURF detector, as evidenced 
by the fact that tiled SURF with CAT achieves similar detection 
rate and precision as the original SURF. Comparing the curves 
between “U-SURF untiled+SURF” and “U-SURF CAT+SURF”, 
and between “U-SURF untiled+BRIEF” and “U-SURF 
CAT+BRIEF”, the gap between each of these two pairs of curves 

is very small. 2) SURF (either original or tiled) vs. ORB: both 
original SURF and tiled SURF are more robust than ORB with 
respect to motion blur distortions. As shown in Figure 9, the 
detection rate and precision of the ORB detector combined with 
the SURF or BRIEF descriptors decrease sharply with increasing 
motion blurs, while these two numbers remain almost identical for 
“U-SURF Untiled+SURF” and “U-SURF CAT+SURF”. In 
comparison, the detection rate and precision of “U-SURF 
Untilied+BRIEF” and “U-SURF CAT+BRIEF” also drops as 
motion blur increases, but the slope is still smaller than that of 
ORB. We think the lack of distinguishing ability for the BRIEF 
descriptor might account for the drops of these two 
configurations. 

In the second recognition experiment, we compare the 
performance of the orientation operator using gradient histograms 
and using gradient moments. In this experiment, we use testing 

Table 5. Performance on 228 Testing Images with Rotations

Detector ( O-SURF) Detection Rate Precision 

Untiled + GradHist 
Untiled + GradMoment 
CAT + GradMoment 

0.963 
0.961 
0.961 

0.963 
0.963 
0.963 

Figure 8. Exemplar testing images (a) without motion blur, (b) 
with motion blur, (c) with rotation and motion blur  

Table 3. Time Cost Comparison on Three Mobile Platforms 

Time (ms) Droid Thunder
bolt 

Xoom1 

U-SURF v2 
U-SURF CAT 

1310 
930 

525 
356 

461 
243 

O-SURF v1 
O-SURF v2 
O-SURF Table 
O-SURF GMoment 

7700 
4264 
2714 
1516 

2495 
1820 
1043 
613 

2156 
1178 
946 
519 

O-SURF CAT+GMoment 
O-ORB [3] 

1053 
615 

404 
209 

269 
170 

Table 4. Speed Ratio Comparison on Three Mobile Platforms 

Phone-to-PC Ratio (x) Droid Thunder
bolt 

Xoom1 

U-SURF v2 
U-SURF CAT 

20 
14 

8 
7 

7 
4 

O-SURF v1 
O-SURF v2 
O-SURF Table 
O-SURF GMoment 

54 
30 
18 
19 

17 
13 
7 
8 

15 
8 
6 
7 

O-SURF CAT+GMoment 
O-ORB [3] 

13 
15 

7 
5 

3 
4 
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images with rotations and motion blurs. Table 5 shows the results 
for testing images whose sigma of motion blur is equal to 8. For 
other motion blur parameters, the trend is very similar. The first 
two rows compare the detection rate and precision achieved by 
the two orientation operators. Both methods achieve very similar 
performance, demonstrating that the proposed method does not 
reduce its robustness for producing repeatable dominant 
orientations. The last row shows the performance achieved by 
using the two proposed techniques together. The result is 
consistent with the observations in Figure 9 – the detection rate 
and precision obtained by using content-aware tiling are very 
close to those achieved by not using it. 

6. CONCLUSION AND FUTURE WORK 
In this paper, we analyze the SURF algorithm and identify two 
mismatches between its required computations and mobile 
platforms, which result in significant runtime degradation. To 
address the mismatches, two techniques – content-aware tiling 
and a gradient moment based orientation operator, are proposed to 
speed up SURF detection. We successfully demonstrate the high 
efficiency, high recognition accuracy, and a low Phone-to-PC 
runtime ratio of our accelerated SURF compared to the original 
SURF detector and the ORB detector.   

Despite demonstrating the performance using a single-core 
mobile AP, the proposed techniques are directly applicable to 
multi-core APs as well. Future work includes examining the 
acceleration ability of the proposed methods in parallel 
computing. It is also worth mentioning that although we focus on 
SURF detection in this paper, the two identified mismatches may 
exist in other computer vision algorithms as well. For instance, 
face detection algorithms which also rely on varying-sized box 
filers (or Harr features) would suffer from a large number of 
cache misses due to poor data locality, or decision tree-based 
algorithms may have high branch mis-prediction penalty arising 
from many conditional branches while traversing a tree structure. 
Therefore, adapting existing vision algorithms, which were not 
designed for embedded systems, to alleviate the problems caused 
by these mismatches would be the right approach for performance 
optimization of porting such tasks to mobile platforms.  
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Figure 9. Detection rate and precision on testing images with motion blur distortion of different degrees.  We change the blur 
degree (standard deviation) from 0 to 10 to simulate blur caused by different motion speed. 
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