
Accelerating SURF Detector on Mobile Devices
Xin Yang and Kwang-Ting (Tim) Cheng

Dept. of Electrical and Computer Engineering, University of California, Santa Barbara, CA, 93106, USA

xinyang@umail.ucsb.edu, timcheng@ece.ucsb.edu

ABSTRACT
Running a SURF (Speeded Up Robust Features) detector on
mobile devices remains too slow to support emerging applications
such as mobile augmented reality. Porting it without adapting the
algorithm to account for mobile platform limitations could result
in significant runtime degradation. In this paper, we identify two
mismatches between the SURF algorithm and the mobile
hardware that cause substantial slow-down of the point detection
process: 1) mismatch between the data access pattern and the
small cache size, and 2) mismatch between the huge amount of
branches and high pipeline hazard penalty.

To address the mismatches, we propose two techniques: tiled
SURF and gradient moment based orientation assignment. Tiled
SURF improves data locality and greatly reduces memory traffic.
A method for determining the optimal tile sizes, named content-
aware tiling, is designed to minimize runtime and maximize
detection accuracy. To avoid the penalties caused by pipeline
hazards, we replace the original orientation operator with
branching-free gradient moment computations.

The proposed techniques are tested on three mobile platforms.
Comparing to the original SURF, the accelerated SURF achieves
a 6x~8x speedup without sacrificing recognition accuracy.
Meanwhile, it achieves 59%~80% reductions in the runtime ratio
of the detector running on mobile platforms compared with on
x86-based PCs.

Categories and Subject Descriptors: I.4.7 [Image
Processing and Computer Vision]: Feature Measurement – feature
representation.

Keywords

SURF, point detection, acceleration, mobile phones, data access
patterns, cache miss, branch prediction, pipeline hazards penalty

1. INTRODUCTION
With the pervasive presence of low-cost, high quality cameras on
mobile devices such as smartphones, we are witnessing an
explosive growth of embedded computer vision applications like
mobile augmented reality, mobile object recognition and image
search. Interest point detection is a common task for these
applications. Over the past decades, several detectors [1, 2, 3, 4,
5, 16] have been developed. The SURF detector [1], which stands
for Speeded Up Robust Features, is arguably one of the best
detectors for achieving both high efficiency and robustness.

However, even with enormous advancements in the application
processor (AP), the computing power and memory bandwidth of
mobile devices are still limited. These limitations are exacerbated
when running a SURF detector on a mobile platform, leading to
much higher performance overhead than other lighter-weight
detectors. As shown in Table 1, running an ORB (Oriented Fast
and Rotated BRIEF) detector [3], a state-of-the-art detector
designed primarily for efficiency, takes 170ms on a Motorola
Xoom1 and 40ms on an i5-based laptop, yielding a 4x speed gap.
However, running a SURF detector on them takes 2156ms and
143ms respectively, indicating a 15x speed gap.

Although some light-weight detectors [3, 4, 5] are more efficient
than SURF, none of them can match SURF’s robustness [22].
They generally cannot achieve satisfactory performance for those
mobile applications which demand high accuracy or require
handling content with large photometric/geometric changes.
There are also several techniques for improving SURF’s
efficiency by exploiting coherency between consecutive frames
[8], employing graphics processing units (GPU) for parallel
computing [10] or optimizing various aspects of the
implementation [9]. However, none of them analyzes the causes
for a SURF detector’s poor efficiency on a mobile platform.

We argue that the efficiency capability of a SURF detector on
mobile platforms is considerably undervalued. In this paper, we
identify and analyze two mismatches between the computations
used in the existing SURF algorithm and common mobile
hardware platforms, which are the sources of significant
performance degradation:

1) Mismatch between data access pattern and small cache size of
a mobile platform. A SURF detector relies on an integral image
and accesses it using a sliding window of successively larger size
for different scales. But a 2D array is stored in a row-based
fashion in memory (cache and DRAM), not in a window-based
fashion; pixels in a single sliding window reside in multiple
memory rows (see Figure 1 (a)). The data cache size of a mobile
AP, typically 32KB for today’s devices, is too small to cache all
memory rows for pixels involved in one sliding window, leading
to cache misses and cache line replacements and, in turn,
incurring expensive memory access.

2) Mismatch between a huge amount of data-dependent branches
in the algorithm and high pipeline hazard penalty of the mobile
platform. To identify a dominant orientation, a SURF detector
analyzes gradient distribution around an interest point via a
gradient histogram. During this analysis, every pixel around an
interest point is mapped to corresponding histogram bins via a set
of branch operations. The total number of pixels involved in this

Table 1. Comparison of ORB and SURF Detector on
mobile device (Motorola Xoom1) and PC (Thinkpad T420)

 Time
Detector Phone (ms) PC (ms) Speedup

ORB
SURF

170
2156

40
143

4x
15x

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MM’12, October 29–November 2, 2012, Nara, Japan.
Copyright 2012 ACM 978-1-4503-1089-5/12/10...$15.00.

569Area Chair: Tao Mei

analysis is huge. Thus, the entire process involves an enormous
amount of data-dependent branch operations which are not easily
predicted. However, the branch predictor and the speculation of
out-of-order execution of an ARM (Advanced RISC Machines)
based mobile AP are usually not as advanced as that of a laptop or
desktop processor. Consequently, it incurs high pipeline hazard
penalties, yielding significant performance degradation.

In this paper we propose two techniques, namely tiled SURF and
gradient moment based orientation assignment, to effectively
address the above mismatches. Tiled SURF divides an image into
tiles (see Figure 1 (b)) and performs point detection for each tile
individually to exploit local spatial coherences and reduce
memory traffic. Selecting proper tile size is essential to the
success of the tiled SURF technique. In this paper we propose a
content-aware tile size selection method, based on which a set of
heterogeneous tile sizes can be automatically selected to minimize
memory traffic and maximize recognition accuracy. To avoid
pipeline hazards penalties, we replace the original gradient
histogram method with a new branching-free orientation operator
based on gradient moments. The two proposed techniques can be
seamlessly integrated into a single SURF point detection
framework and respectively speed up the two steps (i.e. point
detection and orientation estimation) of the process.

The proposed techniques are evaluated using three mobile
platforms. Experimental results demonstrate an overall 6x~8x
speedup comparing to the latest OpenCV SURF implementation
[14] and 59%~80% reductions in the runtime ratio of the detector
running on mobile platforms compared with those on an Intel i5-
based PC. For mobile recognition tasks with 228 objects, the
accelerated SURF achieves similar detection rate and precision
compared to the original SURF and 58% improvement relative to
an ORB detector.

The following paper is organized as follows: Sec. 2 gives an
overview of the related work. Sec. 3 discusses the two causes for
the inferior performance of SURF on mobile platforms, and Sec. 4
provides details of two proposed solutions. In Sec.5, we provide
empirical results on three mobile platforms for speed and
robustness evaluation. Sec. 6 concludes the paper.

2. RELATED WORK
There are several light-weight point detectors designed primarily
for high efficiency on mobile devices. Among them, the FAST
(Features from Accelerated Segment Test) detector [4, 5] and its
variants have been proven quite successful for many real-time
mobile applications such as mobile pose tracking [6] and mobile
panoramic mapping [7]. FAST is efficient and can find interest
points with a reasonable accuracy, but it is neither scale-invariant
nor rotation-invariant. To address these limitations, ORB [3]
augments FAST with an image pyramid scheme for scale and an
orientation operator based on intensity moments. Although FAST
and ORB are faster than SURF, both of them are less robust with
respect to photometric and geometric changes. In practice, FAST,
ORB and SURF provide alternative detector choices to meet
specific requirements for various mobile applications.

There have been several successful attempts to speed up SURF.
Ta et al. [8] proposed a SURFTrac algorithm which exploits
coherency in video frames to quickly detect interest points at
constrained locations. They achieved a 5x speedup compared to
the original SURF, but their approach can only be used for
applications with continuous image frames. Chen et al. [9]

proposed a series of implementation optimizations and achieved a
30% speedup over the baseline implementation. In particular,
their optimizations include adjusting the sampling rate to reduce
computations for local maximum extraction, using approximation
for the arctan function and reducing floating point computations
in the orientation computation phase. Terriberry et al. [10]
described an efficient SURF implementation on GPUs using
OpenCL. However, to date, mobile GPUs only support OpenGL
ES and thus porting an implementation from desktop-based GPUs
to mobile GPUs remains a tedious task. As mentioned before,
none of these techniques identifies the bottlenecks and causes for
the slow-down of running a SURF detector on mobile platforms.
In this paper, we focus on understanding these reasons and
addressing them.

Several attempts have been made to improve the performance of
mobile computer vision through optimization of mobile hardware.
The authors in [12] provided a mobile computer vision
benchmarking suite, called MEVBench, to understand mobile
vision processing characteristics at the architectural level. Silpa et
al. [13] attempted to improve the performance by patch memory
optimization when using texture memory in mobile GPUs.
Clemons et al. [11] proposed an embedded heterogeneous
multicore design named EFFEX for feature extraction. EFFEX
incorporates a new patch memory architecture which stores data
in region-order, rather than scan-line order, leading to high spatial
locality in data access. Their goal of improving data locality is
similar to our tiled SURF. However, they leverage new hardware
design, while we rely on software adaptation and optimization.

3. SURF ON MOBILE DEVICES
In this section, we analyze the two causes for the substantial slow-
down of running a SURF detector on mobile platforms.

3.1 Mismatch of Data Access Pattern and
Small Cache Size of Mobile Platforms
In this subsection, we first review the relevant terms and features
of cache miss and reuse. Then we briefly describe the SURF
detection process and its data access pattern. After that we discuss
why this data access pattern could cause high cache miss on
mobile platforms.

3.1.1 Background
A cache miss refers to a failed attempt to read or write a piece of
data in the cache, resulting in a main memory access with much
longer latency. It can be divided into three categories:

Figure 1. Illustration of data locality and access pattern in (a)
the original SURF detector, and (b) the tiled SURF. Each
color represents data stored in a unique DRAM row. In the
original SURF, a sliding window needs to access multiple
DRAM rows, leading to frequent cache misses, while in tiled
SURF, all required data within a sliding window can be

570

 Compulsory miss – Occurs when a cache line is referred for
the first time. These misses are inevitable.

 Capacity miss – Occurs due to the finite size of the cache.
When a program’s working set size is larger than the cache
size and a cache line containing data that will be reused is
replaced before it is reused, a capacity miss occurs when the
displaced data is referenced again.

 Interference miss – Occurs due to a conflict of cache
mapping, i.e. a cache line that contains reusable data is
replaced by another cache line that is mapped to the same
location. Interference misses on arrays can be divided into
two categories: 1) self-interference misses that are caused by
an element in the same array. 2) cross-interference misses that
are caused by an element in a different array.

Reuse can be divided into two categories:

 Spatial reuse – accesses to the same cache line by references
to neighboring data elements.

 Temporal reuse – accesses to the same data element multiple
times.

3.1.2 Review of SURF Point Detection
A SURF detector selects interest points based on the determinant
of Hessian matrix (,)H X  :

(,) (,)
(,)

(,) (,)

xx xy

xy yy

L X L X
H X

L X L X

 


 
 

  
  

where (,)X x y is a pixel location in an Image I,  is a scale
factor, (,)xxL X  is the convolution of the Gaussian second-order
derivative at location X and similarly for (,)xyL X  and (,)yyL X  .

To speed up the process, a SURF detector approximates the
Gaussian second-order derivatives with a combination of box
filter responses, computed using the integral image technique.
The approximated derivatives are denoted as Dxx, Dxy and Dyy and
accordingly the approximate Hessian determinant is:

2det() (0.9)approx xx yy xyH D D D 

A SURF detector computes Hessian determinant values for every
image pixel i over scales using box filters of successively larger
size, yielding a determinant pyramid for the entire image. Then it
applies a 3x3x3 local maximum extraction over the determinant
pyramid to select interest points’ locations and corresponding
salient scales. Pseudo Code 1 shows the process of Hessian
determinant pyramid construction. In each iteration of the outer

loop S, one layer of Hessian determinant pyramid is constructed
based on a reuse of integral image array Iintegral_img. In the inner
loop P, elements of Iintegral_img are accessed using a sliding window
for computing Dxx, Dxy and Dyy of every image pixel sequentially.

3.1.3 Data Access Pattern of SURF Leads to Many
Self-Interference Misses
The data access pattern of SURF is determined by the box filter’s
type and size. For example, a 9x9 box filter for Dyy accesses 8
elements in a 9x9 rectangle in each iteration, e.g. element-
sets={A,B,C,D,E,F,G,H} in Figure 2 (a). In the next iteration P,
the box filter is shifted one pixel to the right and accesses the 8
elements located to the right of element-set, e.g. element-set’ =
{A’,B’,C’,D’,E’,F’,G’,H’} in Figure 2 (a).

We use a simple example to illustrate cache activities, shown in
Figure 2 (b), caused by this data access pattern. Consider the
layout of a 200x200 array Iintegral_img in a direct mapped cache that
can hold 1024 elements of Iintegral_img (see Figure 3 (a)). Without
loss of generality, we assume the first element of Iintegral_img falls
in the first position of the cache and element-set =
{A,B,C,D,E,F,G,H} is used for the first 9x9 Dyy box filter. The 2D
Iintegral_img array is stored in a row-based order in the cache and
sets are defined as groups of consecutive rows that can
concurrently reside in the cache. In the example of Figure 3 the
first set consists of rows 1 thought 5 and the first 24 elements of
row 6.

As SURF detection starts, the first set is loaded into the cache, as

shown in Figure 2(b)-①, enabling references to {A, B, C, D},

which are located in the 1st and 4th rows. Then to access {E, F, G,
H} which are in the 7th and 9th rows, the second set needs to be

Figure 3. Row layout in a 1024-element cache for (a) 200x200
Iintegral_img and (b) tiled Iintegral_img, tile size is (8*5+1) rows * 24
columns

Pseudo Code 1: Determinant Pyramid Construction

 Input: scales: total number of scales
 img_pixels: total number of image pixels
 Output: detpyr: Hessian determinant pyramid
 Variants: Iintegral_img: integral image array
 Dxx, Dyy, Dxy: approximate Gaussian second-
 order derivatives in x, y and x-y directions

procedure ConstructDeterminantPyr
 construct integral image Iintegral_img

 for S = 1: scales
 for P = 1: img_pixels
 access 8 elements of Iintegral_img  compute Dxx
 access 8 elements of Iintegral_img  compute Dyy
 access 12 elements of Iintegral_img  compute Dxy
 compute det  write back to detpry[S][P]
 end
 end

Figure 2. Illustration of (a) one exemplar data access pattern
on an integral image, and (b) corresponding activities in
cache. In (a) the grey, white and black colors indicate that
corresponding values are multiplied by 0, 1 and -2
respectively. Each color in (b) represents a unique set of
consecutive rows that can concurrently reside in a cache.

571

fetched from memory and replaces the first set (see Figure 2(b)-

②). When shifting the box filter one pixel to the right, adjacent

elements of {A, B, C, D} need to be accessed again (see Figure

2(b)-③). But at this moment, the first set has been replaced, and

a self-interference miss occurs. In the worst case, every access to
the first four elements of a box filter replaces cache lines that
contain the latter four elements. Then accessing elements adjacent
to the first four elements would cause another self-interference
miss. As a result, sequentially computing 9x9 Dyy box filter
responses based on a 200x200 integral image leads to as many as
80,000 cache misses and cache line replacements. Similarly,
computing Dxx and Dxy would also cause a similar amount of self-
interference misses. The self-interference miss would become
more significant for both larger box filters and larger images. For
instance, computing a 15x15 box filter response on a 200x200
image or a 9x9 filter response on a 400x400 image, each set can
only contain two elements of a box filter, resulting in twice as
many cache misses.

Today’s mobile devices, for example Motorola’s Xoom1 tablet,
typically feature a 32KB L1 data cache, a 512KB L2 data cache
and a 1280x800 display. An integral image size of 1281x801 (one
pixel larger in width and height to store the sums of all pixels left
and above a 1280x800 image) includes 1,026,081 elements. Since
each element of an integral image is a 4-Byte integer, 32KB L1
cache and 512KB L2 data cache can only hold up to 8,000 and
128,000 elements, i.e. 16 rows and 99 rows of the array,
respectively. As a result, box filters larger than 16x16 and 99x99
would lead to L1 and L2 cache misses in the worst case. In
practice, operating systems and other programs inevitably occupy
some of the cache, thus there is even smaller available cache size
for user applications. As a result even smaller box filters than the
above-mentioned would incur cache misses.

3.2 Mismatch of Branches and High Pipeline
Hazards Penalty of Mobile Platforms
In this subsection, we first briefly review the orientation
computation used in a SURF detector. Then we discuss why this
computation incurs a large penalty in mobile platforms.

3.2.1 Review of SURF Orientation Assignment
SURF relies on gradient histograms to identify dominant
orientations. First, the entire orientation space is quantized into N
histogram bins, each of which represents a sliding orientation
window covering an angle of / 3 . Then we compute gradient
responses of every pixel in a circular neighborhood of an interest
point. Based on the gradient orientation of a pixel, we map it to
the corresponding histogram bins and add its gradient response to
these bins. Finally, the bin with the largest responses is utilized to
calculate the dominant orientations of interest points. Pseudo
Code 2 illustrates an OpenCV2.3.1 implementation of this
process.

3.2.2 Pipeline Hazard Penalty
A large number of pixels are involved in the orientation analysis.
Assuming that an interest point involves ~100 pixels in its
neighborhood, then for ~2000 interest points, there would be
~200k pixels involved in total. According to Pseudo Code 2, each
pixel is mapped to the corresponding histogram bins via a series
of branch operations, i.e. “If-then-else” expression. Accordingly,
the entire process involves a huge number of branches.

Branches cause control hazards (also called branch hazards) in a
hardware pipeline, i.e. when a branch instruction is fetched, the
next instruction location is not known until the branch instruction
finishes execution. Mis-predicting locations of the subsequent
instructions would require flushing the entire pipeline and thus
incur a penalty. Modern mobile processors usually use a deep
pipeline to increase the CPI, which increase the penalty of each
mis-prediction. Moreover, for mobile processors, the branch
predictor hardware and other hazard solutions (e.g. out-of-order
execution), while improving for each new generation, are still not
as sophisticated as desktop and laptop processors (e.g. Intel cores
i5 and i7). A conventional SURF implementation involves a huge
number of branching operations which cause a substantial penalty
due to pipeline hazards and degrade its performance on a mobile
platform.

To evaluate the impact of control hazard penalty on the runtime,
we implemented another version, i.e. hist-lookup table, using a
lookup table which stores the correlations between each
orientation and the corresponding histogram bins. Without
changing the functionality and other computations, the new
implementation replaces branches with a lookup table thus avoids
control hazards. We compare the time cost of the two
implementations on three mobile platforms, Motorola Droid, HTC
Thunderbolt, and Motorola Xoom1 tablet.

The results are summarized in Table 2, from which two
observations can be made. First, comparing the time cost of hist-
branch vs. hist-lookup table on three mobile platforms and an i5-
based laptop, hist-lookup table can greatly reduce the runtime by
52% on a Droid, 60% on a Thunderbolt, and 32% on a Xoom1.
But it only achieves a 9.6% runtime reduction on a T420 laptop.
This result confirms that branch hazard penalty has a much
greater runtime impact on a mobile platform than on a PC.

Pseudo Code 2: Orientation by Histogram of Gradient

 Input: interest-pts: interest points
 step: orientation increase step
 Output: dominate-oris: dominant orientations
 Variants: histgradient: gradient histogram
 pixelsneigh: neighboring pixels of interest point
 responses: gradient response array of pixelsneigh

 oris: gradient orientation array of pixelsneigh

procedure: ComputeDominateOris
 for Pt = interest-pts
 compute responses
 compute oris
 for Ori = 0: step: 360
 for P = pixelsneigh
 if (–PI/6 < (oris[P]-Ori) <= PI/6)
 histgradient [Ori/step] += responses[P]
 endif
 end
 end
 dominate-oris [Pt] = argmax(histgradient)
 end

Table 2. Runtime of Orientation Computation based on
Gradient Histogram on Mobile Devices and Thinkpad T420

Time Cost (ms) Droid Thunder-
bolt

Xoom1 ThinkPad
T420

hist-branch
hist-lookup table

2954
1401

1295
518

717
485

75
83

572

Therefore, avoiding such penalties is critical for a mobile
implementation. Second, we observe that the hist-lookup table
version achieves larger runtime reduction on the Droid and
Thunderbolt than Xoom1. This is because the mobile processors
in three devices have different degrees of pipeline hazard penalty.
Droid uses a Cortex-A8 processor and Thunderbolt uses a
Scorpion, both of which have a 13-cycle branch mis-predict
penalty, while Xoom1 features a Cortex-A9 processor that
shortens the pipeline to 8 cycles.

While this simple adjustment in implementation to a large degree
alleviates the problem, the performance of hist-lookup table is
still too slow for some mobile applications such as augmented
reality. In the following section, we present a new method to
further improve SURF’s speed. It should also be pointed out that
although we use SURF to illustrate the problem, the mismatch
also exists in several other computer vision algorithms so the
proposed solution is applicable to a broader spectrum of mobile
applications.

4. PROPOSED TECHNIQUES
In this section, we introduce two techniques, namely content-
aware tiling based SURF and gradient moment based orientation
assignment, to address the mismatches discussed in Section 3.

4.1 Content-Aware Tiling based SURF
Tiling has been extensively studied and applied to graphics
rending [17] and complier optimization [18]. In graphics, tiled
rendering divides an image into regular grids in the image space
to exploit local spatial coherences and reduces the hardware
resources required in graphic rendering. In compiler optimization,
tiling (also known as blocking) is performed on nested loops to
move accesses to reused data closer together in the iteration space
to eliminate capacity misses.

Our problem is similar to a loop optimization problem. However,
advanced compliers cannot solve our problem because compiler
optimization requires loops being tillable, i.e. no cross data
references between tiles. For our problem, box filters inevitably

access neighboring pixels which may be located in a different tile.
Although the loop-permutation and skewing techniques can
remove cross-references to some extent, varying cross-reference
patterns arising from up-scaling box filters make it impossible for
compliers to find a solution for our target problem.

4.1.1 Tiled SURF
Tiled SURF is conceptually similar to tiled rendering and is
remarkably simple. We divide an input image into non-
overlapping regular grids (i.e. image tiles), and an integral image
for each image tile (i.e. integral image tile), is generated. After
that, we construct the Hessian determinant pyramid based on each
integral image tile and perform point detection and scale selection
for every image tile individually.

Tiling reduces the volume of integral image data accessed
between reuses of an element, so that the data can remain in the
cache for re-access. Figure 3 (b) illustrates the raw layout of a
tiled integral image array in a 1024 element cache. In this
example, the chosen column size of a tile is 24, so that 8 rows of
24-element columns can fit into a cache space which would
otherwise accommodate only one row of a 200-element column.
Including the first 24 elements of the 6th row, 41 rows of 24-
element columns can fit in the cache without any interference.
Therefore, any box filter smaller than 24x41 would not incur any
self-interference misses in the 1024-element cache.

4.1.2 Content-Aware Tile Size Selection
The objective of tile size selection is to choose the optimal tile
size to minimize memory traffic. The results are platform-
dependent and image-size-dependent. We could utilize existing
tile size selection algorithms [18] based on a given cache size and
cache line size. The problem, however, is that the cache size
allocated for user applications is usually smaller than the total
cache size and is unknown to application developers. Therefore,
using the entire cache size for calculation of the optimal tile size
would not be accurate. Empirical selection by running exhaustive
experiments on all reasonable tile sizes would be too laborious.

Another problem is that tiling the image would result in loss of
interest points at tile borders. This is because a box filter cannot
process pixels at borders if at these locations the box filter
exceeds the boundary of tiles. Figure 4 (a) and (b) display interest
points detected without tiling vs. with 96x96 tiling. Obvious point
discontinuities at tile borders can be observed for 96x96 tiling.
Overlapping adjacent tiles can compensate interest point loss, but
it incurs redundant computational costs due to processing pixels at
borders twice.

Intuitively, a larger tile size should incur fewer lost interest points
and a smaller accuracy drop than a smaller tile size. But according
to a recognition experiment using a set of tile sizes we observe

 (a) Points without Tiling (b) Points with 96x96 Tiling

 (c) Image Overlaid with (d) Points with
 Content-Aware Tiling Content-Aware Tiling

Figure 4. Illustration of interested points detected on an image
(a) without tiling, (b) with 96x96 tiling, (c) original image
overlaid with content-aware tiling, (d) interest points detected
on it with content-aware tiling

Figure 5. Recognition accuracy when varying tile size

573

that a larger tile size not always guarantee superior recognition
accuracy to a smaller tile size. Figure 5 shows the recognition
accuracy of tiled SURF using different tile sizes over 109 images
size of 480x480. The tile sizes 120x120 and 96x240 achieve local
optima for recognition accuracy. Increasing the tile size from
120x120 to 120x160 or from 96x240 to 160x240, adversely
decreases the accuracy. This is because an improper tile size may
separate coherent contents (e.g. a continuous text paragraph) into
several parts, resulting in informative content residing at tile
borders, and the loss of such interest points causes reduction of
recognition accuracy. To address this problem, we design a
content-aware tile size selection method which uses the following
two principles: 1) fitting the reused SURF data into the cache as
much as possible, thereby reducing memory access, and 2)
minimizing information loss by taking content continuity into
consideration.

We use entropy based on intensity probability to represent the
amount of information within an image region, where i is an
intensity value ranging from 0 to 255 and P(i) is the probability of
intensity i within an image region:

0 255

() log(()) .
i

entropy P i P i
 

   (1)

We define an image region is the maximum continuous region
(MCR for short) if enlarging each sub-region within it can
increase the entropy of the sub-region; while further increasing
the size of the MCR would not further increase the entropy. We
select a set of MCRs which cover the entire image and each MCR
in the set is selected as an image tile for the following SURF
detection process.

The selection of MCRs starts from the top left corner of an image.
To reduce the search space, we limit potential tile sizes to a set of
pre-determined choices and set the initial size as 96x96. We first
compute the entropy for the initial tile. If its entropy is too small,
implying little information in the current tile, we skip point
detection for this tile. Otherwise, we enlarge the tile to the next
larger size and compute the entropy of new tile. The process
iterates until the entropy stops increasing as tile size increases or
it reaches the largest candidate tile size. The size at which the
iteration stops is selected as an MCR. Then we move to the next
non-overlapping tile and repeat the process. Pseudo Code 3 shows
the selection process of MCRs. Figure 4 (c) and (d) displays an
exemplar image with content-aware tiling and corresponding
detected points on the image. This example exhibits that our
method can automatically place larger tiles in long blocks of text,
reducing the information loss in these regions. In addition, our
method can remove unnecessary processing for non-informative
regions (e.g. blank regions), as indicated by the red bold
rectangles in Figure 4 (c).

It is worth mentioning that content-aware tiling may also result in
a loss of large-scale features, i.e. features whose scale size are
larger than the tile size. But according to our experiments on 228
images (details of the dataset please see Section 5.3.2) using the
default SURF setting, there are only 0.8% of the features with
scale size larger than the smallest tile size 96x96. In addition,
among all the large-scale features, only a portion of them can be
correctly matched in object recognition tasks. Therefore, the
impact of such loss on the final performance is negligible. Object
recognition results in Sec. 5.3 will further confirm this argument.

4.2 Orientation by Gradient Moments
In Section 3.2.2, the implementation using a lookup table
demonstrates 30%~60% time cost reduction for computing

dominant orientations. But updating gradient histograms still
takes a significant amount of time. In addition, the lookup table
increases memory cost. In this section, we propose an alternative
orientation operator based on the gradient moments to further
accelerate the SURF detector.

The gradient moment [20] of a patch is defined as:

,

(,) .p q
pq

x y

mG x y G x y  (2)

where G(x,y) is the gradient responses of location (x,y). With the
gradient moments of a patch, we define the gradient centroid of
the patch as:

10 01

00 00

, .gradient

mG mG
C

mG mG

 
  
 

 (3)

The gradient centroid is analogous to the density centroid of an
object, but it is obtained based on the gradient distribution rather
than the material density. Much like the density centroid of a non-
uniform object is usually offset from its geometric center; the
gradient centroid of a corner is offset from its center. According
to this, we can construct a vector gradientOC


 from the corner’s

center O to the gradient centroid Cgradient. gradientOC


 is determined
by the intrinsic characteristic of a corner, thus it is rotation
invariant and can be used to compute an orientation.
Accordingly, the orientation of the patch is:

,1 1
01 10

,

(,)

tan (,) tan .
(,)

x y

x y

yG x y

m m
xG x y

  

 
    
 
 




 (4)

The gradient moment based approach does not involve any
branches, nor extra memory overhead arising from a lookup table.
Therefore, it completely averts branch hazard penalties and extra
memory accesses which are inevitable in the gradient histogram
analysis process. In addition, it avoids the time cost of updating
the gradient histogram for every pixel. Although the gradient
moment based approach incurs two additional multiplication
instructions to compute the gradient moments, i.e. multiplying
gradients with x and y coordinates, multiplication is reasonably

Pseudo Code 3: Content-Aware Tile Size Selection

 Input: TSCs : tile size candidates
 Output: MCRs: maximum continuous regions

Variants: tile-size, tile-sizenext: tile size before and
 after increase of this iteration

 entropy, entropynext: entropy of a tile
 before and after increase

procedure SelectMCRs
 Initialize TSCs = {96x96, 96x120,…}
 for each tile
 tile-size = 96x96
 entropy = Entropy(tile-size)
 if (entropy < )
 continue
 for T = 2:end
 tile-sizenext = TSCs [T]
 entropynext = Entropy(tile-sizenext)
 if (entropynext > entropy)
 tile-size = tile-sizenext
 entropy = entropynext
 else
 break
 endif
 end
 end

574

fast for execution, especially with the DSP accelerators
commonly available in mobile APs.

Another option for efficiently computing dominant orientations is
based on intensity moments, as used in [3]. Computing first order
intensity moment only needs one instruction, i.e. multiplying x or
y with image intensity I(x,y):

,

(,) .p q
pq

x y

m x y I x y
(5)

At first glance, this intensity based approach is faster than using
gradient moments: computing the gradient responses in x or y
direction requires 6 operations based on an integral image.
However, the intensity moment based approach utilizes an image
pyramid, i.e. a series of down sampled images, for interest points
at different scales. While the SURF detector replaces the
expensive image pyramid construction phase by processing the
original image using up-scaling box filters, no image pyramid is
generated in SURF detection. As a result, the intensity moments
based approach cannot be employed in the SURF detector.

5. EXPERIMENTS AND RESULTS
In this section, we first describe key features of the mobile
platforms used in our experiments in Section 5.1. Then we
examine the speedup achieved by each proposed technique in
Section 5.2. In Section 5.3, we apply the proposed techniques to
mobile recognition tasks. We compare the accelerated SURF with
the state-of-the-art ORB detector in terms of recognition accuracy
and efficiency.

5.1 Experiment Platforms
We conducted experiments on three mobile platforms: a Motorola
Droid, an HTC Thunderbolt, and a Motorola Xoom1 tablet.

The Motorola Droid smartphone runs Android 2.2 Froyo.
Launched in Q4 of 2009, Droid’ application processor (AP) is TI
OMAP 3430 SoC which contains 32KB/32KB L1 instruction/data
caches, a 256KB L2 cache and an ARM Cortex-A8 processor
running at 600MHz. The Cortex-A8 has a dual-issue in-order 13-
stage pipeline and program flow prediction hardware, also known
as branch predictor. With program flow prediction enabled, a mis-
predicted branch incurs a penalty of 13 cycles.

The HTC Thunderbolt is the first 4G LTE smartphone, which
runs Android 2.3.4 Gingerbread. It was launched in Q1 of 2011.
Thunderbolt’s AP is the second generation 1GHz Scorpion
processor from Qualcomm’s own design, and has a 13-stage
load/store pipeline and two integer pipelines. One of the integer
pipelines has 10 stages and can perform simple arithmetic
operations while the other has 12 stages and can perform both
simple and more complex arithmetic operations. While the cache
size of the Scorpion has not been made public, its L1 and L2
caches should be around 32KB and 512KB respectively.

The Motorola Xoom1 is an Android-based tablet, which runs
Android 3.0 Honeycomb. It was first introduced at CES in Q1 of
2011. Xoom1’s AP is Nvidia’s Tegra 2 SoC which features a
dual-core ARM Cortex-A9 processor. Each A9 core has its own
private 32KB L1 instruction and data caches. The L2 cache is up
to 1MB in size, shared by all cores in the AP. The Cortex-A9 has
an 8-stage pipeline and follows a dual-issue out-of-order
architecture, instead of A8’s in-order architecture. While there
are multiple cores in the A9, we used only one core in our
experiments.

Here, we focus on Android-based platforms. While trying our
ideas on iOS-based devices could be interesting, neither approach
proposed in this paper utilizes OS-specific functions for the
speedup (e.g. setting higher priority for the program in scheduling
or calling DMA for fast memory access). Therefore, the trend
observed in the results should be OS-independent. In addition,
based on the experiments on three different versions of Android
OS (see Sec. 5.2) we observe that, the resulting trend is similar
and there is no indication that a different OS would make a
difference.

To compare the runtime on mobile platforms vs. x86-based PCs,
we also run experiments on a Lenovo Thinkpad T420 laptop
which is powered by an Intel core i5-2410M running at 2.3GHz.

5.2 Speed Evaluation
5.2.1 Implementation Details
All of our experiments are based on the OpenCV2.3.1
implementation [14] originally released for Windows PCs. Other
libraries such as OpenSURF can also be used for the evaluation.
But since we compare SURF and ORB, using OpenCV for both
detectors provides a more fair comparison: both of them would
have similar overhead if any due to other modules of OpenCV. To
make a fair comparison between mobile platforms and x86-based
PCs, we re-compiled the OpenCV library for all platforms using
the same source code.

We tested the runtime of the two proposed techniques using 109
document images of size 480x480. We used the default scale
space parameter settings: the initial box filter size is 9x9 and there
are 3 octaves, each of which contains 4 layers. Based on these
settings, the largest box filter size is 156x156 and on average
2000 points are detected by the original SURF detector.

We used two versions of SURF detector, U-SURF and O-SURF
[1]. U-SURF stands for upright SURF, i.e. the dominant
orientation is not computed. Since most cache misses occur in the
point detection phase, while few happen in the orientation
computation phase, we evaluated the tiled SURF based on U-
SURF. O-SURF stands for oriented SURF, i.e. dominant
orientation is computed. We evaluated the gradient moment
orientation operation based on O-SURF.

Computing gradient responses is the basis of SURF point
detection and orientation estimation. OpenCV2.3.1 implements
this computation in a static function called icvCalcHaarPattern,
incurring huge call stack overhead. To avoid such overhead and
other complier-related issues, we replaced the function call by
manually inlining icvCalcHaarPattern. In the following part, we
denote the original OpenCV2.3.1 implementation as version 1(v1
for short) and the revised version as version 2 (v2 for short).

5.2.2 Evaluation of Tiled SURF
We evaluated tiled SURF using two experiments. In the first
experiment, we examine the relationship between the tile size and
the runtime on our three mobile platforms. Two metrics are used
in this evaluation: 1) time cost and 2) time cost per operation. We
report time cost per operation because the number of box filtering
operations varies with respect to tile sizes, i.e. a smaller tile size
requires fewer operations. Time cost per operation more
accurately reflects the overhead resulting from memory traffic.

Six tile-size configurations are considered: 96x96, 120x120,
160x160, 160x240, 240x240 and 480x480. Figure 6 summarizes
the results, from which two observations can be made: 1) The

575

time cost decreases monotonically as the tile size decreases for all
three mobile platforms. These results confirm that using smaller
tiles can help reduce the time cost. 2) For the curve of time cost
per operation, there is a turning point. Increasing the tile size
before reaching this point, cost per operation increases slowly;
while after this point it increases sharply. The cause of this
phenomenon is that when space needed for storing the working
set of a tile exceeds the cache size, the number of cache misses
increases dramatically, leading to a sudden time cost increase
resulting from memory access. We also notice that the turning
point varies for different platforms. For a Droid, the turning point
is around 160x240, while for a Thunderbolt and a Xoom1, it
occurs at 240x240. These results are consistent with the cache
sizes of their APs. The Scorpion and the Cortex-A9 have a larger
L2 cache than the Cortex-A8, and thus can hold larger data arrays
than the latter.

The next experiments focus on examining the speedup achieved
by the tiled U-SURF with Content-Aware Tiling (CAT) and how
effective it is in narrowing the speed gap between a mobile
platform and a x86-based PC. We compare the time cost and the
Phone-to-PC ratio between the original U-SURF and tiled SURF
with CAT. The Phone-to-PC ratio is the runtime of a program
running on a mobile platform divided by that on an x86-based PC,
which reflects the speed gap between them.

runtime on mobile platform

runtime on x86-based PC
Phone - to - PC ratio 

The first two rows of Tables 3 and 4 compare the time cost and
Phone-to-PC ratio of U-SURF without and with CAT. The
remaining rows of Tables 3 and 4 will be discussed in the next
subsection. As expected, U-SURF with CAT can greatly reduce
both time cost and Phone-to-PC ratio, compared to the original
U-SURF. At the same time, it reduces the Phone-to-PC ratio by
12.5% - 42.9% on the three devices. The reduction in Phone-to-
PC ratio further indicates that the mismatch of data access
pattern and a small cache size leads to more severe runtime
degradation on mobile platforms than x86-based PCs, so
alleviating this problem is critical for performance optimization
when porting algorithms to mobile platforms.

5.2.3 Evaluation of Gradient Moment based Method
In this section, we first examine the Phone-to-PC ratio and time
cost for computing orientation alone. Then we integrate the
gradient moment based method into SURF and compare the
performance of the accelerated SURF with the original SURF, its
variant implementations and ORB.

Results of the first experiment are illustrated in Figures 7(a) and
(b). First, we compare the Phone-to-PC ratio of hist-branch and
hist-lookup table in Figure 7(a) to evaluate branch hazard penalty
on runtime for mobile platforms. The results show that hist-

lookup table greatly reduces the Phone-to-PC ratio,
demonstrating that the SURF detector running on a mobile
platform suffers much greater branch hazard penalty than on an
Intel i5-based laptop. Secondly, we investigate the relationship
between Phone-to-PC ratio reduction and pipeline depth of
mobile processors. Since the Cortex-A8 and the Scorpion have a
13-stage pipeline, while the Cortex-A9 has a shorter pipeline of 8
stages, running a SURF detector on the Cortex-A9 has a smaller
pipeline hazard penalty and thus avoiding such penalty achieves
smaller improvement to Phone-to-PC ratio. Thirdly, we inspect
the runtime improvement achieved by the gradient moment. We
compare the absolute time costs of gradient moment, hist-branch
and hist-lookup table in Figure 7 (b). The results confirm that
gradient moment takes the least amount of time among the three.
Specifically, it achieves a 14x-28x speedup compared to hist-
branch, and a 6x-19x speedup compared to hist-lookup table on
these three mobile devices.

In the second experiment, we incorporate the gradient moment
operator into O-SURF and examine the overall improvement in
runtime and Phone-to-PC ratio compared to the three versions of
the original O-SURF. Runtime and Phone-to-PC ratio are shown
in the 3th~6th rows of Tables 3 and 4 respectively. Compared to
the original SURF implementation using gradient histograms (i.e.
O-SURF v1), the gradient moment based method reduces the
overall runtime by 80% on a Droid, 75% on a Thunderbolt and
76% on a Xoom1. At the same time, it improves the Phone-to-PC
ratio by 65%, 53% and 53% over O-SURF v1, respectively.
Finally we apply the two proposed techniques to the O-SURF and
compare it with ORB. The results are listed in the last two rows of
Tables 3 and 4. Based on the results in 7th and 8th rows of Table 3,
with the application of these two proposed techniques, the

Figure 7. Comparison of (a) Phone-to-PC ratio and (b)
runtime on mobile platforms

Figure 6. Time cost and time cost per operation of tiled SURF (a) on Droid with Cortex-A8, (b) on Thunderbolt with Scorpion,
and (c) on Xoom1 with Cortex-A9

576

runtime ratio of running a SURF detector to running an ORB
detector on a mobile platform is reduced to 1.6x-1.9x, from 12x-
13x if the techniques are not applied. Moreover, the Phone-to-PC
ratio of the accelerated SURF is reduced to 3x-13x which is
similar to that of an ORB detector.

5.3 Mobile Object Recognition
Mobile object recognition is a fundamental task for many
embedded computer vision applications, including mobile
augmented reality, mobile image search, etc., thus it would be the
most effective task to evaluate the performance of the accelerated
SURF. In this section, we present results on mobile object
recognition to evaluate the robustness of the accelerated SURF.

5.3.1 Implementation Details
We implemented a conventional object recognition pipeline
similar to [3]: we first detect interest points and extract
descriptors for a query image and then match them to images in a
database. We consider the first returned database image with
sufficient number of matched points as the result for a query
image.

We combine the accelerated SURF detector with two widely used
descriptors, the SURF descriptor [1] and the BRIEF descriptor
[19], respectively. Each SURF descriptor is a 64-dimensional
integer vector; we utilize a k-d tree to fast match the SURF
descriptors. The BRIEF descriptor is a 256-bit binary string;
correspondingly, we leverage Locality Sensitive Hashing (LSH)
for fast matching of the BRIEF descriptors. We use the
OpenCV2.3.1 implementation for the descriptors and the indexing
structures and set identical parameters for all experiments.

5.3.2 Database and Testing Images
Database [21]: our database consists of two types of images –
109 document images generated from the ICME06 proceedings
and 119 natural scene images containing buildings and people
selected from Oxford Building 5K, yielding 228 images in total.

Testing images [21]: we manually captured two pictures for each
database image - one of which has ~45o rotation relative to the
database image and is used for testing orientation operators while
the other one is upright and used for testing the tiled U-SURF. In
mobile applications, images are often blurred due to the motion.
In order to examine the robustness of point detectors with respect
to such distortions, we implemented motion blur distortions using
ImageMagick [15] and applied them to all testing images.
Exemplar testing images are shown in Figure 8.

5.3.3 Results
We first focus on investigating the robustness by comparing
between: 1) the original SURF vs. the tiled SURF; 2) the original
SURF and the tiled SURF vs. the lighter-weight detector ORB. In
this experiment we use testing images without rotations. For each
detector, we combine it with the SURF descriptor and the BRIEF
descriptor, yielding 6 different combinations in total.

Figure 9 displays the detection rate and precision of the 6
detector-descriptor combinations. Two conclusions can be drawn
from the results. 1) Original SURF vs. Tiled SURF: tiling does
not degrade on the robustness of a SURF detector, as evidenced
by the fact that tiled SURF with CAT achieves similar detection
rate and precision as the original SURF. Comparing the curves
between “U-SURF untiled+SURF” and “U-SURF CAT+SURF”,
and between “U-SURF untiled+BRIEF” and “U-SURF
CAT+BRIEF”, the gap between each of these two pairs of curves

is very small. 2) SURF (either original or tiled) vs. ORB: both
original SURF and tiled SURF are more robust than ORB with
respect to motion blur distortions. As shown in Figure 9, the
detection rate and precision of the ORB detector combined with
the SURF or BRIEF descriptors decrease sharply with increasing
motion blurs, while these two numbers remain almost identical for
“U-SURF Untiled+SURF” and “U-SURF CAT+SURF”. In
comparison, the detection rate and precision of “U-SURF
Untilied+BRIEF” and “U-SURF CAT+BRIEF” also drops as
motion blur increases, but the slope is still smaller than that of
ORB. We think the lack of distinguishing ability for the BRIEF
descriptor might account for the drops of these two
configurations.

In the second recognition experiment, we compare the
performance of the orientation operator using gradient histograms
and using gradient moments. In this experiment, we use testing

Table 5. Performance on 228 Testing Images with Rotations

Detector (O-SURF) Detection Rate Precision

Untiled + GradHist
Untiled + GradMoment
CAT + GradMoment

0.963
0.961
0.961

0.963
0.963
0.963

Figure 8. Exemplar testing images (a) without motion blur, (b)
with motion blur, (c) with rotation and motion blur

Table 3. Time Cost Comparison on Three Mobile Platforms

Time (ms) Droid Thunder
bolt

Xoom1

U-SURF v2
U-SURF CAT

1310
930

525
356

461
243

O-SURF v1
O-SURF v2
O-SURF Table
O-SURF GMoment

7700
4264
2714
1516

2495
1820
1043
613

2156
1178
946
519

O-SURF CAT+GMoment
O-ORB [3]

1053
615

404
209

269
170

Table 4. Speed Ratio Comparison on Three Mobile Platforms

Phone-to-PC Ratio (x) Droid Thunder
bolt

Xoom1

U-SURF v2
U-SURF CAT

20
14

8
7

7
4

O-SURF v1
O-SURF v2
O-SURF Table
O-SURF GMoment

54
30
18
19

17
13
7
8

15
8
6
7

O-SURF CAT+GMoment
O-ORB [3]

13
15

7
5

3
4

577

images with rotations and motion blurs. Table 5 shows the results
for testing images whose sigma of motion blur is equal to 8. For
other motion blur parameters, the trend is very similar. The first
two rows compare the detection rate and precision achieved by
the two orientation operators. Both methods achieve very similar
performance, demonstrating that the proposed method does not
reduce its robustness for producing repeatable dominant
orientations. The last row shows the performance achieved by
using the two proposed techniques together. The result is
consistent with the observations in Figure 9 – the detection rate
and precision obtained by using content-aware tiling are very
close to those achieved by not using it.

6. CONCLUSION AND FUTURE WORK
In this paper, we analyze the SURF algorithm and identify two
mismatches between its required computations and mobile
platforms, which result in significant runtime degradation. To
address the mismatches, two techniques – content-aware tiling
and a gradient moment based orientation operator, are proposed to
speed up SURF detection. We successfully demonstrate the high
efficiency, high recognition accuracy, and a low Phone-to-PC
runtime ratio of our accelerated SURF compared to the original
SURF detector and the ORB detector.

Despite demonstrating the performance using a single-core
mobile AP, the proposed techniques are directly applicable to
multi-core APs as well. Future work includes examining the
acceleration ability of the proposed methods in parallel
computing. It is also worth mentioning that although we focus on
SURF detection in this paper, the two identified mismatches may
exist in other computer vision algorithms as well. For instance,
face detection algorithms which also rely on varying-sized box
filers (or Harr features) would suffer from a large number of
cache misses due to poor data locality, or decision tree-based
algorithms may have high branch mis-prediction penalty arising
from many conditional branches while traversing a tree structure.
Therefore, adapting existing vision algorithms, which were not
designed for embedded systems, to alleviate the problems caused
by these mismatches would be the right approach for performance
optimization of porting such tasks to mobile platforms.

7. REFERENCES
[1] Bay, H., Ess, A., Tuytelaars, T. and Gool, L.V.. SURF:

Speeded-up Robust Features. In Proc. of ECCV’06.

[2] Bay, H., Ess, A., Tuytelaars, T. and Gool, L.V.. Speeded-up
Robust Features (SURF). In CVIU, 110(3), June, 2008.

[3] Rublee, E., Rabaud, V., Konolige, K., and Bradski, G.. ORB:
an Efficient Alternative to SIFT or SURF. In Proc. of
ICCV’11.

[4] Rosten, E. and Drummond, T.. Machine Learning for High
Speed Corner Detection. In Proc. of ECCV’06.

[5] Rosten, E., Porter, R., and Drummond, T.. Faster and Better:
A machine learning approach to corner detection. In IEEE
Trans. PAMI, 32:105–119, 2010.

[6] Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T. and
Schmalstieg, D.. Pose tracking from natural features on
mobile phones. In Proc. of ISMAR’08.

[7] Wagner, D., Mulloni, A., Langlotz, T., and Schmalstieg,
D.. Real-time Panoramic Mapping and tracking on Mobile
Phones. In Proc of VR’10.

[8] Ta, D.N., Chen, W.C., Gelfand, N., and Pulli, K.. SURFTrac:
Efficient Tracking and Continuous Object Recognition using
Local Feature Descriptors. In Proc. of CVPR’09.

[9] Chen, W.C., Xiong, Y. G., Gao, J., Gelfand, N. and
Grzeszczuk, R.. Efficient Extraction of Robust Image
Features on Mobile Devices. In Proc. of ISMAR’07.

[10] Terriberry, T. B., French, L. M., and Helmsen, J.. GPU
Accelerating Speeded-Up Robust Features. In Proc. of
3DPVT’08.

[11] Clemons, J., Jones, A., Perricone, R., Savarese, S., and
Austin, T.. EFFEX: An Embedded Processor for Computer
Vision Based feature Extraction. In Proc. of DAC’11.

[12] Clemons, J., Zhu, H.S., Savarese, S., and Austin, T..
MEVBench: A Mobile Computer Vision Benchmarking
Suite. In Proc. of ISWC’11.

[13] Silpa, B.V.N. and Patney, A. and Krishna, T. and Panda,
P.R. and Visweswaran, G.S.. Texture Filter Memory; A
Power-Efficient and Scalable Texture Memory Architecture
for Mobile Graphics Processors. In Proc. of ICCAD’08.

[14] OpenCV2.3.1, http://sourceforge.net/projects/opencvlibrary/

[15] ImageMagick, http://www.imagemagick.org/script/index.php

[16] Lowe, D. G.. Distinctive image features from scale-invariant
keypoints. In IJCV, 60(2):91–110, 2004.

[17] Foley, J. D., Dam, A. V., Feiner, S. K., and Hughes ,J. F..
Computer Graphics, Principles and Practice, Second
Edition. Addison-Wesley, Reading, Massachusetts, 1990.

[18] Coleman, S. and McKinley, K. S.. Tile size selection using
cache organization and data layout. In Proc. of SIGPLAN’95.

[19] Calonder, M., Lepetit, V., Strecha, C., and Fua, P.. BRIEF:
Binary Robust Independent Elementary Features. In Proc. of
ECCV’10.

[20] Rosin, P. L.. Measuring Corner Properties. In CVIU,
73(2):291 – 307, 1999.

[21] Yang, X., Liu, Q., Liao, C.Y., and Cheng, K.T.. Large-Scale
EMM Identification Based on Geometry-Constrained Visual
Word Correspondence Voting. In Proc. of ICMR’ 11.

[22] Gauglitz, S., Hollerer, T., and Turk, M.. Evaluation of
Interest Point Detectors and Feature Descriptors for Visual
Tracking. In IJCV, 94(3):335-360, 2011.

Figure 9. Detection rate and precision on testing images with motion blur distortion of different degrees. We change the blur
degree (standard deviation) from 0 to 10 to simulate blur caused by different motion speed.

578

