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Abstract. In this paper we address the problem of multiple camera
calibration in the presence of a homogeneous scene, and without the
possibility of employing calibration object based methods. The proposed
solution exploits salient features present in a larger field of view, but
instead of employing active vision we replace the cameras with stereo rigs
featuring a long focal analysis camera, as well as a short focal registration
camera. Thus, we are able to propose an accurate solution which does
not require intrinsic variation models as in the case of zooming cameras.
Moreover, the availability of the two views simultaneously in each rig
allows for pose re-estimation between rigs as often as necessary. The
algorithm has been successfully validated in an indoor setting, as well as
on a difficult scene featuring a highly dense pilgrim crowd in Makkah.

1 Introduction

The problem of multiple camera calibration has been a central topic for the
pattern recognition and robotics communities since their inception. Moreover,
the use of camera networks has become pervasive in our society; beside their
use in surveillance and security enforcement, cameras are heavily relied upon in
application domains related to entertainment and sports, geriatrics and elderly
care, the study of natural and social phenomena, etc. Motivated by all these de-
velopments, a large body of work has been devoted to the problem of estimating
accurately the camera network topology, i.e. camera positions and orientations
in a common reference system. Inferring the topology in camera networks with
non-overlapping fields of view (FOV) is a topic specific to wide-area tracking re-
lying more on high-level image processing and statistical inference and will not
be addressed in the current work; the focus of the current article is on estimat-
ing the geometric topology for cameras with overlapping FOV. Although such
a network may be composed of a large number of cameras firmly attached to a
mobile object such as a robot, car, or UAV, most commonly camera networks
are static and point towards a specific scene of interest. In these cases, multiple
camera calibration is performed by using a specific calibration pattern or object
[1-3], which is deployed and moved in the scene during a dedicated calibration
phase. If the use of a calibration object is not possible, scene based calibration
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may be performed by exploiting visible interest points in methods based on pose
refinement [4], or if applicable by using dynamic silhouettes, such as in [5].

A homogeneous scene is defined as an environment lacking completely salient
features which would allow their association in different camera views, and which
would thus allow for scene based calibration. Typical examples are liquid flow,
vapour flow, plant canopy (crops, jungle) or high-density crowds, the latter being
the context we have chosen for illustrating our work. The analysis of a homoge-
neous scene which is not directly accessible for setting up markers, or where the
use of calibration objects is not feasible, raises a problem which is not solved by
the common methods employed for multiple camera calibration. We approach
this problem by replacing cameras with hybrid static stereo rigs, where a long
focal camera is used for analysis and a large FOV camera is used for registration
with other rigs. By proposing this solution, we avoid using active cameras which
require complex models for the dynamic evolution of their intrinsic parameters.
Other benefits of possessing simultaneous large and small FOV images of the
scene are the fact that the registration does not assume anything about the
analysed scene, the fact that the salient features do not have to be static as long
as the cameras are accurately synchronized, but then if they are static they can
be used to re-estimate continuously the pose and correct phenomena such as
camera shaking.

The outline of the paper is as follows. In Section 2 we illustrate the fundamen-
tal problem that we address, and discuss related work and alternative solutions.
Then, Section 3 recalls the fundamental notions which are required for scene
based calibration and for the understanding of the proposed algorithm, which
is presented in Section 4. Section 5 illustrates a small scale experiment as well
as an application of the proposed algorithm to the analysis of a highly crowded
scene, and Section 6 presents the conclusions.

2 Motivation and related work

Based on the simple pinhole projection model (also recalled in Section 3), let
us illustrate an issue related to the representation of a homogeneous region of
interest in a camera sensor (for all the following tests and examples we will
employ Sony ICX274 sensors with a 8.923 mm diagonal and an effective pixel
resolution of 1624 x 1234). We have acquired from the same position and with
the same camera three shots using lenses with 4, 8 and 12 mm focals respectively.
In the left column of Fig. 1 we present from top to bottom three 50 x 50 pixel
patches from the shots taken with increasing focal lengths. The adjacent images
from left to right show areas from these patches (of initial size 20 x 30 and
zoomed for visualization purposes with no interpolation applied). In this case,
the long focal lenses are required for retrieving with enough detail entities such
as body parts, bags etc. which are essential for a wide range of tasks related to
action understanding, monitoring, tracking and surveillance.
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Fig. 1. Left column, from top to bottom: 50 x 50 pixel patches from shots taken with
increasing focal lengths (f = 4mm, f = 8mm and f = 12mm) from the same position.
The following images, from left to right: interest areas from the three previous patches,
of initial size 20 x 30 and zoomed for visualization purposes with no interpolation
applied. Detailed features essential for scene analysis are not retrieved below a certain
focal length.

From the above illustrations, we note that a wide FOV is beneficial for ac-
curate registration in a camera network, whilst a narrow FOV is beneficial for
retrieving the details from the area of interest. By lacking salient features the
narrow FOV is not able to estimate robustly or at all the relative pose between
multiple cameras.

A calibration pattern visible from all views set on the area of interest can
solve the relative pose problem. However, there are multiple applications where
this solution is not practical. The area of interest may be far and thus quite large,
or it may be inaccessible. During the analysis, the camera poses might change
accidentally due to shocks, periodically due to vibrations, or by design (mobile
observers); all these scenarios require frequent relative pose estimation updates.
In the following paragraphs, we recall briefly some works that are relevant for
the problem of multiple view detailed analysis and relative pose estimation,
highlighting their respective benefits and shortcomings for this scenario.

Zooming cameras One possible solution is to deploy a network of cameras which
use motorized zoom lenses. One major consequence of the zooming process is the
variation of intrinsic and distortion parameters of the cameras, which have to
be re-estimated. Various solutions for zooming recalibration based on the scene
have been proposed [6-12]; these solutions are often denoted as self-calibration
methods. Beside the fact that all these methods make simplifying assumptions
about a subset of the varying parameters, the fundamental limitation is that they
still require the continuous presence of salient features, usually interest points
or straight lines, in order to operate.

Pan-Tilt-Zoom (PTZ) cameras PTZ cameras have a built-in zooming function
and are specifically designed for live monitoring. However, tasks such as surveil-
lance or auto tracking do not require necessarily accurate self-calibration. In the
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area of PTZ camera network calibration, scene based solutions have also been
proposed [13,14] but they have the same fundamental limitation i.e. requiring
the presence of distinctive landmarks in the field of view.

The strategies recalled up to this point propose interesting solutions for self-
calibration and camera registration in the presence of a sufficient number of
salient features, but they are not applicable for a camera view if the lens is
zoomed on a homogeneous and/or dynamic scene. Although these scenarios are
less common, examples of possible applications abound in the study of crowds
and of different types of flows encountered in natural phenomena. The underlying
idea for the solution we propose is about transferring pose information in a scene-
independent manner to the zoomed camera from a secondary camera able to infer
its pose. This leads to a straightforward minimal solution based on a rigid stereo
rig featuring two cameras, one with a small FOV used for analysis, and one with
a large FOV used for registration within a network of such rigs.

Surprisingly, this solution has not been applied to the analysis of homo-
geneous scenes. Even considering a broader range of applications, the use of
hybrid stereo systems featuring large and narrow FOV is limited. We recall here
the setup deployed by the STEREO solar observation mission [15, 16], where the
hybrid imagers are nonetheless registered accurately using a star catalogue i.e.
am inertial frame of reference. In robotics [17] employ a fisheye and a perspective
camera on a UAV. More recently, in [18] the hybrid stereo strategy is employed
in order to estimate accurately the pose of a moving binocular in order to in-
sert virtual objects realistically. The fundamental difference is that the design of
the system proposed in [18] is tailored for minor pose variations (see the use of
the IMU and the small error assumptions), which determine small perspective
changes in the appearance of the distant scene, thus greatly simplifying the vi-
sual odometry. In contrast, our work addresses a problem where large changes
in perspective do not allow for such convenient associations in the large FOV
cameras (and for any association at all in the narrow FOV cameras).

With respect to the previous works, the solution based on a hybrid stereo
system has clear benefits for the analysis of dynamic homogeneous scenes. We
do not have to adopt any simplifying assumptions about the variations of intrin-
sic parameters, and the calibration precision will be maintained at the optimal
level provided by state of the art calibration algorithms. Secondly, the extrinsic
parameters of each stereo rig can be estimated independently of the scene. In
contrast to the scenario of a zooming camera, the availability at each instant
of an accurately registered pair of images allows for accurate pose re-estimation
between rigs as often as necessary, overcoming the effect of movement and vi-
brations.

3 Background on scene based pose estimation

The projection model In the following, we will briefly recall the pinhole camera
and optical distortion models that we employ. A point in 3D space X = [X Y Z]T
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with A being an undetermined scale factor, R the orientation of the camera and
C the location of its optical center in world coordinates (we also note t = —RC),
and K the intrinsic parameters:

projects within the image space into a pixel x = [z y

fr S Cg
K= |0 f,c (2)
001

Above, f, and f, are the focal lengths, [c, c,]T represents the principal point,
and the skew parameter s is considered 0.

In order to switch to different coordinate frames, we rely on elements of
SE(3), the group of rigid body transformations in R3. A transformation matrix
E takes the form:

o[

Element multiplication amounts to transitive chaining coordinate frame trans-
formations: E€4 = ECBPEB4 would transfer a 3D point in homogeneous coor-
dinates from reference system A to reference system C.

In order to account for radial distortion, the extension of the pinhole model
assumes that if the 3D point X is projected to [Z § 1]T under the initial as-
sumptions, then X would be actually imaged to the distorted location [x4 y4]T

(ij) :(1+gm2i)(§> (4)

- - ov1/2 . .
where 7 = (m2 + y2) / . Thus, (fz, fy: CzsCy, K1, k2, k3) is in most scenarios the
suitable parameter set for a full intrinsic calibration.

Epipolar geometry One tool that we will employ in the following sections is
the epipolar constraint, which is a direct implication of the projective geometry
between two views. It is worth noting that this constraint is independent of
the scene structure, depending exclusively on the intrinsic parameters and the
relative pose - as long as the the salient features of the scene are static, or as
long as the cameras are accurately synchronized.

Considering two projections x; and x, of the same point X in cameras C; and
Cs, the epipolar constraint defines the relationship between the projections as
x3Fx; = 0. F is known as the fundamental matrix [19], which depends explicitly
on the calibration parameters in the following way: F = K5 TtXRK; 1 where t
is the skew-symmetric matrix associated to t.
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The main interest of the epipolar constraint is that it does not make any
assumptions about the 3D structure of the scene. Thus, compared to other opti-
misation algorithms that are commonly employed to estimate the relative pose,
the determination of (R, t) using the epipolar geometry provides a practical min-
imal parametrization and does not require an initialization. However, the result
may be used for the initialization of more complex optimisations, such as the
bundle adjustment procedure, briefly recalled in the following paragraph.

Bundle adjustment (BA) Assuming a zero-mean Gaussian distribution of the
corner detection errors, bundle adjustment [4, 20] is the Maximum Likelihood Es-
timator for the joint estimation problem of relative camera poses and of observed
3D point locations. The BA procedure will minimize the following reprojection
error: ,
: X2 3
g}ggj%d(f’ (X]),x]> (5)
In the error function above, Xj is the location hypothesis for a point observed
by the i*" camera. The projection function P related to the pinhole model
(accounting for radial distortion too) depends on the i** camera pose; we consider
that the intrinsic parameters are known and are not part of the optimization
problem. BA will thus minimize jointly for all the possible camera-point pairs
(i,7) the distance between the reprojection Pl(Xj) and the actual measurement
x; Solving this optimization problem is studied in depth in the literature, and
it generally boils down to exploiting the sparsity of its Hessian matrix and to
employing an adapted LS algorithm such as Levenberg-Marquardt [21].
Although BA seems like an ideal solution for multiple view pose estimation,
it does have some well-known shortcomings that we will briefly discuss in connec-
tion with our specific aim. One common criticism is related to the computational
requirements, but this issue is more prevalent in large scale robotics applications,
especially if there are real-time constraints to take into account. For a relatively
small camera network, the size of the problem is reasonable even for frequent
updates. Another important aspect is related to the initialization, which has to
be relatively accurate in order to allow the problem to converge to the correct
solution. In order to cope with this, we will rely on an initialization based on the
epipolar constraint discussed above, but other options are possible too (see for
example [22], or [23] if 3D information about some scene features is available).
Finally, some practical aspects are equally relevant. Given the high number of
parameters which are usually involved, constraining the relative pose variables is
more effective if the adjacent camera views for the large FOV cameras are close
enough in order to allow for a significant FOV overlap. Stability is also improved
if the corner correspondences are spread onto the common field of view.

4 The proposed algorithm

Outline Let us consider a network of N hybrid stereo rigs, the i*" rig featuring a
small FOV camera C§ used for analysis, and a large FOV camera C! employed
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for pose estimation in a global frame. The aim of the following procedure is to
align accurately the cameras {C7,C5,...,C%}. We assume that for each rig,
the cameras C§ and C! have been calibrated. In the following, we will denote
by Eg! the transform that transfers a point from the large FOV camera to the
analysis camera on the " stereo rig. Also, Eéz and E?; are transforms that
transfer points from the i*” rig to the j** between the large FOV cameras, and
respectively between the analysis cameras.

The fact that the stereo rigs are passive allows for a precise intrinsic and
extrinsic calibration which can be performed independently of the scene in a
controlled environment. Thus the intrinsic parameters K?, K! as well as the
rigid transform Efl that projects a 3D point from the pose estimation camera
of the rig to the analysis camera are considered as known.

For the next step, let us consider a pair of spatially adjacent rigs (i,7); in
most scenarios, cameras are spread as much as possible, and thus it is neces-
sary to consider adjacent pairs in order to obtain enough reliable interest point
matches. Due to initialization requirements, we cannot apply BA directly in or-
der to estimate Eéz between the two large FOV cameras on the rigs. We perform
SIFT detection and matching [24], and use the normalized 8-point algorithm [25]
with RANSAC [26] for robustness to outliers. For the matching step, we employ
two filtering strategies based on the uniqueness assumption (the ratio 7 of the
similarity scores for the top two candidates [24]) and on married matching (both
features are the top candidate for each other [27]). Then, we decompose the
fundamental matrix [20, chap. 9] and choose the correct solution based on the
chirality constraint [28]. Let us denote ]:321 the rigid transformation estimated

after this step. Using ]:]éw and based on the inlier set of matches that were vali-

dated during the RANSAC procedure, we build a set of 3D points 'in by linear
triangulation [29].

At this point, we can employ BA using Eél and in as initial estimates, and
we obtain a refined relative pose estimation Eéz for the large FOV cameras in the
pair of rigs (7, 7). Ideally, BA involving more than a pair of rigs should be per-
formed afterwards whenever possible; however, in a typical setting, cameras are
spaced as much as possible around a scene, the limit being imposed by common
FOV considerations and the performance of the interest point matching proce-
dure. Thus, we may assume that in most situations non-adjacent rigs will have
difficulties for the matching procedure, and will have matches corresponding to
disjoint sets of 3D points, which effectively yields the BA problems independent.
A particular setting is that of a scene surrounded in a full circle by rigs, and in
this case a full BA may be beneficial.

Having the BA estimations, it is trivial to express the C! poses in a common
reference system; in the following, we set this reference system as depicted by
the position and orientation of CL. Let E! be the rigid transform that links C!
to Cf. For any two rigs (4, j), we can now use the extrinsic calibrations Efl7 Ejl
and the global allignment of the large FOV cameras in order to infer the global
allignment of the analysis cameras in the same reference system, as well as their
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relative pose: . .
E; = EJ'E,;E} = E}'E/; (6)

—1
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E;, - EJ'E! (E/'E}) )

Enforcing a common scale BA can estimate accurately the relative pose up to an
unknown scale factor. This limitation applies to the Eél estimates only; the val-
ues E¢! that specify the baseline for cameras on the same rig are not concerned
as long as a known size calibration pattern is used for stereo extrinsic calibra-
tion. Since the different BA procedures depicted in the following paragraphs are
typically independent, we have to enforce a common scale factor among all opti-
mizations using additional information. Depending on the application, it is easier
to adopt one of the following strategies. For a small sized scene, we may add a
known size object in the common FOV of C! and le-; we thus use X;; in order to
impose a metric scale to the reconstruction. For a large scene, we may either use
a similar approach as for the previous setting, or if it is not applicable we may
measure the distance between C! and C]l» (using for example a laser rangefinder),

thus using t;; in order to impose a metric scale to the reconstruction.

5 Experimental results

A small scale scenario We have created a simple example in an indoor envi-
ronment, using LEGO figurines placed closely in the middle of a homogeneous
surface. We have used two hybrid stereo rigs and taken a snapshot of the figurines
and surrounding environment. The resulting images are presented in Figure 2:
the upper and lower rows show the views from the large FOV (C},C}) and small
FOV (C3,C3) cameras respectively. We have also highlighted the results of the
matching procedures; the first matching set (7 = 0.4 for uniqueness) is required
for the matching step of the algorithm, while the second set (a more permissive
value 7 = 0.75 has been used in order to have enough matches) is not used in
the algorithm - as the scene is supposed to be poor in salient features - but it
is used exclusively as ground truth for validating the result of the algorithm. We
apply the steps highlighted in the previous Section in order to compute E3;:
estimation of Eb; using SIFT matching followed by decomposition of FL; and
BA, then exploitation of E5! and E§' provided by stereo calibration, and also
the setup of the right scale by using an object of known size (the long brick of
length 79.8 mm).

In order to estimate numerically the quality of the rigid transform E3; ob-
tained, we have exploited the matches that we were able to determine directly
between the small FOV cameras in this example. In homogeneous scenes, in-
terest points may be completely absent, or the scarcity of matches may have a
detrimental effect on the stability of the estimation of F. Therefore, in our ex-
ample we set up a base BA problem between C7 and C5 where we initialize the
system by the decomposition of F3;. Alternatively, we use the rigid transform
E3, as initialization for the triangulation of matches and for the BA procedure.
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Fig. 2. A set of images used for pose estimation in a simple indoor environment; the
images in a) correspond to C! and C%, and the images in b) show the images captured
by C{ and C5. Both pairs of images have been matched using SIFT; the first set of
matches are necessary for the algorithm, whilst the second set is used exclusively as
ground truth for validating the result of the algorithm.

The resulting solutions and mean reprojection errors for these two scenarios are
presented in Table 1.

As we notice, the two optimization problems converge towards the same so-
lution, but E3; brings the optimization much closer to the objective in terms of
mean reprojection error. This result is interesting for a number of reasons. Firstly,
even though we do not have a case of optimization stuck in a local minimum due
to the worse initialization, this is a good example of coarse to fine resolution of
the relative pose estimation. This approach is helpful for robotics applications
in case of unstable optimizations (few matches in the small FOV cameras), and
also interesting for the computation gain due to a faster convergence of BA (25
iterations with initial subpixel mean reprojection error compared to 37 itera-
tions). Secondly, and most importantly, this example shows that in cases where
we can not compute E3; directly due to the complete absence of salient features,
we are able using this algorithm to infer the unknown rigid transform from the
adjacent large FOV cameras with a high level of accuracy.

Table 1. Relative poses between Ct and C3. The Euler angles are expressed in degrees,
and the mean reprojection errors in pixels. Tilde values represent estimations prior to
the BA procedure, and hat values denote estimations refined by BA. The difference
between the two rows consists in the initialization of BA; in the first case we use the
SIFT matches depicted in Figure 2b), whilst in the second case we use the result of
our algorithm.

(v; 0; p) ‘ C ‘ € ‘ (; 0; ) ‘ @ ‘ [ ‘Iter. ‘Observations
24.13 —0.89 23.95 —0.79
21.04 —0.30 ||37.16| [ 21.13 —0.25 | [0.199| 37 | Base solution
10.67 0.33 3.74 0.55
23.85 —0.77 23.95 —0.79
16.42 —0.23 |]0.489|( 21.13 —0.25 |]0.199]| 25 Init. by E3;
3.53 0.59 3.74 0.55
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Pose estimation for high-density crowds We have deployed two hybrid stereo rigs
at the grand mosque in Makkah during very congested times of the Hajj period,
in October 2012. The access constraints to the site impose a large perspective
change between the two points of observation. As a result, neither SIF'T nor even
ASIFT [30] algorithms were capable to provide any correct matches which are
required as inputs for the algorithm we propose. Consequently, we had to rely
on manual matching of salient structures in order to bootstrap the algorithm.

In Figure 3 we present the data our algorithm processed and registered; im-
ages in a) and b) correspond to C! and Cf, and ¢) and d) correspond to C% and Cs
respectively. The large FOV cameras contain enough common salient features,
although the perspective variation does not allow for automated matching, and
human intervention is necessary. Figure 3e) presents such a user specified cor-
respondence; in total we have used 34 user specified correspondences, of which
26 have been considered inliers for the fundamental matrix evaluation. For vi-
sualization purposes, Figures 3f) and 3g) present the central structure with the
manually matched features, and the 3D structure of the scene with the camera
axis aligned and an approximate representation of the ground plane.

The numerical results of the algorithm for this setting are presented in Table
2; the relative rotations are expressed in degrees using Euler angles, the relative
center position is expressed as a unit R® vector, and mean reprojection errors
are expressed in pixels. Also, as specified in the algorithm outline (Section 4),
tilde values represent estimations prior to the BA procedure, and hat values
denote estimations refined by BA. The first row corresponds to Step (iii) of
the algorithm, the pose estimation between C! and C%. The output values are
consistent with the actual location of the cameras; the large angle displacements
emphasize the difficulty of the task, and explain as well the limitation of the
automated matching procedure in this case.

We have also refined the relative positions of the cameras within the individ-
ual rigs. These values are provided by the stereo calibration procedure, and we
validated them by performing SIFT matching between the large and small FOV
cameras, and by using the stereo calibration pose as an initializer for BA (rows 2
and 3 in Table 2). The threshold for uniqueness filtering has been set as 7 = 0.3.
However, the stereo calibration performed on site could not be done in optimal
conditions. As an alternative solution, we used as pose initializations values that
we obtained in the same way as for the first row of Table 2, by estimating and
decomposing the fundamental matrix. The solutions obtained are presented on
rows 4 and 5 in Table 2. These solutions were more accurate, and finally they
have the advantage of requiring only the intrinsic camera parameters. It is worth
noting that the stereo baseline is approximately 6 cm, while the distance to the
scene is three orders of magnitude higher, and in these circumstances the relative
angles and not the camera center relative positions will be the most relevant for
scene based estimation.

Having thus obtained all the necessary relative poses (rows 1, 4 and 5 in Ta-
ble 2), we are able to estimate the relative pose between the long focal cameras.
Ground truth estimations are not possible, but in order to estimate the accuracy
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Fig. 3. A set of images used for pose estimation; the images in a) and b) correspond
to C! and Cf, and ¢) and d) correspond to C% and C$ respectively. An example of user
specified correspondences is illustrated in e). In f) we present the interest points used
in the central region of one of the images, and in g) the inferred camera orientation
(RGB axis for XYZ), with the approximate ground plane highlighted in green, for
easier visualization.
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Table 2. Relative poses between analysis cameras placed on different rigs (first row),
and between cameras placed on the same rig (rows 2-5). The Euler angles are expressed
in degrees, and the mean reprojection errors in pixels. Tilde values represent estimations
prior to the BA procedure, and hat values denote estimations refined by BA. The
difference between the rows 2-3 and 4-5 consists in the initialization of the BA; in the
first case we use the stereo calibration, whilst in the second case we use directly the
images, in the same way as for the first row initialization.

Cam. pair ‘

§9~§‘l~5)‘ C ‘ € ‘(1[’9‘55)‘ C ‘ é ‘ Observations
7 59.68

—0.78 —0.81
cl =l 71.52 —0.19 |[4.00] | 69.11 —0.18 |[0.25| Manual Init.
32.94 0.59 42.75 0.55

cl = Cf 1.017 0.076|Stereo Calib. Init.

0.57
0.23 0.252|Stereo Calib. Init.

Cl =y 0.096

cl = s 0.097 0.087| SIFT Matching

(
) ()
cives |0 )] ) o
o) (&
) ()

—0.02) 0.084| SIFT Matching

of the result we have located in the crowd a number of salient elements (either
distinctive heads, or distinctive configurations of people) and we illustrate the
result by drawing for each feature the epipolar line, and judging by its proximity
to the corresponding feature in the other image. In Figure 4, the upper row cor-
responds to elements identified in C§ (Figure 3b) and the lower row presents the
same elements identified in C§ (Figure 3d). The following remarks are necessary
at this point. Firstly, the perspective change makes the correspondence search
very tedious even for a human. Secondly, the drawing of the epipolar line has
actually assisted us in pinpointing most of these correspondences, and we are
confident that the method will be helpful in automating these tasks.

Discussion of the dense crowd results Overall, the distance in the image space
between the corresponding element and the corresponding epipolar line is in the
range of a few pixels. The major factors responsible for these misalignments
are the inaccuracies in estimating the intrinsic parameters, as well as the errors
related to the relative pose estimations - but for the dimensions of the scene
involved in the experiment, we argue that the results are very promising.

Moreover, some areas of the scene exhibit near perfect alignments. The first
four matches presented in Figure 4 ( the white cap man in a) positioned under
the epiline, in the left part of the patch; the person in b) looking slightly towards
the left; the woman in ¢) wearing a white veil, and positioned in front of two other
women similarly dressed; the woman in d) wearing a white veil, and positioned
with the back towards the second camera) are very accurate, in spite of the fact
that in one of the images the first three persons are located near the border, a
fact which potentially increases radial distortion related errors.
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Fig. 4. A number of pixel-epipolar line correspondences between the two analysis cam-
eras presented in Figure 3b) and 3d). Ideally, the correspondent of a point highlighted
by the red cross in the upper row should be situated along the blue epipolar line visible
in the lower row image. These results are discussed in Section 5.

We could also identify the following correspondences which exhibit small
but visible misalignments: the shiny circumference of the Station of Ibrahim,
depicted in e); another two men wearing white caps, presented in f) and g); a
distinctively bearded man presented in h).

The fact that the epipolar line does not pass precisely through the corre-
sponding element is not detrimental for the purpose of association and tracking
in the crowd. Assuming that the person is not occluded, using this extra infor-
mation we would not only be able to trim down the research space to a band
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along the epipolar line, but also if we were able to position the ground plane
within the same coordinate system we would further reduce the research space
to a fraction of the band. Of course, in order to do dense matching reliably we
still need a neighborhood based similarity measure that has to be resilient to
major perspective change and occlusions; this is a promising direction of research
that we intend to follow in order to benefit from the relative pose algorithm we
propose, and ultimately in order to perform dense associations.

Finally, the present results of the proposed algorithm on this type of data
are also encouraging as they illustrate the potential of multi-camera systems
in extremely crowded environments. In the current research context, this ap-
plication field has been associated mostly with single camera systems [31], but
paradoxically it would greatly benefit from multi-view systems given the frequent
occlusions and scene clutter that characterize it.

6 Conclusion

In this paper we propose a new method for aligning multiple cameras analysing
a homogeneous scene. Our method addresses the settings where for practical
reasons calibration pattern/object based registrations are not possible. By em-
ploying stereo rigs featuring a long focal analysis camera and a short focal reg-
istration camera, the proposed solution alleviates the requirement to get access
to the studied scene. The fact that we are using a large FOV simultaneously
allows us to avoid making any assumptions about the homogeneous region we
analyse, such as the presence of shades, silhouettes etc. A first experiment has
been conducted in an indoor environment and has shown, by using interest point
correspondences in the analysis area as ground truth, that this method can guide
the relative pose estimation for scenes poor in salient features in a coarse-to-fine
manner supported by hardware. The second test has shown that in the absence
of any salient features, the method is capable of providing a full calibration of
the analysis cameras in a difficult, large scale scenario.

In the future, we would like to investigate the applicability of the proposed
hybrid stereo solution in two frequently recurring settings. We intend to employ
this method as a preprocessing step for a wide range of homogeneous pattern
analysis applications, such as those related to the extraction of accurate models
for highly dense crowd dynamics. Secondly, we would like to evaluate further the
potential of this solution in specific applications such as autonomous robot nav-
igation or image alignment and stitching, which employ pyramid based coarse-
to-fine optimizations; our setup augments these systems by supplementing the
image pyramid with a level provided by an independent data source.
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