
Online Crowdsourcing Subjective Image Quality
Assessment ∗

Qianqian Xu
Graduate University, Chinese
Academy of Sciences, Beijing

100049, China
qqxu@jdl.ac.cn

Qingming Huang
Graduate University, Chinese
Academy of Sciences, Beijing

100049, China
qmhuang@jdl.ac.cn

Yuan Yao�

School of Mathematical
Sciences, LMAM and LMP,
Peking University, Beijing

100871, China
yuany@math.pku.edu.cn

ABSTRACT
Recently, HodgeRank on random graphs has been proposed
as an effective framework for multimedia quality assessment
problem based on paired comparison method. With the ran-
dom design on large graphs, it is particularly suitable for
large scale crowdsourcing experiments on Internet. How-
ever, to make it more practical toward this purpose, it is
necessary to develop online algorithms to deal with sequen-
tial or streaming data. In this paper, we propose an online
rating scheme based on HodgeRank on random graphs, to
assess image quality when assessors and image pairs enter
the system in a sequential way in a crowdsourceable sce-
nario. The scheme is shown in both theory and experiments
to be effective by exhibiting similar performance to batch
learning under the Erdös-Rényi random graph model for
sampling. It enables us to derive global rating and moni-
tor intrinsic inconsistency in the real time. We demonstrate
the effectiveness of the proposed framework on LIVE and
IVC databases.
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1. INTRODUCTION
Image Quality Assessment (IQA) fundamentally relies on

subjective experiments to capture the true perception of hu-
man observers. Therefore, subjective tests are often used to
provide the ground-truth and verification for objective mod-
els in IQA. In a typical Mean Opinion Score (MOS) test [1],
individuals are asked to give a rating from Bad to Excel-
lent (e.g. Bad-1, Poor-2, Fair-3, Good-4, and Excellent-5)
to grade the quality of an image. However, such a test may
suffer from various problems such as ambiguity in defini-
tion of scales, dissimilar interpretations of the scale among
users, etc. [7]. Therefore, paired comparison method is re-
cently gaining rising attention, in which raters are asked to
compare two images simultaneously and vote which one has
the better quality; this is an easier and less demanding task
for raters, whence more reliable in practice.

However, paired comparison approach leaves a heavier
burden on participants with a larger number

(
n
2

)
of compar-

isons. To address this issue, there has been a large volume
of statistical literature on deterministic incomplete block de-
sign [11]. However, these designs are not suitable for crowd-
sourcing on Internet where the raters are distributive over
network with varied backgrounds and it is hard to con-
trol with traditional experimental designs. To meet this
challenge, the work in [15] proposes a randomized paired
comparison method which randomly selects small subsets of
pairs for each assessor to view; the work shows that ran-
domization is effective in reducing costs of a complete de-
sign without jeopardizing the intended purpose. However, it
leaves some open problems arising from randomization: (1)
how to systematically deal with the resulting imbalanced
and incomplete data; (2) how many samples are needed to
achieve certain approximation of the complete design.

To address these two questions, a new framework called
HodgeRank on Random Graphs (HRRG) is introduced to
analyze the imbalanced and incomplete data in random de-
sign experiments [40, 39]. In this framework, paired com-
parison data are mapped to edge flows on a paired com-
parison graph which is often a random multigraph in ran-
dom design, and then Hodge decomposition on graphs [19]
leads to an orthogonal decomposition of such edge flows into
global rating as gradient flow, local inconsistency as trian-
gular curl flow, and global inconsistency as harmonic flow.
Random graphs are shown as good models to design ran-
dom sampling schemes in particular for crowdsourcing ex-
periments. For example, Erdös-Rényi random graphs select
pairs of videos or images uniformly from all possible candi-
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dates, while random k-regular graphs keep a balanced sam-
pling for each video/image which receives the same number
of comparisons against others and thus important for sparse
graph designs [39]. Consistent with recent developments in
random graph theory, when sampling complexity is large
enough one can remove the global inconsistency. Experi-
ments show that such a scheme in random designs provides
good approximations of global ratings derived from complete
experimental designs. In the successful developments above
for subjective multimedia assessment, it leaves open to ex-
plore the online algorithms to deal with streaming data in
crowdsourcing experiments on Internet.
Crowdsourceable quality assessment on Internet collects

paired comparison data in a distributive and streaming way
from a large population over Internet participants [7]. The
streaming data calls for online algorithms as a sequential
decision process via incremental data updates to improve
its prediction accuracy. Although the image quality itself
is constant, in subjective IQA, preferences may vary over
raters and image pairs with different criteria based on dif-
ferent salient features of images in attention, noise from en-
vironment, and levels of attention, etc. Thus it is a funda-
mental question in subjective IQA to aggregate preferences
of multiple assessors into a consistent global score, reflecting
the statistical consensus on image quality over population.
In this paper, we fill in this gap by presenting an online
rating algorithm for HodgeRank on random graphs. Our
algorithm is based on the classic Robbins-Monro procedure
[28] which has been widely exploited in online learning, e.g.
[32, 41].
Online algorithms could offer significant computational

advantages over batch algorithms and the benefits of online
learning become more evident when dealing with stream-
ing or large-scale data. Besides, to tackle the scenario that
in crowdsourcing assessors and image pairs come in an un-
specified way, Erdös-Rényi random graph is systematically
exploited in the paper which is equivalent to the standard
assumption in statistical learning that the sample sequence
is independent and identically distributed (I.I.D.). Further-
more, we note that online algorithms can be applied to more
general settings with edge independent sampling such as
Mutli-attribute random graphs, dependent sampling such as
Markov sampling, and tracking time-varying environment.
We demonstrate the effectiveness and generality of the

proposed framework on LIVE [3] and IVC [2] databases,
which include 15 different reference images and 15 distorted
versions of each reference. Totally 186 observers have carried
out the experiment via Internet, providing us 23,097 paired
comparisons. Experimental results show that the proposed
online rating algorithm is promising and a robust assessment
method suitable for crowdsourceable subjective IQA.
Our contribution in this work is the following:
1. To the best of our knowledge, it is the first time to pro-

pose an online rating framework for exploratory quality as-
sessment. The framework provides the possibility of making
assessment procedure significantly faster without deteriorat-
ing the accuracy, while maintaining the freedom of assessors.
2. The online rating algorithm is based on Robbins-Monro

procedure or stochastic gradient descent for HodgeRank on
random graphs. For an independent sampling process, the
online rating reaches minimax convergence rates whence asymp-
totically as efficient as a batch algorithm. Moreover, online

tracking of ranking inconsistency is possible in this frame-
work.

3. Crowdsourcing image assessment experiments are con-
ducted based on Erdös-Rényi random graph designs, which
further confirms the theoretical analysis by showing that
the proposed online rating algorithm achieves similar con-
vergences to batch algorithms.

The remainder of this paper is organized as follows. Sec-
tion 2 contains a review of related works. Then we describe
the proposed framework in Section 3, and establish the on-
line HodgeRank models based on batch HodgeRank. The
detailed experiments are demonstrated in Section 4. Sec-
tion 5 presents the conclusive remarks along with discussion
for future work.

2. RELATED WORK

2.1 Subjective Quality Assessment
There have been studies on the design of subjective tests

to evaluate image/video quality in paired comparison method.
One such example is [7], which proposes a crowdsourceable
framework based on paired comparison. However, one major
shortcoming of [7] lies in that it makes a strong assumption
that all paired comparison data collected are complete which
is impossible for a large number of videos. For example, the
way to evaluate Transitivity Satisfaction Rate (TSR) de-
pends on such complete design assumption. To address this
issue, the work in [15] suggests a randomised pair compari-
son method in which a random subset of all pairs are chosen
for different participants to reduce the number of compar-
isons. However, this work does not address how to deal with
the imbalanced and incomplete data arisen in random sam-
pling, and also leaves the issue open on how many samples
one needs.

To solve these problems, [40, 39] present a framework
based on HodgeRank [19] on random graphs, which deal
with incomplete and imbalanced data distributed on ran-
dom graphs and further derive the constraints on sampling
complexity in crowdsourcing experiment that the random
selection must adhere to.

2.2 Online Learning
Online learning is a well established subfield of machine

learning concerned with estimation problems with limited
access to the entire data. It is a sequential decision process
(ft)t∈N in the hypothesis space, where each ft is decided by
the current observation zt = (xt, yt) and ft−1 which only
depends on previous examples, i.e. ft = Tt(ft−1, zt). As
a contrast, batch learning refers to a decision utilizing the
whole set of examples available at time t [33, 10]. Examples
of online learning algorithms include Perceptrons [29] and
Adaline [35], etc.

The performance of the online learning algorithms is often
measured by a loss function, which is often assumed to be
convex such that convex optimization technique can be used
to solve the problem. Typical examples of loss functions
include hinge loss and square loss. The hinge loss is used in
Support Vector Machines (SVM) [9] for classifications and
the square loss leads to Least Mean Square method, such as
Adaline and its variations [36].

Because of the lower computational cost of online learning
compared with batch leaning, it has been shown to benefit
a number of computer vision applications such as object
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recognition [12, 18], object detection [25, 38] and tracking
[26, 17, 22]. The benefits of online learning become more ev-
ident when dealing with streaming or very large-scale data.
In this paper, we propose an online learning scheme based

on stochastic gradient decent method in the setting of crowd-
sourceable subjective IQA.

2.3 Random Graphs
Random graph is a graph generated by some random pro-

cess [5, 8]. It starts with a set of n vertices and adds edges
between them at random. With such models we aim at
crowdsourcing experimental designs where assessors may se-
lect image pairs at random. Different random graph mod-
els produce different probability distributions on graphs.
The most commonly studied one is the Erdös-Rényi random
graph [16] which is a stochastic process that starts with n
vertices and no edges, and at each step adds one new edge
uniformly. Besides, there are some other kinds of random
models, such as random regular graph [37], preferential at-
tachment random graph [4], small world random graph [34],
and geometric random graph [24], which may also play im-
portant roles under certain circumstances.
However, as Erdös-Rényi random graph can be viewed as

a random sampling process of image pairs or edges inde-
pendently and identically distributed (I.I.D.), and thus is
well suited to our online crowdsourcing test system. In this
paper, we particularly focus on this kind of random graph,
Erdös-Rényi random graph, leaving other models for future
studies.

3. ONLINE HODGERANK
In this section, we propose a new online design to con-

duct paired comparison for subjective IQA and Erdös-Rényi
random graph model is chosen to tackle the scenario that
in crowdsourcing raters and pairs come in an unspecified
way. Specifically, we first describe Hodge theory on general
graphs, and then explain how to develop the online rating
algorithms. An upper bound for convergence of such on-
line rating algorithms is given to justify the settings that
minimax parametric rate is met. Finally, we discuss how to
online track triangular curls and topological changement.

3.1 Batch HodgeRank on Graphs
HodgeRank [19] is a general framework to decompose paired

comparison data on graphs, possibly imbalanced (where dif-
ferent image pairs may receive different number of compar-
isons) and incomplete (where every participant may only
give partial comparisons), into three orthogonal components:

aggregate paired ranking =

global ranking
⊕

local inconsistency
⊕

global inconsistency

To be precise, consider paired ranking data on a graph
G = (V,E), Yα : E → R such that Y α

ij = −Y α
ji where α is the

participant index. Without loss of generality, one assumes
that Y α

ij > 0 if α prefers i to j and Y α
ij ≤ 0 otherwise, with

the magnitude representing the degree of preference. In a
dichotomous choice, Y α

ij can be taken as {±1}.
In subjective multimedia assessment, it is natural to as-

sume

Y α
ij = s∗i − s∗j + εαij (1)

where s∗ : V → R is some true scaling score on V and εαij
are independent noise of mean zero and fixed variance.

Under such assumptions, Gauss-Markov theorem tells us
that the unbiased estimator is given by the following least
square problem

min
s∈R|V |

∑
i,j,α

ωα
ij(si − sj − Y α

ij )
2, (2)

where ωα
ij denotes the number of paired comparisons on

{i, j} made by rater α. It can be rewritten as the following
weighted least square form

min
s∈R|V |

∑
i,j

ωij(si − sj − Ŷij)
2, (3)

where Ŷij = (
∑

α ωα
ijY

α
ij )/(

∑
α ωα

ij) and ωij =
∑

α ωα
ij .

To characterize the solution and residue of (3), we first
define the triangle set of G as all the 3-cliques in G:

T =

{
{i, j, k}ε

(
V
3

)
|{i, j}, {j, k}, {k, i}εE

}
. (4)

Then every Ŷ admits an orthogonal decomposition adapted
to G

Ŷ = Ŷ g + Ŷ h + Ŷ c, (5)

where

Ŷ g
ij = ŝi − ŝj , for some ŝ ∈ RV , (6)

Ŷ h
ij + Ŷ h

jk + Ŷ h
ki = 0, for each {i, j, k} ∈ T , (7)

∑
j∼i

ωij Ŷ
h
ij = 0, for each i ∈ V . (8)

where Ŷ g satisfies (6) and Ŷ h satisfies two conditions (7)

and (8). The residue Ŷ c actually satisfies (8) but not (7).

Residues Ŷ h and Ŷ c account for inconsistencies of the global
ranking obtained which show the validity of the ranking and
can be further studied in terms of its geometric scale, namely
whether inconsistency in the ranking data arises locally or
globally. Local inconsistency can be fully characterized by
triangular cycles (e.g. i � j � k � i), while global in-
consistency involves loops consisting nodes more than three
(e.g. i � j � k � ... � i), which may arise due to data
incompleteness and once presented with a large component
indicates some serious conflicts in ranking data.

Global rating score can be the minimal norm least square
solution ŝ of the following normal equation

�0 ŝ = δ∗0 Ŷ (9)

where δ0 : RV → RE is a finite difference operator (matrix)
on G defined by δ0((i, j), i) = −1, δ0((i, j), j) = 1, and oth-
erwise zero, δ∗0 = δT0 W (W = diag(ωij)), Δ0 = δ∗0 · δ0 is the
unnormalized graph Laplacian defined by (Δ0)ii =

∑
j∼i ωij

and (Δ0)ij = −ωij , and (·)† is the Moore-Penrose (pseudo)
inverse.

An interesting variation of this l2-norm scheme (3) is an
analogous l1-projection onto the space of gradient flows,

min
s∈R|V |

∑
i,j

ωij |si − sj − Ŷij |. (10)
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This optimization problem is applied to the case that the
noise is sparse but can be large, often regarded as outliers.
It is more robust to outliers when compared with the l2-
norm, and thus can be regarded as robust ranking. For
more details, readers may refer to [19, 23].

As the input of this HodgeRank framework is a paired
comparison multigraph (the whole set of paired comparison
data in one batch) provided by participants, we may call this
type of work as batch HodgeRank. For details of the theo-
retical development, readers may refer to [19]. The work in
[40] adopts such batch HodgeRank to obtain quality scores
of videos. However, for crowdsourcing test on Internet, par-
ticipants and image pairs enter the system one by one in a
dynamic and random way. Therefore, batch HodgeRank is
not an efficient tool for crowdsourcing. To meet this chal-
lenge, we propose an online HodgeRank as Robins-Monro
procedure or stochastic approximation of (9).

3.2 Online Rating Algorithms
The online rating algorithm considered in this paper is

constructed from Robbins-Monro procedure [28] to solve lin-
ear operator equation Āx = b̄,

xt+1 = xt − γt(Atxt − bt), E(At) = Ā, E(bt) = b. (11)

Now consider the normal equation (9) for the least square

problem (2), Δ0s = δ∗0 Ŷ . In this case, at time t when a new
rating Yt(it, jt) = −Yt(jt, it) entered on pair (it, jt), we have

• At is a |V |×|V |matrix defined byAt(it, it) = At(jt, jt) =
−At(it, jt) = −At(jt, it) = 1 and otherwise zero;

• bt is a |V |-dimensional vector defined by bt(it) = −bt(jt) =
Yt(it, jt) and otherwise zero.

Let st = xt. The Robbins-Monro procedure becomes

st+1(it) = st(it)− γt[st(it)− st(jt)− Yt(it, jt)]

st+1(jt) = st(jt) + γt[st(it)− st(jt)− Yt(it, jt)] (12)

where the initial choice is s0 = 0 or any vector such that∑
i s0(i) = 0, and the step size γt is a nonnegative sequence

whose choice is often taken in the following form

γt =
a

(t+ t0)θ
, θ ∈ [0, 1].

The choice of step size will be discussed in more detail in
the next subsection with a convergence analysis which shows
minimax rates with independent and identically distributed
sampling. Algorithm 1 below shows the procedure of this
online rating method.
For the sake of comparison, we also present a stochastic

subgradient method for online rating with l1-norm in (10),
which is given by:

st+1(it) = st(it)− γt sign(st(it)− st(jt)− Yt(it, jt))

st+1(jt) = st(jt) + γt sign(st(it)− st(jt)− Yt(it, jt))

(13)

with similar choices on initial score and steps.
Note that updates here only occur locally on the nodes

associated with edge {it+1, jt+1}, which is suitable for asyn-
chronized parallel implementation.
Note that for l1-based online algorithm it suffices to change

gij = sign(st(it)− st(jt)− Yt(it, jt)).

Algorithm 1: Online Rating Procedure.

1 Initialization:
2 s0 = 0 or any vector such that

∑
i s0(i) = 0; // Initialize

the quality scores of each images.
3 With a new rating Yt(it, jt); // A new paired

comparison (it, jt) occurs at time t.
4 Compute gij = st(it)− st(jt)− Yt(it, jt);
5 Then
6 st+1(it) = st(it)− γt ∗ gij ;
7 st+1(jt) = st(jt)+ γt ∗ gij . // Quality scores at time t+1.

3.3 Convergence Analysis
There have been studies on convergence analysis of sub-

gradient methods, e.g. [31]. Typical convergence results
require the conditions that step sizes

∑
t γ

2
t < ∞ while∑

t γt = ∞, and boundedness of subgradients, which are in
particular s(i)− s(j)−Y (i, j) and sign(s(i)− s(j)−Y (i, j))
here. When general convex loss functions are assumed, the
analysis is typically formulated as regret bounds [27].

In particular, when the square loss is adopted, one may
achieve the following probabilistic upper bound, whose proof
is given by [21] for general edge independent random graphs,
which in fact reaches the minimax optimal rates for para-
metric regression up to a logarithmic factor.

In the following theorem, assume that Yt(it, jt) is an in-
dependent and identically distributed (I.I.D.) sequence. For
example, each rater follows a sampling on Erdös-Rényi ran-
dom graph. Another example is Multiplicative-Attribute
Graph Models [20] once node attributes are given which is
however not pursued in this paper. The convergence analy-
sis can be based on general Robbins-Monro procedure (11)
with independent sampling sequence.

Define a random matrix

Πt
k =

{
(I − γtAt) . . . (I − γkAk) , k ≤ t;
I, k > t.

(14)

If we replace Ai by Ā, we obtain a deterministic positive
definite matrix, say Π̄t

k.
The following lemma leads to a martingale decomposition

for error xt − x∗, given in [32, 41], which is crucial to lead
to the error bounds.

Lemma. For all t ∈ N,

xt = Πt−1
1 x0 +

t−1∑
k=1

γkΠ
t−1
k+1bt (15)

and

xt − x∗ = Π̄t−1
1 (x0 − x∗)−

t−1∑
k=1

ξk, (16)

where

ξk =

{
γkΠ̄

t−1
k+1((Ak − Ā)xk − (bk − b̄)), 1 ≤ k < t;

0, k ≥ t.

is a martingale difference sequence such that E[ξt : Ft−1] =
0 for a filtration Ft−1 up to time t− 1.

The first part in error, Π̄t−1
1 (x0 − x∗), is called the ini-

tial error and the martingale difference tail,
∑

ξk, is called
the sample error. Initial error can be bounded deterministi-
cally, while the sample error can be bounded via a Pinelis-
Bernstein probabilistic inequality. Combining these bounds
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will lead to the following theorem, whose derivation follows
closely [41].
Theorem 3.3. Let E consists of the edge set of the ex-

pected graph, and 0 = λ0 < λ1 ≤ . . . ≤ λn−1 are eigenval-
ues of expected graph Laplacian Δ0 = E(At). Assume that
A = 2 ∨ λn−1 and |Yt(i, j)| ≤ B. Then there exists a choice
of step size γt = a/(t + t0) (e.g. a = 1/λ1 and t0 ≥ B/λ1)
such that the following holds for all t ∈ N with probability at
least 1− δ (δ > 0),

‖st − s∗‖2 ≤ 7
√
AB|E|
λ
3/2
1

t−1/2 log(t+ t0) · log 2

δ

where st is defined by (12).
The theorem says that the online rating algorithm con-

verges to the underlying true score s∗ under independent
sampling process. The convergence rate is minimax optimal
at O(t−1/2). The choice of step size γt ∼ t−1 is crucial, with
large enough t0. Although the choice of a and t0 does not
affect the asymptotic rate in theory, in practice they influ-
ence the speed of convergence when t is small. We shall see
this in experimental section. Moreover, in our applications,
we find the performance distinctions are ignorable between
two types of online algorithms, least square (12) and least
absolute value (13), whence we do not pursue a thorough
convergence analysis here for l1-based online rating (13).

Figure 1: Large curl due to multicriteria in paired
comparisons among users. The image is undistin-
guishable due to its small size, so image IDs in LIVE
database are printed here.

3.4 Online Tracking of Triangular Curls
Hodge decomposition (5) has a component Ŷ c which sat-

isfies Ŷ c
ij + Ŷ c

jk + Ŷ c
ki 
= 0 for each triangle (i, j, k) ∈ T .

This encodes the information about triangular or local in-
consistency. For a graph G = (V,E) whose 3-clique complex
χG = (V,E, T ) does not contain a “loop” (i.e. the first Betti
number β1 = 0), global inconsistency vanishes and such tri-
angular inconsistency explains all sorts of inconsistency. It
happens when Erdös-Rényi random graphs and k-regular
random graphs are sufficiently dense [40, 39]. Due to such
an importance, it is desired to track triangular curls:

curlijk = Ŷ c
ij + Ŷ c

jk + Ŷ c
ki = Ŷij + Ŷjk + Ŷki.

which is nothing but triangular trace of Ŷ [19]. Curl is easy
for online and parallel realizations. In [40], another relative

curl is introduced as extensions of combinatorial intransitive
triangles,

rel-curlijk =
|Ŷij + Ŷjk + Ŷki|

|Ŷij |+ |Ŷjk|+ |Ŷki|
∈ [0, 1].

Relative curl on a triangle (i, j, k) ∈ T is one if and only if
(i, j, k) is intransitive.

The existence of large curls or intransitive triangles may
be either due to noise or suggesting the existence of mul-
ticriteria in paired comparisons. If the latter case happens
on a triangule (i, j, k), on each edge say (i, j) ∈ E, it will

have a Ŷij consistently away from zero, and incur a large
curl. In Figure 1, we exhibit one example of such intransi-
tive triangle existing in the data we collected so far, which
indicates a stable cyclic preference on a natural scene pic-
ture in LIVE dataset such that JPEG2000 (img91) is better
than Fast Fading (img91), Fast Fading (img91) is better
than White Noise (img40), and White Noise (img40) is bet-
ter than JPEG2000 (img91). This is due to the fact when
different pairs of images are presented to raters, different
salient features are adopted by raters implicitly. Triangular
curls due to noise will vanish when the sample size goes to
infinity while curls due to multicriteria will persist with the
increase of sample complexity. Therefore, online tracking of
curls will be useful to identify such a kind of inconsistency.

Algorithm 2 outlined below shows how to track the trian-
gular curl in an online way.

Algorithm 2: Online Tracking of Curls.

1 With a new rating Y
(t)
ij ;

2 n
(t+1)
ij = n

(t)
ij + 1; // n

(t)
ij is the number of paired

comparisons up to time t.

3 Ŷ
(t+1)
ij = (1− 1/n

(t+1)
ij )Ŷ

(t)
ij + Y

(t)
ij /n

(t+1)
ij ; // Ŷ

(t)
ij

follows the same definition in Section 3.1.
4 for each k s.t. (i,j,k) is a triangle do

5 curl
(t+1)
ijk = Ŷ

(t+1)
ij + Ŷ

(t+1)
jk + Ŷ

(t+1)
ki

rel-curl
(t+1)
ijk =

|curl(t+1)
ijk

|
|Ŷ (t+1)

ij |+|Ŷ (t+1)
jk

|+|Ŷ (t+1)
ki

|
6 end

3.5 Online Tracking of Topology Evolution
The work in [40] shows that when the resultant graph pro-

vided by assessors is connected, we can derive global scores
for all the images in comparison from batch HodgeRank. Be-
sides, when its clique complex is loop-free, there is no global
inconsistency whence tracking local inconsistency (triangu-
lar curls) presented above will be enough. Motivated by
these two observations, [40] adopts persistent homology [14,
42, 6, 13] to check if a given graph instance satisfies the two
conditions.

In fact, persistent homology is an online algorithm to
check topology evolution when nodes, edges and triangles
enter in a sequential way. Here we just discuss in brief the
application of persistent homology to monitor the number
of connected components (β0) and loops (β1) in our online
settings. In random graph designs for image comparisons,
we can assume that the images (nodes) are created at the
same time, after that pairs of images (edges) are presented
to assessors independently one by one. A triangle {i, j, k}
is created immediately when all the three associated edges
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Figure 2: An example of persistence Barcodes of
Betti numbers .

appeared. In practice with sampling of multigraph data,
one may consider certain thresholds on edges and triangles
for their presence, which can be dealt with in a similar way.
With such a streaming data, persistent homology may re-
turn the number of β0 and β1 at each time when a new
node/edge/triangle is born.
Figure 2 illustrates an example of this birth process and

its associated Betti numbers (β0 and β1) that are computed
and plotted by JPlex [30]. At the first frame (say t = 0), 6
images as nodes are collected, which corresponds to β0 = 6
at t = 0 in Barcode: Betti 0. On the second frame (t = 1),
an edge connecting a pair of nodes is created which drops
the number of connected components from 6 to 5, i.e. β0 = 5
at t = 1 in Barcode: Betti 0. The same procedure follows
and particularly at the fifth frame t = 4, it creates a loop
and there are 3 connected components in the graph, which
can be read from β0 = 3 at t = 4 and β1 = 1 at t = 4,
respectively. Note that after the thirteenth frame t = 12,
there is only one connected component β0 = 1 left and no
loop exists β1 = 0 as indicated by the Barcodes.

4. EXPERIMENTS
In this section, we systematically evaluate the performance

of the proposed online HodgeRank algorithm against batch
HodgeRank. First, the datasets used for the experiments
are briefly explained. Then we present the experimental de-
sign of obtaining online paired comparison data, followed by
the results with online and batch methods. Finally, we show
how to track the curls and topological evolution online with
persistent homology.

4.1 Datasets
Two publicly available datasets, LIVE [3] and IVC [2],

are used in this work. The LIVE dataset contains 29 ref-
erence images and 779 distorted images. The distorted im-
ages are obtained using five different distortion processes–
JPEG2000, JPEG, White Noise, Gaussian Blur, and Fast
Fading Rayleigh. Considering the resolution limit of most
test computers, we only choose 6 different reference images
(480 × 720) and 15 distorted versions of each reference, for
a total of 96 images. The second dataset, IVC, which is also

Figure 3: Images in LIVE and IVC databases (The
first six are images from LIVE and the remaining
images are from IVC).

a broadly adopted dataset in the community of IQA, in-
cludes 10 reference images and 185 distorted images derived
from four distortion types–JPEG2000, JPEG, LAR Coding,
and Blurring. Following the collection strategy in LIVE, we
further select 9 different reference images (512 × 512) and
15 distorted images of each reference. Eventually, we ob-
tain a medium-sized image set that contains a total of 240
images from 15 references, as illustrated in Figure 3. Note
that we do not use the subjective scores in LIVE and IVC,
but only borrow the image sources they provide. Different
from them, we propose to assess image quality with paired
comparison method. There are two aspects about the size of
dataset: (1) number of distortion types; (2) number of refer-
ence images. The first is the number of nodes in our paired
comparison graphs, which is n=16 here. Even on such a
scale, it is almost impossible for a single person to perform
all

(
n
2

)
paired comparisons. So it suffices to illustrate the

performance of online algorithm against batch algorithm.
The second does not affect the computational complexity
of algorithms, whence a random choice 15 from LIVE and
IVC database is to show performance consistency over these
examples.

4.2 Online Paired Data Collection
We now present our experiment design for collecting the

set of online paired data. Different from traditional com-
plete design in paired comparison, a session in our test can
have an arbitrary duration (down to a single pair) and par-
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Figure 4: Number of paired comparisons each refer-
ence received in LIVE and IVC databases.

ticipants are free to decide when to quit. In other words,
the number of pairs (#pairs) shown to participants can be
adjusted according to their time constraint and preference.
That is, when a participant’s time is adequate, #pairs can
be a bigger value. But if he/she is under the pressure of
time or prefers not to spend more time with the experiment
, #pairs will be smaller.
Before starting the experiment, each participant is briefed

about the goal of the experiment and given a short training
session to familiarize themselves with the testing procedure.
In the testing process, images are displayed side by side at
their native resolutions to prevent any distortions due to
scaling operations performed by software or hardware. Be-
sides, to make it impossible for participants to cheat our
system by inputting “smart” answers, the order of each pair
and the order within each pair are totally random for each
participant. Each assessor is allowed to take as much time
as needed to enter their choice. However, the assessors could
not change their choice once entered or view the image again.
Once the choice is entered, the next image pair is displayed.
Moreover, we hope to avoid the situation with successive

pairs of test images from the same reference, to avoid con-
textual and memory effects in their judgments of quality.
For this purpose, after the playlist for one participant is
constructed, our program would go over the entire playlist
to determine if adjacent pairs correspond to the same refer-
ence. If such a case is detected, one of the pairs would be
swapped with another randomly chosen pair in the playlist
which does not suffer from the same problem.
Finally, 186 observers of different cultural level (students,

tutors, and researchers), each of whom performs a varied
number of comparisons via Internet, provide 23,097 paired
comparisons in total. The number of responses each refer-
ence image receives is different, as illustrated in Figure 4.
It should be noted that, for ref1-6 from LIVE database, we
start our test from October 10th, 2011. Later, 9 references
images (ref7-15) from IVC database are added to our test
system from November 2nd, 2011. Our collecting task is still
on-going now for further larger-scale studies.

4.3 Comparison with “Batch” HodgeRank
The experimental evaluation involves evaluating the on-

line HodgeRank algorithms (12) on various data sets against
the performance of batch HodgeRank. We also compare
these algorithms against the l1-norm online algorithm in (13)
on the same data sets.
The metric that we used in the evaluation of the perfor-

mance of various algorithms is the Mismatch Ratio (MR),

Figure 5: The impact of the t0 parameter on the
performances. MR (y-axis) versus the number of
samples (x-axis) on reference1.
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Figure 6: Experimental results of online HodgeRank vs. batch HodgeRank. MR (y-axis) versus the number
of samples (x-axis) on 15 reference datasets.

i.e., at time t, the percentage of mismatch pairs of a global
rating st made on all previous examples,

εt =
1

2t

t∑
τ=1

|sign(st(iτ )−st(jτ ))−Yτ (iτ , jτ )|, Yτ (i, j) ∈ {±1}

Since in this paper we use the simplest binary choice for
Yt(i, j), one natural performance measure for different al-
gorithms is simply to count the ratio of mismatched paired
comparisons up to time t. Minimization of such an objective
function is known to be NP-hard. However, in our experi-
ments we find the batch HodgeRank, online l2 HodgeRank
and online l1 HodgeRank exhibit similar effects on minimiz-
ing such an objective function, whose distinctions thus can
be ignored in practice like this.
Although in theory, the choice of t0 won’t affect asymp-

totic convergence rates (Theorem 3.3); one has to be careful
on choosing it in practice. First, we study the impact of
the t0 parameter in (12) and (13) on the performances of
online rating algorithms. For simplicity, we randomly take
reference1 as an illustrative example while other reference
images exhibit similar results. Figure 5 shows the influ-
ences of t0 on mismatch ratios, in a comparison with batch
HodgeRank. It can be seen from this figure that with the in-
crease of collected data, the MR curve generally decreases.
When t0 is chosen to be small, l2 online rating (12) shows
better performance than l1 online (13). However, when t0
increases (e.g. from 1 to 10000), such a performance differ-

ence diminishes and both methods approach performance of
batch HodgeRank. We note that when t0 is chosen to be too
large, initial tracking performance will drop which shows a
lag behind of batch learning curve. Although this does not
hurt the long term behavior eventually, those who care the
initial iterations should be careful on this. In the following
experiments, we will choose t0 = 1000 as a balance of these
effects for further studies.

Figure 6 shows the performance comparisons of online
HodgeRank against batch HodgeRank with t0 = 1000 for
other 14 reference datasets. It is interesting to see that on
all of these large scale data collections, both of these two
online algorithms are able to maintain competitive perfor-
mances with the batch case. From these results, we may con-
clude that large amplitude outliers are not a significant issue
in our crowdsourcing data collection as |Yt(i, j)| is bounded
by 1. Besides, Table 1 shows the computation complexity
achieved by l2 online HodgeRank, l1 online HodgeRank and
batch HodgeRank. It is easy to see that on our dataset,
online HodgeRank can achieve up to nearly 370 times faster
than batch HodgeRank, with similar prediction errors.

4.4 Online Tracking of Topology and Curls
In our online settings, due to the multiple comparisons

between a pair of images, a natural question is raised that
how many samples are needed to satisfy the connected &
loop-free conditions? As each reference is similar in sam-
pling scheme, we compute the online mean Betti numbers
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Table 1: Computation complexity (s) comparison of online and batch HodgeRank.
ref1 ref2 ref3 ref4 ref5 ref6 ref7 ref8 ref9 ref10 ref11 ref12 ref13 ref14 ref15 mean

l2 0.166 0.158 0.159 0.162 0.164 0.163 0.125 0.128 0.131 0.125 0.130 0.128 0.133 0.135 0.133 0.143
l1 0.159 0.162 0.165 0.166 0.162 0.163 0.132 0.127 0.125 0.124 0.125 0.123 0.124 0.129 0.132 0.141
Batch 59.28 60.78 58.25 58.65 60.09 58.22 53.15 49.58 47.45 47.81 47.84 48.01 50.29 47.40 47.43 52.95

over 15 references, as illustrated in Figure 7 (a). As we can
see, after about 70 samples on this multigraph, with high
probability the resultant graph is connected & loop-free. In
other words, it is easy to meet these two requirements and
thus can avoid the possible issue of harmonic inconsistency
in global ranking.
In addition, we can further set a threshold for each edge

which can be treated as a confidence level. That is to say,
only edges on which the number of paired comparisons are
larger than this threshold will be added in our resultant
graph. The bigger the threshold is set, the more robust the
topological structure of the graph is. Figure 7 (b) shows the
online tracking of the first two Betti numbers by persistent
homology when threshold is set to be 3. One can see more
examples (250) are needed to reach the connected and loop-
free condition.

Figure 7: Number of samples versus number of on-
line Betti numbers. For each sample number level,
the median number of Betti numbers over 15 refer-
ences with [0.25, 0.75] confidence interval are plotted
in the figure.

Triangular curls and relative curls defined in the last sec-
tion are helpful to identify possible inconsistency or the ex-
istence of multicriteria adopted by raters in different paired
comparisons. By online tracking of relative curls in Fig-
ure 8, we find the intransitive triangle shown in Figure 1
that JPEG2000 (img91) is better than Fast Fading (img91),
Fast Fading (img91) is better than White Noise (img40), and
White Noise (img40) is better than JPEG2000 (img91). The
phenomenon suggests that one should explore the hidden
multicriteria behind the paired comparisons among these
images which will be left for future studies.

Figure 8: Online tracking of relative curl on trian-
gle (JPEG2000 (img91), Fast Fading (img91), White
Noise (img40)). One can see the intransitive tri-
angle constantly appears over time which suggests
possible different criteria adopted by users in paired
comparisons made among them.

5. CONCLUSIONS
In this paper, online algorithms are proposed for crowd-

sourcing subjective image quality assessment where the data
are collected in a streaming way. The algorithms are based
on Robbins-Monro procedure or stochastic approximation
to solve a HodgeRank problem on random graphs. Two
variations are studied against the batch HodgeRank: one
based on classical l2-minimization or least square problem
to deal with independent noise of zero mean and bounded
variance, and the other based on l1-minimization problem
to deal with outliers. Experiments with the images avail-
able in LIVE and IVC databases are conducted, including
15 different reference images and 15 distorted versions of
each reference in total. It is shown that in our applications,
the l2-based online HodgeRank can achieve as nearly good
performance as batch HodgeRank, in both theory and ex-
periments. Moreover, l1-based online rating exhibits similar
performance to l2 online algorithm and thus batch HodgeR-
ank in our experiments which indicates the binary choice in
crowdsourcing data collection won’t suffer much the outlier
issue. Furthermore, we investigate the online tracking of
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triangular curls and topology evolution of the paired rank-
ing complex. In particular, we show that online tracking of
triangular curls provides us important information about in-
consistency, which may suggest the existence of multicriteria
in rater’s judgement of different object pairs.
Our studies show that online HodgeRank provides us an

efficient approach to study large scale crowdsourcing subjec-
tive IQA on Internet. It enables us to derive global rating
as well as monitor the inconsistency occurring in the data
in the real time.
Additionally, we would like to point out here that the the-

ory developed in this paper takes the standard I.I.D. sam-
pling assumption as the main stream of statistical machine
learning. It is a largely unexplored field for online learn-
ing with dependent sampling, such as Markov sampling and
active sampling, which will be our future directions.
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