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ABSTRACT

One most popular approach for large-scale content-based im-
age retrieval is based on the Bag-of-Visual-Words model.
Since the spatial context among local features is very im-
portant for visual content identification, many approaches
index local features’ geometric clues, such as location, scale
and orientation for post-verification. To obtain consisten-
t accuracy performance, the amount of top ranked images
that post-verification approach needs to process is propor-
tional to the image database size. When the database is very
large, the verified images will be too many to be processed
in real-time response. To address this issue, in this paper,
we explore two approaches to embed spatial context infor-
mation into the inverted file. The first one is to build a spa-
tial relationship dictionary embedded with spatial context
among local features, which we call one-one spatial relation-
ship method. The second one is to generate a spatial context
binary signature for each feature, which we call one-multiple
spatial relationship method. Then we build an inverted file
with spatial information between local features. The geo-
metric verification is implicitly achieved while traversing the
inverted file. Experimental results on benchmark Holidays
dataset demonstrate the efficiency of the proposed algorith-
m.
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1. INTRODUCTION
In recent years, content-based image search has attracted

more and more attention in computer vision and multime-
dia community owing to its great potential in both industry
applications and research problems [18] [17] [1] [23] [21] [22].
Most approaches rely on the Bag-of-Visual-Words (BoW)
model [18]. Generally, an image is represented by a set of
local features. Those local features are extracted by describ-
ing local patches around key points. Key points are usually
obtained by invariant detectors, such as Difference of Gaus-
sian (DoG) [13], Harris affine detector [15], and MSER [14],
etc. Then around a key point, a local patch is described
into a local feature, such as SIFT [13]. Local features are
usually of high dimension. To achieve a compact represen-
tation, a visual dictionary is defined and then local features
can be quantized to visual words. The visual dictionary
can be constructed off-line by unsupervised clustering algo-
rithm, typically k-means [18], hierarchical k-means (HKM)
[16] or approximate k-means (AKM) [17]. Consequently, an
image is represented by a set of visual words. Further, s-
calable indexing techniques are leveraged from information
retrieval. Typically, the inverted file structure, which has
been successfully applied in textual information retrieval, is
leveraged to index large-scale image database.

However, with the ignorance of spatial context among lo-
cal features, the standard Bag-of-Visual-Words model suffers
from limited accuracy [17]. To tackle the problem, many lo-
cal or global verification methods, such as RANSAC [5] [2],
weak geometric consistency [9] [11], geometric coding [25]
[26], are proposed to check the geometric consistency among
matched local features. RANSAC is one of the most pop-
ular methods for global post-verification. Since RANSAC
is involved with many times of affine estimation for ran-
dom sampled matching pairs, it is very time-consuming. By
encoding local spatial informatin in stable regions, for ex-
ample MSER region in [20], ”Bundled features” can address
the problem to some extent. But, it is still time consuming
since the spatial verification between two bundled features
is carried out during the retrieval process [21]. In contrast,
geometric coding [25] is much efficient, but still unavoidably
incurs additional time cost for spatial verification. What’s
more, such time cost is proportional to the size of image
database. Although, on one million image database, the av-
erage query time is very short, say less than 100 milliseconds
for 400 features in one image, it is still far from acceptable
when the database size scales to 100 million or even billion
scale. However, if we embed the spatial context information
into the indexing structure, no post-verification will be need-
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Figure 1: An example of some random selected fea-
ture tuples. The green arrow line means the dom-
inate orientation of local feature and the red two
pixel width line represents the pair of local features
consisting of one feature tuple.

ed. Motivated by this, our target is to design an algorithm
that can record the spatial context information into the in-
verted file, because the indexing stage can be done off-line.
And in the online retrieval stage, we just need to process the
spatial context information of the query image.
In this paper, we explore embedding the spatial informa-

tion between local features into the inverted file. It has
been revealed that two order spatial structure between sin-
gle features is much more important than other higher order
spatial structure [6] [12] [24]. Therefore, we first propose an
one-one relationship approach to record feature tuples into
the inverted file instead of single feature. The feature tuple
consists of a pair of single features and their spatial relation-
ship, as illustrated in Fig. 1. In Fig. 1, the green arrow line
denotes the dominate orientation of local feature and the red
two pixel width line represents the pair of features consisting
of one feature tuple. As for the high resolution image, a lot
of local features can be extracted by the interest feature de-
tector, such as 3000 features per image for Holidays [8]. The
available memory limits the number of feature tuples that
can be recorded into the inverted file. Thus the amount of
spatial structure recorded into the inverted file is limited.
To record spatial structure information as much as possi-
ble with the limited memory, we propose the one-multiple
relationship approach. In the one-multiple relationship ap-
proach, for each single feature, its surrounding features are
clustered into different groups based on their spatial rela-
tionship with it. A toy example is illustrated in Fig. 2.
The center feature of the red circle is the feature whose s-
patial context need to be described. And the other features
that locate inside the circle are thought to be meaningful
neighbors of the center feature. The circle is divided into
three parts by the blue radius line which is determined by
the dominate orientation of the center feature. Those sur-
rounding features that locate in the same part of the circle
belong to the same group. With the help of these grouped
surrounding features, we generate a b bits binary signature
to describe the center feature’s spatial context. Actually,
for each feature in the image, we calculate its spatial con-

Figure 2: An example of spatial context of 5 random
selected features. The green line means the domi-
nate orientation of local feature and the red two pix-
el width circle represents the range of meaningful
feature surrounding of the center feature. What’s
more, the circle is parted into three parts by the
blue two pixel width radius.

text binary signature in the same way. In the retrieval stage,
we compute the Hamming distance with XOR operation be-
tween the spatial context binary signature of two features
that are quantized to the same visual word. And with the
help of the computed Hamming distance, some false matches
are filtered out. Note that our spatial context binary signa-
ture is different from the Hamming Embedding approach
[9]. Our method is to model spatial structure between s-
ingle features of an image while Hamming Embedding is a
quantization approach.

Thus when traversing the inverted file, we conduct the ge-
ometric verification implicitly, which is much more scalable
than the post-verification method [5] [17] [25] and make it
more suitable for large-scale image search. The main con-
tribution of this paper is summarized as follows:

• We embed the spatial information between local fea-
tures into the inverted file.

• We build a spatial relationship dictionary to quantize
the spatial relationship between local features.

• We produce spatial context binary signature for each
local feature to do geometric verification.

The rest of the paper is organized as follows. In Section
2, related works are reviewed. In Section 3, we introduce
our scheme of embedding the spatial information into the in-
verted index file by building a spatial relationship dictionary.
In Section 4, we introduce our approach to generate spa-
tial context binary signature for each feature. In Section 5,
We present experimental results and make some discussions.
Finally, we conclude the paper in Section 6.

2. RELATED WORK
In the past decade, with the introduction of local features,

many image retrieval approaches are proposed based on the
popular Bag-of-Visual-Words model. With local features,
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such as SIFT, quantized to visual words, images are com-
pactly represented by a bag of visual words. Further, by
indexing images with the inverted file structure, scalability
of image search is achieved.
The spatial context among local features plays an impor-

tant role in visual content identification. Many approaches
[18] [17] [5] [1] [26] [24] [3] explore the spatial context in-
formation in images to improve retrieval precision. These
approaches can be summarized into pre-verification or post-
verification approaches. Some representative approaches of
each category are discussed below.
The motivation of pre-verification approaches is to express

the spatial context of local features into the image represen-
tation. In [19], the statistics in the local neighborhood of in-
variant features is used as its spatial context to enhance the
discriminative power of visual word. The statistics contains
the number of neighborhood features, the average character-
istic scale difference and the average dominate orientation
difference between each local feature and its neighborhood
features. The feature matches are weighted by the differ-
ence of these statistics. The shortage of this method [19] is
that it abandons the information of neighborhood features’
descriptors. [1] project local features of an image along dif-
ferent directions to yield ordered spatial-bag-of-features for
image search. Then some heuristic operations are exploit-
ed to achieve invariance in translation, rotation and scale
changes. In [24], geometry-preserving visual phrase is pro-
posed to describe the spatial context of local features, includ-
ing both co-occurrences and the long-range spatial layouts
of visual words. Actually, it transfers the geometric verifi-
cation from the post-verification stage to the retrieval stage
using Hough transform.
The post-verification approaches aim to filter out false

matches by imposing spatial consistency. Some approach-
es are focused on local spatial consistency. The local spatial
consistency of some spatial nearest neighbors is used in [18]
to suppress false visual word matches. ”Bundled features”
[20] weights the traditional tf − idf [18] [16] by similari-
ty between feature bundles. The local spatial consistency
is measured by projecting feature positions along horizon-
tal and vertical directions in local MSER regions. However
bundling feature method is time consuming because the s-
patial verification between bundles is carried out during the
retrieval process. Geometric min-hashing [3] constructs re-
peatable hash keys with loose local geometric information
to obtain more discriminative local description.
To capture spatial relationships of all features in the en-

tire image, global geometric verification approaches such as
WGC (weak geometric consistency) [9] [11], RANSAC [17]
[5] are often adopted. Weak geometric consistency use a
weaker global geometric model. The matches with the dom-
inate relative scale difference and the relative orientation
difference are thought to be true matches and other match-
es are filtered out. What’s more, a priori knowledge is added
into the weak geometric consistency model to improve the
retrieval accuracy one step further based on human shot
tendency. RANSAC-based image re-ranking achieves the
state-of-art result in terms of retrieval accuracy [17]. But,
RANSAC has to randomly sample many subsets of match-
ing pairs and perform affine estimation for each subset to
obtain the optimal transformation. Although RANSAC can
greatly improve retrieval performance, it is computationally
expensive. In practice, it is usually applied to the subset of

the top-ranked candidate images to ensure efficiency, which
may not benefit the recall performance in large-scale image
retrieval systems.

The spatial coding approach [26] and geometric coding ap-
proach [25] are another global geometric verification meth-
ods proposed to remove false matches based on maps, which
are generated by checking the relative locations of local fea-
tures. They are much more efficient than RANSAC, but still
unavoidably incur additional time cost for geometric verifi-
cation. And such time cost is still proportional to the size
of image database.

Based on the analysis above, we propose an algorithm
to embed the spatial context information into the inverted
file. The time cost to obtain spatial context information is
just dependent on the query image. And we do geometric
verification while feature matching.

3. ONE-ONE RELATIONSHIP
In this section, we introduce our one-one relationship ap-

proach to record the spatial context information of an image
into the inverted file. First, we build feature tuples with the
spatial relationship dictionary built in Section 3.1. Then,
we introduce how to index and do retrieval with feature tu-
ples in Section 3.2 and Section 3.3.

Let us first introduce our notation. We extract the in-
terest points with Hessian-Affine detector [7] and the SIFT
descriptor [13] for each image. These interest points are de-
noted by {fi}

N
i=1 , in which N represents the total number

of the detected interest points. Each feature fi includes the
descriptor di ∈ R

D, for SIFT descriptor D is 128, the loca-
tion li ∈ R

2, the characteristic scale si and the dominant
orientation oi.

3.1 Build Spatial Relationship Dictionary
With the information provided by interest point detector

and descriptor, namely the feature location, the dominant
orientation, the characteristic scale, we build a spatial re-
lationship dictionary by image plane division, as shown in
Fig. 3. For each feature fi, a reference coordinate system is
built, with the location li as the origin and the orientation
oi as x axis. The different plane division means different
spatial relationship quantization. The spatial relationship
between feature fi and fj is denoted by Rij and we create
a tuple {fi, fj , Rij} to represent this concept.

We take Fig. 3 (a) as an example to illustrate how to build
the spatial relationship dictionary and how to quantize the
feature pairs with this spatial relationship dictionary. There
are two features, A and B on the image plane. For feature
A, we build a coordinate system with lA as its origin and
oA as its x axis. We identify each part of the image plane
divided by this coordinate system with an integer number.
And feature B is processed in the same way. So there is
a tuple in Fig. 3 (a), {A,B,RAB} or {B,A,RBA} . The
spatial relationship between A and B, namely RAB or RBA

, can be easily determined by computing the angle between

vector
−→
AB and the dominate orientation of A, namely oA ,

as shown in Fig. 4. So we have the result of RAB = (1, 2)
and RBA = (2, 1). Thus for each feature tuple, there are
two ways to describe it. Take the feature tuple that consists
of A and B as an example, it can be noted as (A,B,RAB)
or (B,A,RBA). We just record once for each tuple, so there
must be a rule to reveal which version of the feature tuple
should be embedded into the inverted file. The problem
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Figure 3: Illustration of relationship quantization
between two features, A and B. (a). The plane is
divided into four partitions only with the orienta-
tion information. (b) The plane is divided into eight
partitions only with the orientation information. (c)
The plane is divided into eight partitions with the
scale information of the feature, in which the radius
of the circle is linear to the feature scale.

,which arrow should be kept, can be illustrated by the Fig.
4. In our implementation, we just keep the arrow whose
head integer tag is bigger than its end integer tag. Thus
Fig. 4 (a) is kept and we record the feature tuple, consisted
of feature A and feature B, as (A,B,RAB).

3.2 Indexing with Spatial Relationship Dictio-
nary

Inspired by the success of text search engines, the inverted
file structure has been widely used for large-scale content-
based image search. An integer ID is assigned to each feature
and those features with the same integer ID are thought as
true matches, namely they describe the same local patch.
Usually, a visual vocabulary is constructed off-line by unsu-
pervised clustering algorithm, typically k-means, hierarchi-
cal k-means (HKM) or approximate k-means (AKM). Each
element of the visual vocabulary is called visual word. In the
on-line retrieval stage, only those images sharing the same
visual word with the query image need to be checked. Thus,
the inverted file structure achieves excellent efficiency. Each
feature is quantized by the visual vocabulary with approxi-
mate nearest neighbor method and the word ID is assigned
to the feature as its integer ID.
We also use vocabulary quantization method to assign in-

teger ID to each feature tuple mentioned above, {fi, fj , Rij}.
Each feature tuple contains two visual elements, fi and fj ,
and the spatial relationship element, Rij . Spatial relation-
ship element is quantized with the spatial relationship dic-
tionary mentioned in Section 3.1. Visual elements are quan-
tized with visual vocabularies obtained by performing unsu-
pervised clustering algorithm on the random selected local
features. To limit the maximum of the integer ID to a mod-
est size, we use two visual vocabularies to quantize two visual
elements in each feature tuple. Namely, we built one visual
vocabulary by clustering random selected feature samples to
quantize fi and then we built another visual vocabulary to
quantize fj by clustering random selected feature samples a-
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Figure 4: Illustration of how to build a relationship
dictionary and how to quantize the relationship be-
tween two features with the relationship dictionary.

gain. Note that the two visual vocabularies can be different
in size. It is easy to control the maximum of the integer ID
assigned to each feature tuple by adjusting the size of two
visual vocabularies. The integer ID for each feature tuple
can be obtained by

ID = Q{(fi, fj , Rij)}

= Q1(fi) · vocSize2 · rSize+Q2(fj) · rSize+Rij

(1)

where ID means the integer ID for the feature tuple {fi, fj , Rij}
and Q1(fi), Q2(fj) mean the approximate nearest neighbor
visual word ID of feature fi, fj , respectively, in two visual
vocabularies mentioned above and vocSize2 means the size
of the visual vocabulary that quantizes the second element
of the feature tuple and rSize means the size of the spa-
tial relationship dictionary built by the image plane division
method. Note that here Rij represents a scalar value. It is
the index value in the spatial relationship dictionary men-
tioned in Section 3.1.

3.3 Searching Scheme
Given a query image, the search can be interpreted as

a voting scheme. First, for each feature tuple in the query
image, an integer ID is assigned to it by formula (1). Second,
in the inverted file, we retrieve the list of images that contain
this integer ID. For each image in the list, we increment its
score by the square of idf weight of this integer ID. After
processing all feature tuples in the query image, the final
score of each image in database gives the dot product of
the representation vector of the query image and database
image. Then we normalize the score of each image by the
number of feature tuples to obtain the cosine similarities for
ranking.

4. ONE-MULTIPLE RELATIONSHIP
As there are so many local features extracted, about 3000

local features per image for Holidays image, it limits the
number of feature tuples we can record into memory. We
propose to generate a binary signature for each single feature
to describe its spatial context.

In Section 4.1, we explain our algorithm to generate spa-
tial context binary signature for each feature in detail and
introduce the index structure and the searching scheme with
spatial context binary signature in Section 4.2 and Section
4.3, respectively.

4.1 Spatial Context Binary Signature
As shown in Fig. 5, for each feature, taking feature A as

an example, a coordinate system is built with origin at lA
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Figure 5: Illustration of feature surroundings.

and oA as its x axis. We divide the image plane into four
parts with the built coordinate system in Fig. 5. Note that,
the image plane can be divided into any parts. And the par-
tition is robust or invariant to rotation changes for that we
use each feature’s dominant orientation as its x axis. We de-
note each part by an integer number. Each part has different
local features of the image. Given the assumption that true
match features have similar surrounding features, we can
generate a spatial context descriptor for each feature. The
descriptor should be not only describing the distribution of
surrounding local features but also the content of these local
features. For example, if there is a feature matching with
A, in each part its surrounding features should be similar
with those surrounding features of A. Therefore, it actually
is a problem to measure the similarity of two set of local fea-
tures. As we try to use some binary bits to represent feature
A’s spatial context, we first combine the surrounding local
features in each part of feature A into a vector descriptor,
then hash it into a binary code.
Let us denote feature A by fA and its surrounding features

by {fi}
NA

i=1 , in which NA represents the number of surround-
ing features of A. Then, we combine the surrounding local
features in each part of feature A into a vector descriptor
by computing weighted sum of these surrounding features’
SIFT descriptor, as shown in the following formula,

DS
k
A =

∑

fi∈Sk

A

wi · di k = 1, 2, 3, . . . (2)

where fi ∈ Sk
A represents that fi locates in the kth part

of feature A and di is the 128 dimension SIFT descriptor
of feature fi and wi is the weight for feature fi. In our

experiment implementation, we use wi = e(||li−lA||2/σ) to
assign weight for feature fi. Namely, we assign small weight
to the features far away from feature A and large weight to
those features near feature A. DSk

A means the combined
vector descriptor of kth part of feature A. Then, we cascade
DSk

A together into a long vector, as shown by the following
formula,

DSA = [DS
1
A DS

2
A DS

3
A · · · DS

k
A · · · ]. (3)

In the rest of the paper, we refer DSA as feature surround-
ing descriptor. To compress feature surrounding descriptor
DSA into a small bits binary signature, for example 64 bits,

Word i Entry

Image ID
Binary 

signature

         
 

 

Figure 6: Illustration of indexing structure with s-
patial context binary signature.

we generate an orthogonal projection matrix R by keeping
the first b rows of an orthogonal matrix obtained by applying
QR factorization to a randomly drawn matrix with Gaus-
sian values. The parameter b is the number of bits used to
describe the surrounding features. Therefore vector DSA is
reduced to b dimension by multiplying R, as shown in the
following formula,

DSAb = DSA ·R (4)

Then, we quantize DSAb into binary format by using a
threshold on each dimension of DSAb . The threshold is
obtained by off-line training in the feature surrounding de-
scriptor subspace of each visual word, to which feature A is
quantized. The reason for that is we just do spatial context
verification between those features which are quantized to
the same visual word. The algorithm to obtain the spatial
context binary signature threshold is shown in Algorithm
1. Given a feature, we compute its spatial context binary
signature by Algorithm 2.

Algorithm 1 off-line spatial context binary signature
threshold training

1. Random select a large set of feature samples from inde-
pendent dataset.

2. Produce feature surrounding descriptor with formula (2)
and (3). And quantize the feature samples with the
visual vocabulary trained by k-means method.

3. Generate an orthogonal projection matrix R by selecting
the first b rows of the orthogonal matrix obtained by
applying QR decomposition to a randomly drawn matrix
with Gaussian value.

4. Reduce the dimension of feature surrounding descrip-
tors computed in step 2 by multiplying the orthogonal
projection matrix R to it.

5. For each visual word, compute the mean value on each
dimension of the dimension reduced feature surrounding
descriptors of the features assigned to this visual word.

6. Set the mean value obtained in step 5 as the spatial con-
text binary signature threshold and save the orthogonal
projection matrix R .
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4.2 Indexing with Spatial Context Binary Sig-
nature

We adopt the inverted file structure widely used by many
researchers. Each visual word is followed by an entry list
that contains the IDs of images in which the visual word
appears. And we add the spatial context binary signature
of each feature into it, as illustrated in Fig. 6.

4.3 Searching Scheme
The searching scheme is actually quite similar to the method

mentioned in Section 3.2. We use the spatial context bina-
ry signature of each feature, obtained by using Algorithm
2, to filter out some false matches that the feature pairs are
quantized to the same visual word, but have quite differ-
ent surrounding features. Therefore the voting scheme in
Section 3.3 can be modified to the following version.
First, given a query image, the spatial context binary sig-

nature is generated by proposed method for each local fea-
ture. And each feature is quantized to a visual word. Sec-
ond, through the inverted file we retrieve the list of images
that contain this visual word. We compute the spatial con-
text binary signature distance between query feature and
database feature by XOR operation. We just score those
database features whose spatial context binary signature dis-
tance with the query feature under a certain threshold. The
score is the square of idf weight of this visual word. After
processing all features in the query image, the final score is
normalized by the number of local features in each database
image. The response list is returned based on the final score
of each database image.

Algorithm 2 computing spatial context binary signature
for a given feature A

1. Quantize the descriptor of feature A, namely dA , into
a visual word, denoted by q(A).

2. Compute the feature surrounding descriptor of feature
A, namely DSA , by formula (2) and (3)

3. Reduce the dimension of feature surrounding descriptor
by formula (4) with orthogonal matrix R generated in
step 4 of algorithm 1. Then obtain DSAb mentioned
above.

4. Compare each dimension of DSAb with the threshold of
this dimension of visual word q(A) generated in step 5
of algorithm 1, if the value is bigger than gate produce
1, otherwise produce 0.

5. EXPERIMENTS
We first introduce the baseline method or bag of visual

words model used as comparison algorithm in many previ-
ous work [17] [20] [1]. Since an image is represented by a set
of local features, to obtain a more compact representation,
a visual vocabulary is built and the features are quantized
to visual words. Hence, an image is transformed to a visual
word vector with one component for each visual word in the
visual vocabulary. And the similarity between two images
is defined as the Euclidean distance of their L2-normalized
visual word vectors. For the inverted file indexing struc-
ture of bag of words model, the ”Entry” in Fig. 6 is each
feature’s image ID. Usually, the location, the dominate ori-
entation and the characteristic scale are also recorded into

(a)

(b)

Figure 7: Illustration of dataset images. (a) Sample
images of Holidays (b) Sample images of downloaded
Web images

the inverted file for post-verification. Then, we introduce
our experimental settings.

We test the proposed algorithm on Holidays dataset, which
contains about 1.5K images and 4.5M descriptors. The au-
thor of [10] has provided well trained vocabularies with d-
ifferent sizes and the extracted local features of images in
Holidays dataset. We first use this dataset to illustrate the
impact of different parameters in the proposed algorithm.
The author also provided a distractor dataset downloaded
from Flickr to perform large-scale image search evaluation.
But it is too big to be downloaded. Therefore, to evaluate
the performance of the proposed algorithm on large-scale
dataset, we build our distractor dataset by crawling one mil-
lion images from the Web.

We detect the interest points by Hessian-Affine detector
and use SIFT descriptor to describe the appearance of lo-
cal patch centered on the interest points, using the software
of [7] with the default parameters. Besides the character-
istic scale and the domain orientation, the software [7] also
provided the response of the interest points and the affine
invariance shape around the interest points.

In the following experiment, mean average precision (mAP)
is adopted to evaluate the performance of the proposed two
algorithms. Some sample images of Holidays and distractor
images downloaded from the Web are shown in Fig. 7.

Table 1: The performance with different parameters
value of proposed algorithm

vocSize 20K 200K

rSize

(a) 0.585 0.627
(b) 0.594 0.636
(c) 0.603 0.643
(n) 0.486 0.593

baseline 0.451 0.551
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ture pairs with spatial k nearest neighbors.

5.1 One-one Relationship on Holidays
We test the proposed search algorithm with different size

vocabularies provided by Jegou et al. [8]. And we quantize
the feature descriptor with approximate nearest neighbor
method by the software downloaded from [4]. We choose
each feature and their spatial k nearest neighbors to build
feature tuples to embed into the inverted file. Firstly, we
set k as 30 to test the proposed algorithm’s performance
with different size vocabularies and different size relationship
dictionaries. The results are shown in Table 1.
In Table 1, (a) (b) (c) represent the relationship dictio-

naries shown in Fig. 3, respectively and (n) means no im-
age plane division, which means the spatial relationship dic-
tionary size equals 1. The bottom line of Table 1 is the
baseline approach with different size vocabularies, i.e. 20K
and 200K. Because we use two independent vocabularies to
quantize the first and the second component of each feature
tuple, this two components are of equal importance. We test
the performance of our proposed algorithm by letting one vo-
cabulary vary while the other one unchanged. We use the
vocabularies with sizes of 20K and 200K to quantize the first
element of each feature tuple and the vocabulary with size
of 200 to quantize the second element of feature tuple in the
following experiment. In this experiment, the retrieval time
and memory usage are not given because Holidays has on-
ly 1.5K images. We will give the retrieval time and analysis
memory cost when a large-scale dataset is tested in Section
5.3.
Different image plane division means different spatial re-

lationship dictionary. The more parts the plane is divided
into, the stronger constraint is imposed on the construction
of feature tuples.
From Table 1, it can be seen that the baseline approach

achieves mAP of 0.451 with a 20K visual vocabulary and
mAP of 0.551 with a 200K visual vocabulary. It is almost the
same with the result reported in [9]. With no image plane
division (in the case of (n)), we get 0.035 mAP improvement.
When spatial relationship dictionary is used, we even get
0.152 mAP bonus (in the case of (c) in Table 1). When
the vocabulary size increases to 200K, the mAP of both
approaches increases, and the one-one relationship approach
still has about 0.10 performance improvement.
As we use spatial k nearest neighbor method to build fea-

ture tuples, the spatial context range is determined by k in
this experiment. The impact of factor k on mAP is illus-
trated in Fig. 8, with 20K and 200 visual vocabularies to
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Figure 9: Illustration of impact of σ in the formula
(2). When σ is quite large, for example 10000000,
it means no weighting scheme in formula (2). The
mAP is 0.532 for σ = 10000000.

quantize the first and the second element of each feature tu-
ple, respectively. It can be observed that when k increases,
the mAP first increases to a peak, and then drops gradually.
What’s more, the best result is gotten when k is 35 for this
dataset. This is due to that larger value of k will introduce
more feature tuples, namely more spatial context informa-
tion, which will benefit the visual discrimination. But when
k is too large, lots of noisy feature tuples will also be intro-
duced, decreasing the retrieval accuracy performance.

5.2 One-multiple Relationship on Holidays
In this section, we evaluate the performance of our spatial

context binary signature method. We will show the impact
of the image plane division, the bits number of the spa-
tial context binary signature, soft weighting parameter when
combining surrounding features and the Hamming distance
threshold when filtering out false matches. In the following
experiments, we use the 20K visual vocabulary provided in
[8] and adopt approximate nearest neighbor software [4] to
quantize feature descriptor.

We use the spatial distance information between features

and wi = e−‖li−lA‖2/σ to assign the weight to feature fi in
formula (2). The impact of parameter σ is shown in Fig. 9.
Other parameters are set as follows. We divide the image
plane into 3 parts and set the spatial binary signature as 64
bits. Hamming distance threshold is set as 20 in retrieval.
It can be observed that from Fig. 9, when σ increases, the
mAP performance first increases and then drops gradually
after it reaches the peak. When σ is quite large, for example
10000000, it means almost no weighting scheme in formula
(2). The mAP we get is 0.532 for σ = 10000000. This is
reasonable because σ controls the range of the spatial con-
text information that we compress into the spatial context
binary signature. When σ is small, we record less spatial
cotnext information and when σ is too large, more noisy
spatial context information is introduced.

Then, we illustrate the impact of the image plane divi-
sion. As previous one, we let other parameters unchanged.
We set σ in formula (2) as 1000 and also use 64 bits to repre-
sent the spatial binary signature and 20 Hamming distance
threshold. The result is shown in Fig. 10. The image plane
is divided into 1, 2, 3, 4 parts respectively. From Fig. 10, it
is clear that the more parts image plane is partitioned into,
the higher mAP performance we can get. Since the more
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Figure 10: Illustration of impact of section num-
ber in formula (2). The image plane is divided into
1,2,3,4 parts, respectively, to test its influence.
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Figure 11: Illustration of impact of Hamming dis-
tance threshold when searching with spatial context
binary signature.

parts image plane is partitioned into, the longer the feature
surrounding descriptor is, namely DSA in formula (3), we
just divide the image plane into 1, 2, 3, 4 parts respectively
in Fig. 10.
Fig. 12 illustrates the result when we use different bits

to represent the spatial context binary signature. We also
divide the image plane into 3 parts and set σ as 1000. We
find that the best mAP performance can be gotten when
Hamming distance threshold is set as around 5/16 of total
bits of the spatial context binary signature. Hence, Ham-
ming distance threshold is set as 10, 20, 40 for 32, 64, 128
bits spatial context binary signature, respectively. And as
illustrated in Fig. 12, the more bits we use to represent
the spatial context binary signature, the better mAP per-
formance we can get, because much more spatial context
information is recorded into the inverted file.
Fig. 11 illustrates the impact of Hamming distance thresh-

old. We divide the image plane into 3 parts and set σ as 1000
and use 64 bits to represent the spatial context binary signa-
ture. For 64 bits spatial context binary signature, the best
result, 0.6 mAP performance, is obtained at 20 Hamming
distance threshold.

5.3 Evaluation on Large-Scale Dataset
To evaluate the large-scale image retrieval performance,

the common practice is to employ a large image database
as distrctors included in the ground truth data [17] [20] [10]
[16]. We follow the same scheme and download 1M Web im-
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Figure 12: Illustration of bits number kept to rep-
resent spatial context binary signature. Hamming
distance threshold is 10 for 32 bits and 20 for 64bits
and 40 for 128 bits.

ages and some sample images are shown in Fig. 7. We put
Holidays and the downloaded Web images together to test
the performance of the proposed algorithm. The experimen-
t is implemented on the server with 32G memory, 2.4GHz
CPU of Intel Xeon.

We use the 20K visual vocabulary provided in [8]. Besides
the baseline method, we also implement the geometric cod-
ing approach [25] as comparison. For the one-one relation-
ship method, the size of the visual vocabulary to quantize
the second element of feature tuple is 200. For the one-
multiple relationship approach, the spatial binary signature
generated for each feature is set as 64 bits with σ = 1000 and
the Hamming distance threshold 20. The mean average pre-
cision (mAP) is adopted to evaluate the performance. The
result is shown in Fig. 13. To evaluate the performance
with respect to the size of dataset, three different dataset
sizes, 200K, 500K, 1M are tested in our experiment. And
the 1.5K is the size of Holidays without distractors.

For the one-one relationship approach, to reduce the mem-
ory cost, in the inverted file, the image ID of the ’Entry’ in
Fig. 6, is set as the increment of current image ID and its
previous image ID belonging to the same item of the invert-
ed file, which we call delta-image ID. And we record delta-
image ID with 15 bits, and 1 extra bit is used to represent
whether the current delta-image ID exceeds the maximum
value of 15bits, namely 32767, or not. If it is larger than
32767, we use current 15 bits and the next 15 bits to repre-
sent delta-image ID.

From Fig. 13, it is obvious that the retrieval performance
degrades gradually while increasing the size of database. We
get about 0.135 mAP improvement for the one-one rela-
tionship method and 0.15 mAP improvement for the one-
multiple relationship method when no distractors are added
into Holidays. And when 1M images are indexed, for both
proposed approaches, we still get about 0.1 mAP improve-
ment comparing with the baseline method. Geometric cod-
ing [25] approach does not work well with above setting in
Holidays dataset. The reason may be that geometric coding
approach is designed for partial duplicate image search and
works well on the well structured planar objects, for example
trademarks.

As shown in Table 2, we present the time cost for each
step of our implementation in the on-line retrieval stage. We
implement each stage in a parallel way with the PPL library
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Table 2: The time cost of each step at online re-
trieval stage in our implementation. Note that the
image has 3000 feature per image and the database
is indexed with 20K visual vocabulary. We imple-
ment it with the PPL library of visual studio 2010,
except for the retrieval stage of geometric coding
approach.
time (ms) quantization pre-processing retrieval
baseline 183 0 108
one-one 183 62 63
one-multiple 183 47 81
geometric coding 183 0 9.25(s)

Table 3: The memory cost for each feature in our
implementation.
memory

baseline one-multiple one-one
geometric

cost (bytes) coding
per feature 20 (15∼30) × 2 12 14

of visual studio 2010. Local features are quantized with the
software download from [4]. In the software, two approach-
es to find nearest neighbor are implemented, namely kd-tree
based approximate nearest neighbor method and exact near-
est neighbor method. We choose kd-tree based approximate
nearest neighbor method to perform feature quantization.
In our implementation, the feature quantization time with
20K visual vocabulary is about 183 ms for an image with
3000 features. And for the one-one relationship approach,
spatial k-NN method, mentioned in the first paragraph of
Section 5.1, is adopted to choose feature tuples. Hence the
time cost will mainly come from getting k nearest spatial
neighbors. As this is performed in two dimension space and
can be performed in parallel way, we execute it in about
62 ms. For one-multiple method, the main time cost will be
computing the weighted sum feature surrounding descriptor,
namely DSA in formula (2), and multiplying the orthogo-
nal projection matrix to reduce the dimension of feature
surrounding descriptor, namely formula (4). To reduce the
complexity of computing weighted sum feature surrounding
descriptor, those surrounding features far away from the cen-
ter feature are not included in formula (2). And generating
the spatial context binary signature can be implemented in
47ms. As for the retrieval time cost, namely the time cost
traversing the inverted file, the minimum time cost is the
one-one relationship approach. Because the maximum inte-
ger ID in formula (1) is vocSize1 ∗ vocSize2 ∗ rSize that is
vocSize2∗rSize times of the baseline method, for which the
maximum integer ID is the visual vocabulary size. There-
fore, the high dimensional vector representation of an image
for the one-one relationship approach is much sparser than
the baseline method and the one-multiple approach. With
the property of the inverted file, high efficiency for sparsi-
ty, the one-one relationship approach gets the best retrieval
time efficiency. As for one-multiple approach, some false
matches are filtered out with the generated spatial context
binary signature , therefore the time cost for update the im-
age matching score is reduced. But XOR operation needs to
be done for each feature’s spatial context binary signature
with database features’ spatial context binary signatures.
For geometric coding approach, the retrieval stage is per-
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Figure 13: Illustration of proposed algorithm on
Holidays dataset with different size of images as dis-
tractors to the ground truth.

formed in a single thread way. It needs about 9 s, for which
the reason may be that many database images share some
visual words with the query image when a 20K vocabulary is
used. And we perform post-verification with geometric cod-
ing approach to all those images that sharing visual words
with the query image.

The memory cost for approaches mentioned in Fig. 13
is shown in Table 3. For the baseline method, each fea-
ture needs an ”Entry” in Fig. 6 and usually it contains two
float type for the location information, one float type for the
dominate orientation and one float type for the characteris-
tic scale, besides one unsigned int type for image ID. Thus
it needs 20 bytes for each feature. The proposed one-one re-
lationship approach also needs one ”Entry” for each feature
tuple. We do not record the location, the dominate orien-
tation, the characteristic scale information for each feature
tuple, which means just image ID is recorded for each fea-
ture tuple. What’s more, we use the delta-image ID method
to record image ID into the inverted file, namely about two
bytes for each feature tuple in average. And if two features
in one feature tuple are reciprocal k spatial nearest neigh-
bor to each other, we just record once for this feature tuple,
as mentioned in Section 3.1. In our implementation, we
choose k as 30. Hence, it needs 15 × 2 to 30 × 2 bytes for
each local feature in average. As for the one-multiple rela-
tionship method, a 64 bits spatial context binary signature
is generated for each feature, namely 8 extra bytes for each
feature besides image ID. Hence, 12 bytes for each feature
are required for one-multiple approach. In geometric cod-
ing approach, we use two float type to record the location
information and one unsigned char type for the dominate
orientation and one unsigned char type for the characteris-
tic scale. Therefore, 14 bytes are used to record each local
feature.

5.4 Discussion
The proposed algorithm, either the one-one relationship

approach or the one-multiple relationship approach, actually
is to record the spatial structure between single features into
the inverted file. It is obvious that some spatial structure
is much more meaningful than others [6]. If we abandon
the meaningless feature structures, we can accelerate the
processing speed and the retrieval accuracy one step fur-
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ther, because much noisy feature spatial structures would
be avoided.

6. CONCLUSIONS
We explore the implicit geometric verification by embed-

ding the spatial context information into the inverted file,
which will save considerable time comparing with other post-
verification algorithm. The extra time cost for the proposed
algorithm is to obtain feature tuples or the feature spatial
context binary signature compared to the baseline method.
And it is independent of the returned response image set
size, while the extra time cost of post-verification method
compared to the baseline approach is dependent on the size
of response image set returned by the inverted file. What’s
more, we can get feature tuples or the feature spatial context
binary signature in a parallel way.
The geometric verification can be implicitly achieved while

traversing the inverted file. The time cost to build feature
tuples or generate the spatial context binary signature is
independent of dataset size. So it is much more scalable
than other post-verification method and more suitable for
large-scale image retrieval. Our experiment on large-scale
dataset shows its effectiveness, which we can get 0.1 mAP
performance improvement on 1M dataset with comparable
time cost to the baseline method.
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