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ABSTRACT
We re-implement two state-of-the-art systems for music genre
recognition, and closely examine their behavior. First, we
find specific excerpts each system consistently and persis-
tently mislabels. Second, we test the robustness of each
system to spectral adjustments to audio signals. Finally, we
expose the internal genre models of each system by testing if
human can recognize the genres of music excerpts composed
by each system to be highly genre-representative. Our re-
sults suggest that, though they have high mean classification
accuracies, neither system is recognizing music genre.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Content Anal-
ysis and Indexing; J.5 [Arts and Humanities]: Music

General Terms
Algorithms, Experimentation, Performance

Keywords
Music genre recognition, classification performance

1. INTRODUCTION
The problem of automatically recognizing music genre of

remains an unsolved problem, and one that has been super-
seded in part by the problem of tag prediction [8]. Nonethe-
less, we have seen significant progress over the past decade.
Tzanetakis and Cook [16] combine short-term signal features
(both time- and frequency-domain computed over windows
of 23 and 43 ms duration) with long-term features (pitch
and beat histograms computed over long durations), and ei-
ther model these by Gaussian mixture models for parametric
classification, or use them for k-nearest neighbor classifica-
tion. For the benchmark dataset GTZAN [14, 16],1 their
best-performing system achieves a mean classification accu-
racy (MCA) of 61%. Since then, the MCAs of such systems

1Available at: http://marsyas.info/download/data_sets
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trained and tested with GTZAN have climbed to 83% [4],
and reportedly above 91%, e.g., [10].

In this paper, we examine two state-of-the-art systems in
ways that, to our knowledge, have never been done.2 The
first approach [4] combines weak classifiers trained by multi-
class AdaBoost [6,11] with bags of frames of features. In the
2005 MIREX audio genre classification competition,3 this
approach performed the best with respect to MCA across
two different datasets (both different from GTZAN). The
second approach, developed from [10], uses sparse repre-
sentation classification of auditory features. Originally pre-
sented as achieving MCAs greater than 90% in GTZAN [10],
this result has yet to be reproduced [15]. The version we de-
velop in this paper, however, performs slightly better than
that of [4] with respect to MCA in GTZAN.

After we discuss the particulars of our re-implementations,
we take a closer look at their behaviors. We discover that
each system consistently and persistently mislabels particu-
lar excerpts across multiple runs of stratified cross-validation
(SCV). We then find that we can make each system confi-
dently classify the same excerpt of music in radically differ-
ent genres by minor filtering of the audio signal. Finally, we
conduct an experiment revealing humans cannot recognize
the genres of music excerpts composed by each system to
be highly representative of each genre. We conclude with a
discussion about the implications of our observations.

2. TWO GENRE RECOGNITION SYSTEMS
2.1 AdaBoost with decision trees, and bags of

frames of features (AdaBFFs)
Multiclass AdaBoost [6,11] creates a “strong” classifier by

combining “weak” classifiers, e.g., decision stumps. Its use
for music genre recognition is first proposed in [4]. Given
the feature vectors (fvs) of a labeled training set, iteration l
of the multiclass AdaBoost [6, 11] adds a new decision tree
vl(x) and weight wl such that a total prediction error is
minimized. For a fv x extracted from a signal in one of
K classes, the lth decision tree vl(x) produces a length-K
vector with its kth element equal to 1 if it prefers class k, or
−1 if not. After iteration L, we have a classifier combining
L decision trees that produces the length-K vector of scores

f(x) :=

L∑
l=1

wlvl(x) (1)

with which we classify x by the row of the largest element

2We make available all our code: http://imi.aau.dk/~bst
3http://www.music-ir.org/mirex/wiki/2005
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in f(x). For a set of several fvs X := {xi}, we have the set
of score vectors {f(xi)}. We thus pick the class for the set
of features X by maximizing the logistic [9]:

P [k|X ] := γX

1 + exp

−2

|X|∑
i=1

[f(xi)]k

−1

(2)

where [b]k denotes the kth element of b, and we set γX so
that P [k|X ] is a probability distribution.

In our re-implementation, we use the“multiboost package”
[3], with decision trees as the weak learners, AdaBoost.MH
[11] as the strong learner, and all other parameters left to
their defaults. To extract the features of an audio signal, we
first segment it by 50%-overlapped Hann windows of dura-
tion 46.4 ms. We compute for each segment: the number
of zero crossings; the variance and mean of the power spec-
trum; 16 quantiles of the power spectrum (converting the
discrete spectrum to a probability mass distribution, we find
the highest frequencies at which the cumulative distribution
function is less than m/17 for m ∈ {1, 2, . . . , 16}); the error
of a least-squares optimized 32-order linear predictor (au-
toregression) and the 40 Mel-frequency cepstral coefficients
(MFCCs) as in [13]. For every 129 consecutive windows (3
seconds duration), we compute their mean and variances of
these features to give a fv xi with 120 dimensions.

2.2 Sparse representation classification with au-
ditory modulations (SRCAM)

Sparse representation classification (SRC) [18] is moti-
vated by the idea that sparse approximations can be class-
discriminative. The use of SRC for music genre recogni-
tion is first proposed in [10]. Given a matrix of N fvs
D := [d1|d2| · · · |dN ], and the set ∪K

k=1Ik = {1, . . . , N},
where Ik specifies the columns of D belonging to class k,
SRC first finds the sparse approximation of an unlabeled fv
x by basis pursuit denoising for an ε2 ≥ 0 [5]:

ax = arg min
a∈RN

‖a‖1 subject to ‖x−Da‖22 < ε2. (3)

SRC then defines the set of class-restricted weights {sk ∈
RN : k ∈ {1, . . . ,K}} by

[sk]n :=

{
[ax]n, n ∈ Ik
0, else.

(4)

Finally, SRC selects the class simply by

k̂(x) := arg min
k
‖x−Dsk‖22. (5)

We measure the“confidence”of SRC by comparing the errors
of the class-dependent approximations, defined for class k by
Jk := ‖x−Dsk‖2. The confidence of class k for x is thus

C(k|x) :=
maxk′ Jk′ − Jk∑
l[maxk′ Jk′ − Jl]

. (6)

The auditory modulation features as described in [10] are
irreproducible [15]; but we are able to create similar features
with help from the authors of [10]. We use the Lyon Pas-
sive Ear Model implemented in [13], and a downsampling
factor of 40, to produce auditory spectrograms of signals 30
s in duration. To create the modulation analysis, we pass
the zero-meaned signals of each frequency band through a
bank of 8 Gabor filters sensitive to modulations rates in
{2, 4, 8, . . . , 256} Hz as described in [15]. Finally, we find

the squared energy of each Gabor filter output, which gives
a distribution of energy in frequency and modulation rate.
and then vectorize this to produce a 768-dimensional fv x.

To produce the dictionary D, we take the set of fvs {xj :
j ∈ {1, . . . , N}} and standardize them by first mapping all
values in each dimension to [0, 1] (subtracting the minimum
value observed, and dividing by the largest difference ob-
served), and then scaling each dimension to have unit vari-
ance. Finally, we make each standardized fv have unit `2
norm and compose the dictionary by concatenating them
all as columns. We apply the same standardization trans-
formation used to create D, to each fv to be classified. To
solve (3), we use the SGPL1 solver [17] with at most 100
iterations, and ε2 := 0.01. Though we find that the solver
converges only about 20% of the time, its output still ap-
pears favorably discriminative.

2.3 Experimental results
We train and test each system with SCV in GTZAN [16]

— a dataset with 1,000 music recording excerpts of 30 s
duration with 100 labeled examples in each of 10 different
music genres: Blues, Classical, Country, Disco, Hip Hop,
Jazz, Metal, Popular, Reggae, and Rock. Though GTZAN is
a problematic dataset [14], we use it here for two reasons: to
confirm that our re-implementations perform as is reported
for GTZAN [4,10]; and because we are specifically interested
in finding what makes them perform so well for GTZAN.

To train and test AdaBFFs, we use decision trees of one
node (stumps), and 5-fold SCV with AdaBoost.MH run for
2500 iterations (as in [4]); and to test SRCAM, we use 10-
fold SCV (as in [10]). Here, however, we run 10 SCV trials
for the mean statistics of each system over training and test-
ing dataset distributions. Each excerpt in GTZAN is thus
classified ten times using different training data each time.
Figure 1 shows the mean confusions of each system, and their
95% confidence intervals. We see that the overall MCA of
AdaBFFs is 0.7755± 0.0022, which is significantly less than
83% reported in [4]. This could be due to their use of de-
cision trees with an unspecified number of nodes for testing
on GTZAN (though their MIREX 2005 submission did use
decision stumps).4 The MCA of SRCAM is 0.8203±0.0019,
which is about 9% worse than that reported in [10], but more
than 10% higher than what has been achieved with previous
attempts at reproducing their results in GTZAN [15].

3. A CLOSER LOOK AT BEHAVIORS
In the literature, the performance analysis of genre recog-

nition systems often consists of only MCA and confusion
matrices. We move beyond this to examine the behaviors
underlying these systems. First, we look at specific ex-
cerpts that each system consistently and persistently mis-
labels. Second, we test the sensitivity of the systems to
the spectral equalization of a music excerpt. Finally, we at-
tempt to survey the internal genre models of each system by
testing how well humans recognize the genres of excerpts it
composes to be highly representative of a particular genre.

3.1 Consistent & Persistent Misclassifications
We define a consistent and persistent mislabeling (CPM)

to be when an excerpt is mislabeled the same way in all
10 SCV trials. For lack of space, we only discuss CPMs of
Disco-labeled excerpts in GTZAN. Disco is a style of dance

4Personal communication with James Bergstra.
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(a) AdaBFFs (b) SRCAM

Figure 1: Confusion matrices with 95% confidence intervals shown below means.

music that emerged in the early 1970s in the UK and USA,
and quickly became a popular style world-wide [12]. Disco
blends, among others, Funk and Soul styles, typically uses a
common time meter at a steady tempo of around 120 beats
per minute. typically has a distinctive use of the open hi-hat
on the off beats, as well as prominent and bouncy electric
bass lines, and harmonized rich accompaniment by strings,
brass, keyboards, female vocals, and synthesizers [1].

Figure 2 shows how each system, in the 10 trials of SCV
used for Fig. 1, labels the Disco-labeled excerpts of GTZAN.
The darkness of a tile represents the frequency of the applied
label. We find AdaBFFs has 10 CPMs: four as Pop, three
as Rock, and one each as Classical, Country, and Hip hop.
For SRCAM, we find 12 CPMs: three each as Hip hop, Pop,
and Reggae, two as Classical, and one as Rock. Of these,
both systems share three of the same CPMs, but each of
these are “forgivable” for the following reasons. First, (ex-
cerpt) 23 comes from Latoya Jackson’s album “Bad Girl”
from 1991, more than a decade after the climax of Disco in
the USA [12]. The song does not have characteristics par-
ticular to Disco, and the top last.fm tag5 applied to this
artist is “pop” (from here on all tags come from last.fm).
Second, 29 comes from Evelyn Thomas’s “Heartless” from
1984, which is not tagged “disco.” Finally, 47 is only Bar-
bra Streisand and Donna Summer singing at a slow tempo
and softly accompanied by piano and strings. Though the
song from which it comes is exemplary Disco, the excerpt
lacks drums and bass lines so distinctive of Disco that we
consider this CPM as forgivable. Individually, each system
has other forgivable CPMs: excerpt 27 for AdaBFFs (top
tags are “Hip-Hop” and “rap”); and for SRCAM excerpts 21
(its source is the Disco song “Never Can Say Goodbye,” but
this excerpt comes from a “modern pop”-sounding version),

5http://last.fm is an on-line service gathering information
about music from listeners around the world. A tag is a word
or phrase applied by a listener describing an artist or song.

and 85, “Wordy Rappinghood,” featuring a sparse sequenced
drum loop and a female vocalist rapping about words.

Each system, however, has CPMs that are not so for-
givable. Excerpt 84 is certainly Rock for AdaBFFs, and
Reggae for SRCAM. The identity this excerpt is currently
unknown [14], but, to us, its content (up-tempo sequenced
drums, bass and horns, funk/disco rhythm guitar, cowbells
and handclaps, no spring reverberation) has little in com-
mon with the Rock- or Reggae-labeled GTZAN excerpts.
“Boogie Nights” — a classic in the discography of Disco [12]
— and excerpt 28 both have the top last.fm tag “disco,”
but AdaBFFs is adamant that they are Pop. Similarly,
AdaBFFs insists that ABBA’s “Dancing Queen” and Dee’s
“Disco Duck” are both Rock though their top 5 last.fm tags
include “disco” and not “rock”; and Heatwave’s “Always and
Forever”, with a top last.fm tag of “soul” is Country. For
SRCAM, Disco classic “Kung Fu Fighting” [12], and excerpt
79 are undoubtedly Hip hop. The former has the top tag
“disco,” and the artist of the latter has the top tags “funk,
disco funk.” Also for SRCAM, though they all have the top
tag “disco,”“Funkytown” and excerpt 53 are always Reggae,
and the excerpt by Disco-Tex and the Sex-O-Lettes is Rock.
SRCAM is strangely insistent that “Why?” by Bronski Beat
(top tags: “80s, new wave, synthpop”) is Classical.

Table 1 shows for each system the CPMs as Disco for
excerpts in other categories of GTZAN. Some of these are
forgivable, e.g., Pop 12 and 63 having Aretha Franklin and
Diana Ross, respectively; but other CPMs are not so for-
givable. Both systems are unanimous in their Disco classi-
fication of “Honky Tonk Woman” from 1969 by The Rolling
Stones, and the Hip hop “Looking for the Perfect Beat” by
Afrika Bambaata. And AdaBFFs is resolute that The Beach
Boys’s 1966 hit “Good Vibrations” is as Disco as Chic.

3.2 Genre-shifting Mastering
We now test the robustness of each system to changes in

the spectral characteristics of an excerpt. If a it is capable
of recognizing genre, then it should be robust to spectral
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Figure 2: Assignments (y-axis) of Disco-labeled excerpts in GTZAN in 10 SCV trials by AdaBFFs (top) and
SRCAM (bottom). Black is an excerpt labeled the same 10 times. R# show exact replicas [15].

Label, No. Origin

A
d

a
B

F
F

s

Country 39 Wayne Toups “Johnnie Can’t Dance”
Hip hop 00 Afrika Bambaata “Looking for the Perfect Beat”

Pop 12 Aretha Franklin, Celine Dion, Mariah Carey, et
al. “You Make Me Feel Like A Natural Woman”

Reggae 23 Bob Marley “Sun is Shining”
Reggae 59 Bob Marley “One Love”

Rock 27 The Beach Boys “Good Vibrations”
Rock 31 The Rolling Stones “Honky Tonk Woman”
Rock 37 The Rolling Stones “Brown Sugar”
Rock 40 Led Zeppelin “The Crunge”
Rock 43 Led Zeppelin “The Ocean”
Rock 57 Sting “If You Love Somebody Set Them Free”
Rock 81 Survivor “Poor Man’s Son”
Rock 82 Survivor “Burning Heart”

S
R

C
A

M

Hip hop 00 Afrika Bambaata “Looking for the Perfect Beat”
Pop 63 Diana Ross “Ain’t No Mountain High Enough”

Reggae 01 Bob Marley “No Woman No Cry”
Rock 31 The Rolling Stones “Honky Tonk Woman”
Rock 77 Simply Red “Freedom”

Table 1: All GTZAN excerpts consistently and per-
sistently mislabeled Disco by AdaBFFs & SRCAM.

changes of an excerpt. For instance, humans can recog-
nize any of the 10 genres in GTZAN whether such music
is played on AM or FM radio. To the end, we train Ad-
aBFFs with the all of GTZAN using 2500 training iterations
of AdaBoost.MH. For SRCAM, the standardized ATMs of
all excerpts compose the dictionary. We take a 30 s excerpt
of recorded music (sampled at 22.050 kHz), pass it through
a 94-channel Gammatone filterbank with channels either on
or off (center frequencies from 110 Hz to about 9 kHz), and
sum the output with that of a lowpass filter preserving the
frequency content below 110 Hz (Fig. 3). Each system then
classifies the “equalized” signal.
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Figure 3: Magnitude response of 95-band filterbank.

To begin, we take a 30 s excerpt of the Western Swing
song “Big Balls in Cowtown” by Bob Wills and the Texas
Playboys. Each system labels this excerpt as Country. How-
ever, often with only minor changes to the sound, we are
able to make AdaBFFs label this music with all ten genres
of GTZAN, and SRCAM with eight genres. For the par-
ticular label applied to the excerpt by each system, Fig. 4
shows the magnitude responses of the equalizations. We
see that with a majority of the filters on, AdaBFFs applies
Disco, Pop, Reggae and Rock, and SRCAM applies Disco,
Jazz, Pop and Reggae. Listening to these filtered excerpts
shows that they are not changed so significantly that a hu-
man would make such confusions. Furthermore, we find the
two systems behavior similarly with other excerpts, includ-
ing “Symphony of Destruction” by Megadeth, “Poison” by
Bel Biv Devoe, and even “blues.00001” from GTZAN. In all
cases, while these systems correctly label the “original” ver-
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(a) AdaBFFs
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(b) SRCAM
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Figure 4: Equalizations for each system to claim a
particular genre for Western Swing song “Big Balls
in Cowtown” by Bob Wills and the Texas Playboys.

sions, we can coax each to label the same music with widely
different genres by spectral equalization that is often only
perceptually minor.

3.3 Representative Excerpts
We now test whether human subjects can recognize the

genres of excerpts each system (trained on all excerpts of
GTZAN) composes to be highly representative of each genre.
To do this, we take the 1,198 sample loops that accompany
Apple’s GarageBand program.6 These loops cover the vari-
ety of genres in GTZAN, e.g., drum patterns characteristic
of Disco, Hip hop, Jazz, Reggae, and Rock; piano and or-
gan played characteristic to Blues, Classical, Disco, Jazz,
Pop, Reggae and Rock; bass played characteristic to Blues,
Country, Disco, Jazz, Metal, Pop, Reggae, and Rock; guitar
(and banjo) played characteristic to Blues, Country, Jazz,
Metal, and Rock; melodies played on recorder, orchestral
brass, and strings; and sound effects, like vinyl scratching
characteristic to Hip hop. From these, we randomly com-
bine four sample loops, each one repeated to last 30 seconds,
and have each system select an excerpt to best represent each
genre. AdaBFFs selects a randomly composed excerpt to be
representative of genre k only if P [k|X ] > 0.999. Likewise,
SRCAM selects it only if C(k|x) ≥ 1.7C(k′|x) ∀ k′ 6= k.
With these choices, we find that about 1 in 5 random com-
binations result in a representative excerpt. We find that the
most likely labels applied by AdaBFFs are Country (25%)

6This program is made for people to easily make music
within a loop-based sequencing environment.

and Rock (23%), and the least often Pop (< 1%). For SR-
CAM, the most likely labels are Classical (20%) and Reggae
(35%), and the least often Country (< 1%).

Taking one representative excerpt produced by each sys-
tem for each of the ten genres in GTZAN, we perform lis-
tening tests as follows. First, we tell the subject that they
will listen to up to 30 musical excerpts of about 10 seconds
in length. For each one, they are to pick one of the ten
genres listed that best describes it. They can listen to each
excerpt as many times as needed, but cannot return to pre-
vious excerpts or change previous answers. They must select
a genre before advancing. Then the subject dons a pair of
headphones, and interacts with a GUI built in MATLAB.
In order to screen subjects for their ability to recognize the
ten genres, the first ten excerpts are ones we selected from
GTZAN for their genre representability.7 The test ends if
the subject makes an error in these; otherwise, the subject is
then presented the 20 representative excerpts. The presenta-
tion order of all excerpts are randomized, with the exception
that the first ten are from GTZAN, the second ten are from
AdaBFFs, and the final ten are from SRCAM.

With this experimental design we test whether a subject
able to recognize real excerpts from the same genres can rec-
ognize the same genres among the representative excerpts.
The null hypothesis H0 is thus: those able to recognize
the genres of 10 real excerpts are unable to recognize the
same genres of the representative excerpts. Twenty subjects
passed the screening, and so we define statistical significance
by α = 0.05. Assuming independence between each trial,
we model the number (no.) correct N as a random vari-
able distributed Binomial(20, 0.1). The expectation E[N ] =
20(0.1) = 2, and variance Var[N ] = 20(0.1)(0.9) = 1.8. In
our experiments, the mean no. correct is 1.85 (median is 2;
mode is 1); the variance is 1.19. The maximum no. correct is
4 (1 person), and the minimum is 0 (2). Since the probability
P (N > 3) > 0.13, and P (N = 0) > 0.12, we cannot reject
H0 for any subject, let alone all of them. Looking at how
each subject performs for excerpts specific to each system,
we find no behavior statistically significant from chance for
either. We also test for a significant difference between the
two sets of representative excerpts, i.e., H0 is that accuracy
on the two sets are not significantly different. A two-tailed
t-test shows we cannot reject H0. In summary, subjects are
unable to recognize the genres of the representative excerpts.

It is clear from the data that even though all genres are
equally represented, test subjects most often selected Jazz
(28.3%), followed by: Disco (15.0%), Pop (12.0%), Rock
(11.8%), Reggae (9.5%), Hip hop (7.3%), Blues (6.5%), Coun-
try (6.5%), Classical (2.0%), and Metal (1.3%). The SRCAM-
composed Reggae excerpt contains a loud banjo, and so most
subjects (90.0%) classified it as Country. The AdaBFFs-
composed Rock excerpt contains a prominent walking acous-
tic bass, and so most subjects (70.0%) classified it as Jazz.
Subjects mentioned that while the first ten real excerpts
were easy to classify, the last 20 were very difficult, and
many sounded as if several genres were combined.

4. CONCLUSION
It has been acknowledged several times now, e.g., [2, 7],

that low-level features summarized by bags of frames, such

7Artists and titles in [14]: Blues 5, Classical 96, Country 12,
Disco 66, Hip hop 47, Jazz 19, Metal 4, Pop 95, Reggae 71,
Rock 40.
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as those used in [16], are unsuitable for music similarity
tasks, which includes genre recognition. This has motivated
the fusion of features over longer time scales, such as those
used in AdaBFFs [4] and SRCAM [10], from which we see
significant increases in MCA by over 20% compared to past
low-level approaches like [16]. In this paper, we have exam-
ined whether the high classification accuracies of both Ad-
aBFFs and SRCAM reflects a capacity to recognize genre.

First, we have found that each system commits CPMs,
and have looked specifically at the Disco-labeled excerpts
of GTZAN. We do not expect human performance; but we
should not expect from a system with a capacity to recog-
nize a genre such CPMs of excerpts that, for the most part,
clearly meet the stylistic rules of a genre supposedly learned.
This type of analysis might be argued unfair, and that we
must look at the instances of correct classification — seen
for Disco in Fig. 2. Looking at CPMs, however, illuminates
the deficiencies in the genre schema of a system, and seeks to
answer the question, “How does it recognize Disco?” instead
of, “How often does it recognize Disco?”

Second, we have found that both systems are quite sensi-
tive to even minor changes in the spectral characteristics of
signals. While the underlying music does not change, each
system labels them in several widely differing genres. This
is, of course, not surprising given that these systems heavily
rely on spectral characteristics; but that they are so sensi-
tive raises the question of how they are performing so well
in the first place. It might be argued that if we include in
the training data the original excerpts and filtered versions,
then these systems might perform better. In addition to the
problems of having to define what is “unfiltered” when ev-
erything is filtered, and specifying what filters to use and
how many permutations, it is not clear how this could help
either system learn music genre in a more complete way.

Finally, we have attempted to tease out the internal genre
models of each system by having them “compose” highly
genre-representative music from sample loops. Through for-
mal listening tests and statistical analyses, we find humans
do not recognize the genres supposedly represented. It might
be argued that the composed excerpts are not “real mu-
sic” when compared to the data with which the systems are
trained. Thus, it would be better to use “relatively unknown
but real songs.” Such an experiment, however, does not help
reveal the inner models. Consider a horse that can correctly
clop the sum of two integers spoken by its trainer. Asking
exhaustively for the sums of every pair of digits does not test
its understanding of arithmetic. We wish to ask instead, e.g.,
“What sums make 5?”

Acknowledgments
Thanks to Yannis Panagakis and Costas Kotropoulos for their

help in building features for SRCAM; to James Bergstra and

Norman Casagrande for discussions on AdaBoost; and to Mark

Plumbley, Geraint Wiggins, Nick Collins and Fabien Gouyon for

several helpful discussions. This work supported in part by: Inde-

pendent Postdoc Grant 11-105218 from Det Frie Forskningsr̊ad;

the Danish Council for Strategic Research of the Danish Agency

for Science Technology and Innovation in project CoSound, case

no. 11-115328; EPSRC Platform Grant EP/E045235/1 at the

Centre for Digital Music of Queen Mary University of London.

5. REFERENCES
[1] C. Ammer. Dictionary of Music. The Facts on File,

Inc., New York, NY, USA, 4 edition, 2004.

[2] J.-J. Aucouturier, B. Defreville, and F. Pachet. The
bag of frames approach to audio pattern recognition:
A sufficient model for urban soundscapes but not for
polyphonic music. J. Acoust. Soc. America,
122(2):881–891, Aug. 2007.

[3] D. Benbouzid, R. Busa-Fekete, N. Casagrande, F.-D.
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