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Abstract. In this paper, we present a novel 3D descriptor that bridges
the gap between global and local approaches. While local descriptors
proved to be a more attractive choice for object recognition within clut-
tered scenes, they remain less discriminating exactly due to the limited
scope of the local neighborhood. On the other hand, global descriptors
can better capture relationships between distant points, but are generally
affected by occlusions and clutter. So, we propose the Local-to-Global
Signature (LGS) descriptor, which relies on surface point classification
together with signature-based features to overcome the drawbacks of
both local and global approaches. As our tests demonstrate, the pro-
posed LGS can capture more robustly the exact structure of the objects
while remaining robust to clutter and occlusion and avoiding sensitive,
low-level features, such as point normals. The tests performed on four
different datasets demonstrate the robustness of the proposed LGS de-
scriptor when compared to three of the SOTA descriptors today: SHOT,
Spin Images and FPFH. In general, LGS outperformed all three descrip-
tors and for some datasets with a 50-70% increase in Recall.

1 Introduction

Object recognition is arguably the most important topic in the field of com-
puter vision because of the different applications that this task can serve. Such
applications include, scene understanding, robot navigation, tracking, assistive
technology and many others. This importance has also grown in the past decade
as research has steered towards the use of 3D instead of 2D information for the
task of object recognition. But as in the years of 2D object recognition, designing
good feature vectors, or descriptors, is still the most critical step involved in 3D
object recognition. Indeed, the descriptors have the greatest effect on the overall
recognition result, as argued in [1].

The techniques adopted for object description can be divided into two main
categories; global or local. At first, global descriptors seem a more natural choice,
since they seek to encode the entire set of keypoints into a single feature vector
describing the object. This makes global features far more discriminating given



2 Isma Hadji1, and G. N. DeSouza2,

that the entire geometry of the object is taken into account. However, being able
to observe as much as possible of this same geometry becomes a condition for
the success of global descriptors. On the other hand, local descriptors rely only
on the local neighborhood of each keypoint, making the recognition more robust
in scenes with clutter and occlusion [1], but for the price of increased sensitivity
to changes in those neighborhoods (e.g. instrument noise). Another advantage
of local descriptors is in the ability to perform point to point correspondences,
which makes pose estimation using, for example RANSAC, much easier.

In this research we propose a new descriptor built at the up-to-now unseemly
intersection between these two paradigms. The Local-to-Global Signature – or
LGS descriptor – is local in the sense that each feature vector describes a single
keypoint, rather than the entire object, but at the same time global as it looks
beyond the local neighborhood (support regions) to describe the properties of
keypoints with respect to the entire object. Unlike traditional global descrip-
tors, the LGS overcomes issues related to occlusion and clutter by constructing
signature vectors instead of histogram-based vectors. The advantages of using
signatures to reduce the effects of occlusion are further detailed in Section 3,
but again, that is not the only contribution of the proposed descriptor. In sum-
mary, the LGS was built around the following five main ideas: 1) Relying on
surface point classification to capture the entire geometry of the object (global
property); 2) Describing keypoints (local property), but using both local and
global support regions grouped by the same surface class; 3) Using signatures
(global property) to avoid loss of information and mitigate the effects of occlu-
sion; 4) Using distributions of L2-distances to encode the relationship between
keypoint and support regions to increase robustness to noise and eliminate the
use of sensitive features such as surface normals; and 5) Using confidence on the
relationship above to improve the matching during object recognition.
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Fig. 1. Steps of the construction of the LGS descriptor: yellow dots represent keypoints
to be described; points are color coded according to the surface class to which they
belong, from sharp regions in red to smooth surfaces in light blue; the signature consists
of the distances f between the keypoint and its local and global support regions, plus
the corresponding confidences in their assignments.
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Figure 1 illustrates the overall construction of the LGS descriptor. These
ideas will be further detailed in the remaining of the paper which is organized as
follows: Section 2 briefly surveys the most prominent 3D descriptors used in the
field. In section 3, we introduce the LGS descriptor and highlight the different
steps involved in constructing it. Section 4 describes in details the experiments,
the datasets used and presents all the results obtained. Finally, we conclude with
a discussion on the advantages of the proposed approach, its limitations as well
as possible directions for future work.

2 Background and Related Work

As briefly mentioned in Section 1, 3D descriptors belong to two main cate-
gories; global and local. Local descriptors focus on the local neighborhood of
keypoints, while Global descriptors represent the complete object by either us-
ing all or a subsample of the detected keypoints. The techniques used to encode
the relationships between keypoints can also be divided in two sub-categories:
signature-based and histogram-based. A detailed comparison between these two
sub-categories can be found in [2].

Among the first successful local 3D descriptors employing histograms we find
the Point Feature Histogram (PFH) [3]. PFH describes the angular variations
between each two surface normals in the k-neighborhood of a region of inter-
est. Because this descriptor models variations between normals at all pairs of
points, it is very computationally intensive. For that reason, Fast PFH (FPFH)
was introduced in [4] to speed up the process, but in detriment to its power
to discriminate objects. An alternative was then introduced in [5], where the
authors proposed a 3D extension of the 2D Shape Context descriptor [6]. This
descriptor relies on the position of keypoints in a local neighborhood (support
region) with respect to a virtual spherical grid. Each spherical grid accumulates
a weighted sum of the points falling in that grid. In order to achieve repeatabil-
ity, the north pole of the spherical grid is first aligned with the direction of the
surface normal at the point being described. This alignment is sensitive to the
choice of the reference frame – a major issue for any descriptor based on surface
normals. So, a major breakthrough in terms of 3D descriptors was introduced
by the SHOT descriptor ([2]), where the authors addressed this problem with
the reference frame repeatability by attaching a unique reference frame to each
point. Once the reference frame is determined, the local support of each point is
discretized in a way similar to that in the 3D Shape Context descriptor. Another
contribution of SHOT was that the histogram of each grid is concatenated to
form the final signature. This technique for defining local repeatable reference
frames was later used to improve the 3D Shape Context in [7] by taking the
initial representation proposed for 3D Shape Context and disambiguate it using
the unique reference frame introduced by the SHOT descriptor. Although quite
different in terms of their implementations, the afore mentioned techniques are
very similar in concept. Their reliance on local neighborhoods and low-level fea-
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tures, such as surface normals, compromise their ability to discriminate objects
and make them quite sensitive to viewing perspectives and noise.

As far as signature-based descriptors are concerned, Point Signatures (PS)
[8] is possibly the best known descriptor. It relies on point positions also within
a local neighborhood, but it encodes these positions in the local sphere in terms
of the angle between the surface normal at the point and the signed distance of
the points to the plane separating the sphere into two halves. While this method
captures exactly the structure of the local neighborhood, it remains very sensitive
to small changes in the normal estimation and the reference frame. Another
signature-based descriptor is proposed in [9], where signatures are built from
the depth values of the local surface after its normal vector has been aligned
with the Z axis. Also, in order to reduce the dimensionality of the signature, the
method resorts to a PCA subspace of the feature vector. Although signatures
usually lead to a better discriminating power, the reliance on local neighborhoods
causes low repeatability in keypoint matching since many keypoints in one object
can have similar local structures.

Finally, when it comes to global descriptors, the View-point Feature His-
togram (VFH) [10], which is an extension to the FPFH, is one of the most
widely used. Instead of describing relationships between points in local neigh-
borhoods, VFH does so for every point in the cloud with respect to their centroid.
In addition to this, VFH introduces view point variance – an important addition
when it comes to estimating object pose. Another attempt of generalizing FPFH
was provided in Global FPFH [11]. In this case, FPFH descriptors are used lo-
cally for every point in the object and a conditional random field is trained in
order to classify the collected local descriptors into a set of primitives. Next,
the relationships between keypoints are encoded by counting the number and
type of transitions between primitives while traversing keypoints in an octree.
Later, in Global Radius-based Surface Descriptor, GRSD ([12]), a modification
to GFPFH was proposed by eliminating the first classifier and adding a geomet-
ric solution to the shape primitives. A similar approach called Global Structure
Histogram, or GSH, was also proposed in [13] with the goal of capturing the
global structure of the object. In order to do so, the authors followed the same
procedure proposed in [11], but using a clustering algorithms to learn the points
classes and by encoding the relationships between keypoints in all clusters using
geodesic distances.

In this work, we maintain that adopting the strengths of both local and
global descriptors can lead to highly discriminating features. These features can
be successfully used in the task of object recognition and pose estimation within
scenes, even if they suffer from clutter and occlusion.

3 Proposed Method

3.1 Motivation

The proposed LGS descriptor can be regarded as a bridge between local and
global paradigms. Recently, global 3D descriptors introduced interesting ideas
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involving the classification of object surfaces based on their shapes. These ideas
should ultimately increase the discriminating power of the descriptor. However,
it is clear that a great amount of information is lost in the process of encoding the
relationships between all keypoints of an object into a single feature vector. In
addition to that, global descriptors are very sensitive to clutter and they require
a good segmentation algorithm as a pre-processing step ([1]). Also, even if a
perfect segmentation could be obtained, occlusions can have a major effect on the
performance of global descriptors. On the other hand, a common problem that
may affect all local descriptors is the inability to discriminate similar support
regions not only within the same object but also across different objects. To
illustrate this idea, we extracted both the SHOT and the LGS descriptors from
two different keypoints coming from two completely different objects. We set
the radius size of the support region used to estimate the SHOT descriptors to
25 times the mesh resolution – i.e. almost twice the recommended size of 15
times the mesh resolution [2]. As Figure 2 clearly shows, the SHOT descriptors
for these two keypoints are almost identical even though they come from very
different objects, while the LGS makes clear distinction between the same two
keypoints.

(a) Locally similar keypoints from two different objects
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Fig. 2. Contrast between the SHOT and the proposed LGS descriptor: (a) two key-
points (shown in yellow) falling on similar local neighborhoods, but coming from two
completely different objects. Notice the similarity between the two, red and blue, SHOT
descriptors in (b) as opposed to the clear contrast between the LGS descriptors in (c),
also in red and blue.
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For these reasons, the proposed descriptor starts from a local approach, where
each keypoint is represented with a unique feature vector – i.e descriptor. Then,
it turns global by looking at the entire object while capturing the structure of
the object with respect to that keypoint.

3.2 LGS descriptor

As we just mentioned, the main advantage of the LGS descriptor resides in the
idea of looking beyond the local support. In fact, it looks at different regions rep-
resenting different properties of the object. This is accomplished by: (i) assigning
classes to all the points in the cloud (global property); (ii) describing keypoints
(local property), but using both local and global support regions; (iii) using sig-
natures to describe the relationships between keypoints and selected points from
all the assigned classes; (iv) using L2 norm to robustly encode such relationships;
and (v) using confidence on the relationship above during matching.

Point Classification

To classify the points we use the radius-based surface classification proposed in
the RSD descriptor ([12]). Our technique starts form the assumption that every
two points fall on a sphere. Therefore, within each neighborhood the radii of all
virtual spheres are estimated using points locations. Then, the maximum and
minimum sphere radii present in the local neighborhood are derived. For more
details we refer the reader to [12].

In the original proposal of RSD, the authors used both the minimum and
maximum radii to classify points as belonging to one of the geometric primitive
shapes. In our implementation however, we chose to classify points from very
sharp to very smooth. Our decision for this classification approach is motivated
by one main argument: to be able to find a pre-defined number of classes inde-
pendently of the object considered. This may not be feasible when using shape
primitives where some specific shapes may not appear in all objects. In addition,
since this classification scheme is independent of primitive shapes, it allows the
algorithm to vary the number of classes by simply varying the ranges of sharp-
ness and smoothness. For example, we cannot expect to find a toroid shape in all
objects, but we can reasonably assign different levels of sharpness or smoothness
to any surface based on its curvature.

In our implementation, we rely only on the minimum radius from the RSD
method described above, where a very small radius is an indication of a very
sharp surface, and a large radius represents a smooth one. After deriving the
minimal radii associated with each point on the surface of the object, the al-
gorithm can split the radii values into N different ranges, representing the N
classes of the object’s surfaces. If for example N = 3, any point with radius
r < α ∗ mesh resolution would be assigned to class 1; a point with radius
α ∗ mesh resolutionr < r < (α + 5) ∗ mesh resolution is assigned to class 2;
and all other points are assigned to class 3. In our experiments, the value of α
was empirically set to 6.
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Since LGS uses continuous ranges of radii values for surface point classifica-
tion, fuzzy regions may emerge. These fuzzy regions contain points with values
of radii that are close to the end of one range and the beginning of the next one.
Therefore, these points could belong to any of the two consecutive ranges. It is
easy to understand that these regions are unstable and points can move from
one class to another as noise is added or removed. Also, noise can cause spikes
to appear on otherwise smooth surfaces. Therefore, to cope with these potential
instability in surface classification, we propose the assignment of both a class
and a membership to the class for each point in the cloud. Basically, after the
initial crisp classes are assigned to each point, the algorithm searches over each
point and calculates a coefficient of confidence that the specific point belongs
to the assigned class. These confidences c approximate the probability that a
current point p belongs to class n given the number of points from that class in
its local support region; that is:

c =
# of points in class n in the neighborhood of p

Total number of points in the neighborhood of p
(1)

The rational behind these confidences is the assumption that in any small
neighborhood points are more likely to belong to the same surface class. Also, a
low confidence indicates that the point belongs to a fuzzy or noisy region, where
multiple classes may be assigned. This determines when the algorithm is to give
high or low weights to the points used in the next steps of the algorithm.

Signature Construction

Once all points are assigned to one of the N classes and their confidences are
calculated, the LGS descriptor is constructed in a signature-based fashion. Figure
1 should help the reader in understanding the following steps. First, for every
keypoint, the algorithm finds its corresponding k-nearest neighbors within each
class. Next, the k-neighbors in each class are sorted based on their distance from
the keypoint and divided into D clusters. Then, the median L2-distances from
the keypoint to the points falling in each cluster form a D dimensional feature
vector. These distances are the actual features fl of the LGS descriptor. Finally,
feature vectors representing the neighborhoods of the keypoint in each one of the
N classes are concatenated to form the final signature whose length is equal to
D ×N . Again, Figure 1 illustrates the construction of a simplified signature in
the LGS descriptor. It is important to mention again that the main motivation
for using a signature-based descriptor is its potential robustness to occlusions.
In fact, if parts of the object happen to be occluded in the scene, only the entries
corresponding to those parts of the object will be altered in the LGS descriptor,
while the rest is unchanged. On the other hand, a histogram-based descriptor
would be completely affected if the support region of a keypoint is partially
occluded.

Descriptor Matching

In parallel to constructing the LGS descriptor, the algorithm builds a second
feature vector filled with the confidences cl corresponding to each feature point
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fl. Once again, this idea is illustrated in Figure 1 for a very simplified case.
These confidences are used as weights during the matching stage, when the LGS
computes the distance dij between a pair of signatures (i, j). In other words,
the distance between each entry of the pair of signatures is multiplied by the
corresponding minimum confidence. This allows LGS to reduce the effect of
unstable points located on fuzzy regions as discussed in the beginning of this
section. Mathematically, the weighted distance used to compare LGS descriptors
is given by:

dij = sqrt(

(D∗N)∑

l=1

min(cli, clj) ∗ (fli − flj)
2) (2)

4 Experimental Results and Discussion

In order to evaluate the discriminating power of the proposed LGS signature,
we devised testing scenarios that highlight the robustness of LGS for the case of
a model-scene matching framework.

In that sense, we present two main experiments to validate our work, using
two well-recognized datasets from the literature [14, 2]. The first dataset referred
in [14] as Retrieval dataset consists of synthetic data with added noise at three
levels equal to 10%, 30% and 50% of the mesh resolution. The second dataset,
and the most challenging one, contains real data acquired using stereo cameras.
It presents the biggest challenge for any descriptor due to: the level of occlusion
and clutter; the presence of smoother and more similar objects, and the larger
reconstruction errors between scenes and models. Figure 3 presents examples of
models and scenes from these two datasets.

(a)

(b)

Fig. 3. Sample models and scenes. (a) Stanford synthetic dataset. (b) UniBo Vision
Lab Stereo dataset. [14]
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4.1 Experiment 1 - Parameter Selection

As explained in Section 3, the proposed LGS descriptor may be affected by
the choice of two parameters: the number of classes N used to construct the
signature and the number k of neighbors used in each class. In this section, we
present an experiment highlighting the effect of each one of these parameters on
the performance of the LGS descriptor. This also provides the reader with an
intuition regarding how they can be set.

In general, a descriptor T is considered robust if for any given keypoint in the
scene, its exact correspondence can be found in the model. The steps followed
for establishing correspondences are as follows:

1. For each model-scene pair (m, s), find the set of keypoints km and ks and
describe each keypoint using the T descriptor.

2. Compare the descriptor for each keypoints in the scene against all the de-
scriptors in the model and take as a correspondence the descriptor from the
model with the shortest distance – for the LGS, that is given by eq (2).

3. Find the true correspondences using the provided ground-truth transforma-
tion between model and scene.

4. Compare the correspondences from step 2 and step 3 and count total number
of true/false matches.

In order to abstract the performance of the descriptor from the effect of non-
repeatable keypoints, we followed the same framework proposed in [2] for key-
point detection. More specifically, we down-sampled each model so that only 5%
of the original cloud was kept. These will be the model keypoints. Then, using
the ground-truth transformation, we found the corresponding keypoints in the
scene. These steps guaranteed 100% repeatable keypoints.

We opted for down-sampling the keypoints to ensure that these are uniformly
distributed over the object and that the algorithm is not biased by the type or
location of the keypoints.

Number of Classes As previously mentioned the first step towards build-
ing the LGS signature is to classify points based on the surface type to which
they belong. In particular, we classify surfaces from very sharp to very smooth.
In this experiment, we highlight the effect of the number of classes by varying
them from 1 to 5 classes, and allowing accordingly from 1 to 5 shades of sharp-
ness/smoothness. Figure 4 summarizes the results obtained for variable number
of classes when the number of neighbors is fixed at 300 nearest neighbors in each
class. It is worth noting that for a number of classes equal to 1, the LGS descrip-
tor approaches a local signature-based descriptor where all nearest neighbors are
close to the described keypoint.

As we can see from Figure 4, the number of classes plays an important role
in the performance of the LGS. This becomes particularly clear for the Retrieval
dataset, where changing from two to three classes improves the percentage of
good correspondences by as much as 15% (at noise level equal to 0.5). This
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Fig. 4. Average percentage of good correspondences versus number of classes.

dataset contains objects with highly different surfaces and shapes, therefore a
small number of classes is not discriminating enough. As one would expect, a
small number of classes does not capture enough of the variations in the structure
of these objects. On the other hand, adding too many classes also leads to reduced
discriminating power. We attribute this to the drop in the classification accuracy
that affects the regions used in building the signature. In fact, increasing the
number of classes involves using smaller ranges to assign points to different
surface types. Therefore, forcing the presence of more fuzzy and unstable regions
whose points can be assigned to any one of the neighboring ranges.

In order to support this claim, we performed an evaluation of the classification
accuracy versus the number of classes. For each point in the model, we let the
algorithm find its corresponding point in the scene and we checked whether they
had been assigned to the same class (see Figure 5). As we claimed, by adding
more classes we observed a drop in the classification accuracy, which ultimately
caused a drop in the number of good correspondences.

K-Neighborhoods The LGS descriptor consists of concatenating features from
the k-closest neighbors in each class. So, the number of neighbors does play a
role in the stability of the signature. In fact, a very small neighborhood implies
relying more heavily on points that fall close to fuzzy regions – i.e. junction
regions between two classes. As mentioned earlier in Section 3, these are non-
stable regions since points on those regions can switch classes very easily in
the presence of sensor noise. On the other hand, neighborhoods too large can
cause the algorithm to look beyond stable regions, likely falling on the next
fuzzy region. In addition to that, very large neighborhoods may imply using
much bigger parts of the object which can therefore cause the LGS signature to
become more affected by occlusions.

Once again we validate these claims by evaluating the effect of different neigh-
borhood sizes on the discrimination of the LGS descriptor. Given the results
obtained in the previous experiment, we fixed the number of classes to 3 for this
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Fig. 5. Classification accuracy versus number of classes

test. We varied the neighborhood sizes from 100- to 1000-nearest neighbors per
class. It should be noted here that given the definition of the LGS signatures,
varying the neighborhoods sizes implies varying the length of the signatures. In
particular, as previously mentioned, in the algorithm for the LGS, each neighbor-
hood is split into smaller clusters and the median distance of each small cluster
is used. For example, in our implementation, we used clusters with 10 points
each, therefore for a number of classes N = 3 and a neighborhood size k = 100,
we have the number of clusters in each class D = 100/10, leading to a signature
with dimension D ∗N = 30.
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Fig. 6. Average percentage of good correspondences versus neighborhood size per class.
In this test we used 3 classes.

Figure 6 summarizes the results obtained from varying the neighborhoods
sizes. These results prove two main points: (i) we can see that the percentage of
good correspondences increases in the beginning as we use larger neighborhoods.
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Again here, this is more evident with the Retrieval dataset where increasing
the neighborhood size from 100 to 300 per class improves the percentage of
correspondences by about 20% in some cases (at noise level equal to 0.5). This
confirms our initial statement regarding the importance of looking beyond the
local neighborhood when constructing local descriptors; (ii) interestingly enough,
we can see that the LGS descriptor is not too sensitive to the use of larger
neighborhoods. We attribute this to the advantages brought by using a signature-
based feature vectors, as well as the use of class confidences as weights during
the matching stage. This could be seen as making the LGS less sensitive to
occlusions.

4.2 Experiment 2 - Matching capability

In this experiment, we validate our proposal in terms of matching capability,
using the Recall versus 1− Precision metric that captures both true and false
positives as argued in [2, 15, 16]. In order to find potential correspondences, for
every feature in the scene, the algorithm computes the first and second nearest
neighbors in the model. Then, a match is established between the scene feature
vector and its nearest neighbor in the model if the ratio between the first two
nearest neighbors is bellow a certain threshold, as suggested in [2, 17]. This
threshold is the value that is varied from 0 to 1 in order to produce the Recall
versus 1 − Precision curves in Figure 7. A correct match is counted as a true
positive, and as a false positive otherwise. The total number of correspondences
is known from the ground truth and therefore Recall and 1 − Precision are
calculated as follows:

Recall =
TruePositives

Total number of correspondences
(3)

1− Precision =
False positives

False positives+ TruePositives
(4)

We include in this experiment a quantitative comparison against three SOTA
descriptors: i) FPFH ii) Spin Images and iii) SHOT. We chose FPFH and Spin
Images as representatives of histogram-based local 3D descriptor and also be-
cause they are arguably the most widely used descriptors in the field. Also, we
selected SHOT for comparison with a descriptor based on a signature of his-
tograms, and again because it represents one of the state-of-the-art local 3D
descriptors, achieving the best results on the datasets used here.

For the LGS descriptor, we picked the best parameters learnt from the previ-
ous experiment. In particular, we use number of classes N = 3 with the number
of neighbors per class k set to 300. Given that we split each neighborhood to
clusters of 10 points, this lead to a 90-dimensional signature. For the other de-
scriptors used in this comparison, the main parameter to be set is the radius size
of the local support region of the keypoints. In this case, we used the same size
recommended in [2] – i.e. 15 times the mesh resolution.
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Fig. 7. Quantitative comparison between descriptors using the Recall vs 1-Precision
metric for (a) Retrieval Dataset with noise=0.1, (b) noise=0.3, (c) noise =0.5, and (d)
The Stereo dataset.

As the results demonstrate, in most cases the LGS proved to be more dis-
criminating than the different local descriptors tested in this paper. This should
support the claim regarding the importance of looking beyond the local neigh-
borhood for keypoint description. In addition, the use of signature proved to
hold a higher discriminating power since LGS and SHOT always outperformed
the histogram-based approaches. Also, given that the LGS descriptor does not
directly rely on sensitive features, such as point normals, it was less affected by
noise than SHOT as Figures 7 (a) through (c) demonstrate – we discuss case
(d), next.

One limitation of using the proposed approach is highlighted in the last
experiment using the Stereo Dataset. In this case, the results for the LGS where
only better than the Spin Images. In fact, as previously mentioned in Section 4.1,
for the Stereo dataset, both models and scenes are reconstructed from different
stereo pairs, which causes differences in the shapes of the objects found in the
scene and the model. This in turn leads to a less accurate surface classification
(Figure 5), which ultimately affects the LGS signature. In fact, many of the
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points in the model are assigned different classes from the ones in the scene. As
a consequence, the support regions found by the algorithm in each class of the
model are also different from the ones found in the scene.

In order to further illustrate the effect of this severe mis-classification ob-
served on this last dataset, we simulated 100% good classification of the points.
Specifically, we first classified points in the models into 3 classes as described in
Section 3. Then, using the ground-truth transformation, we assigned the same
class to the corresponding points in the scenes. Finally, using this simulated clas-
sification results, we constructed the LGS descriptor as usual. As can be seen
from Figure 7(d), provided a good classification, the LGS signature can still
achieve higher discrimination than any of the tested descriptors. While this can
be seen as a limitation of our method and indeed requires future improvements,
it also further proves the benefits of looking beyond the local neighborhood and
encoding more of the structure of objects in describing each keypoint. In addi-
tion, the four experiments together prove that relying on a signature instead of
a histogram allows LGS to capture more details, increasing therefore the dis-
criminating capability of the descriptor.

5 Conclusion

In this paper we proposed a novel signature-based 3D keypoint descriptor that
bridges the gap between local and global descriptors. That the LGS addresses
some of the difficulties inherent to each of these paradigms became clear when
we compared the proposed LGS to the SOTA descriptors. In addition, we high-
lighted the benefits of using signatures and their role in avoiding great loss of
information – as opposed to what happens with histogram-based approaches. Fi-
nally, we showed that the relative positions of the keypoints with respect to local
and global support regions hold enough discriminating power while they replace
low-level features such as point normals, which are very sensitive to noise. Our
results clearly demonstrate the relevance of the proposed LGS descriptor while
highlighting some of its limitations. Future directions for this research include
addressing the problems caused by data acquisition and sensor noise when it
comes to mis-classification of points in the support regions. In particular, we
believe that a better surface classification scheme can lead to much more ro-
bust signatures as demonstrated in Figure 7 (d). An automatic selection of the
number of classes N , and the testing of LGS descriptor for the entire object-
recognition pipeline against the descriptors used here, and potentially others
(e.g. GSH, GFPFH, and GRSD) should be also part of our future work.
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