Causal Inference & Paradoxes

Alexandre Aussem

LIRIS UMR 5205 CNRS
Data Mining & Machine Learning (DM2L) Group
Université Claude Bernard Lyon 1

perso.univ-lyon1.fr/alexandre.aussem
alexandre.aussem@liris.cnrs.fr
Outline of the talk

- Bayesian networks: From probability to causality
- Manipulation theorem to estimate the **effect of external interventions**
- **Confounding**: fundamental impediments to the elucidation of causal inferences from observational data
- Elucidation of some well-known controversies:
 - The selection bias or **Berkson’s paradox** (1946),
 - The **birth-weight paradox** (1967)
 - The **Simpson's paradox** (1899)
 - The old debate on the relation between **smoking and lung cancer** (1964),
 - **Sex discrimination**: The « reverse regression controversy » between sex and salary which occupied the social science in the 1970s
- Rules of « **do calculus** »
- Case study: **effect of the pesticides on agricultural yields**
- Unbiased estimates despite **selection bias** and **missing data**
Cause-effect relationships

- The central aim of many studies in the physical, behavioral, social, and biological sciences is the **elucidation of cause-effect relationships** among variables or events, e.g., risk factor exposure on disease occurrence, advertising campaign on benefits, treatment on recovery rate, etc.

- However, the appropriate **methodology for extracting such relationships** from data has been fiercely debated.

- **Graphical models** provide clear semantics for causal claims, and non-trivial causal phenomena, **paradoxes and controversies** in causal analysis that long were regarded as **metaphysical** can now be understood, exemplified, analyzed and solved using **elementary mathematics**.

- Most of the material presented here is borrowed from **Judea Pearl**’s books and papers.
Bayesian Networks

\[p(x_1, \ldots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5) \]

General Factorization: \[p(x) = \prod_{k=1}^{K} p(x_k|\text{pa}_k) \]

Conditional distribution for (binary) node \(x_7 \):

<table>
<thead>
<tr>
<th>(x_4)</th>
<th>(x_5)</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.6</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Corollary (Markov condition): every node given its parents is independent on its non-descendants nodes. Other independencies are entailed (\textbf{d-separation} criterion).

Illustration from Christopher Bishop’s book: “Pattern recognition and machine learning”.
Independence models

Overlapping between probabilistic independence models (p), independence models based on u-separation (UG-faithful), and d-separation (DAG-faithful).
Conditional Independence: Example 1

\[p(a, b, c) = p(a|c)p(b|c)p(c) \]

\[p(a, b) = \sum_c p(a|c)p(b|c)p(c) \]

\[a \indep b \mid \emptyset \]
Conditional Independence: Example 1

\[p(a, b | c) = \frac{p(a, b, c)}{p(c)} = p(a | c)p(b | c) \]

\[a \independent b \mid c \]
Conditional Independence: Example 2

\[p(a, b, c) = p(a)p(c|a)p(b|c) \]

\[p(a, b) = p(a) \sum_c p(c|a)p(b|c) = p(a)p(b|a) \]

\[a \indep b \mid \emptyset \]
Conditional Independence: Example 2

\[p(a, b|c) = \frac{p(a, b, c)}{p(c)} \]

\[= \frac{p(a)p(c|a)p(b|c)}{p(c)} \]

\[= p(a|c)p(b|c) \]

\[a \perp b \mid c \]
Conditional Independence: Example 3

\[p(a, b, c) = p(a)p(b)p(c|a, b) \]

\[p(a, b) = p(a)p(b) \]

\[a \perp b \mid \emptyset \]

Note: this is the opposite of Example 1, with c unobserved.
Compared to the previous examples, the opposite is observed: Two independent variables become dependent given a third variable!
Limits of Bayesian Networks

- Two given DAGs are observationally equivalent if every probability distribution that is compatible (or faithful) with one of the DAGs is also compatible with the other (same conditional independences encoded).

- **Theorem**: Two DAGs are observationally equivalent if and only if they have the same skeletons and the same sets of v-structures, that is, two converging arrows whose tails are not connected by an arrow.

- Observational equivalence places a limit on our ability to infer directionality from probabilities alone.

- Networks that are observationally equivalent cannot be distinguished without resorting to manipulative experimentation or human knowledge.
Causal Bayesian Networks
Graphs as Models of Interventions

• **Causal models**, unlike probabilistic models, can serve to **predict the effect of interventions**. This added feature requires that the joint distribution P be supplemented with a **causal diagram** - that is, a DAG that identifies causal connections.

• The causal diagram may represent the **investigator's understanding** of the major causal influences among measurable quantities in the domain.

• Each child-parent family in a DAG G represents a deterministic function:

$$x_i = f_i(pa_i, \varepsilon_i), \quad i = 1, \ldots, n$$

where pa_i are the parents of variable x_i in G; the ε_i $(i=1,\ldots,n)$ are mutually **independent**, arbitrarily distributed random disturbances.

• The equality signs in structural equations convey the **asymmetrical relation** of "is determined by"."
Causal Bayesian Networks

\[p(x_1, \ldots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3) \]
\[p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5) \]

General Factorization

\[p(x) = \prod_{k=1}^{K} p(x_k|pa_k) \]

Now supplemented with causal assumptions

\[x_i = f_i(pa_i, \epsilon_i), \quad i = 1, \ldots, n \]
Finding causal relationships

- For finding causal relationships, the gold standard are randomized controlled trials initially developed in the context of agricultural research (Fisher, 1926).
- Problem: Not always feasible for ethical, financial or other reasons.

We are left with two problems:

- **Problem 1 (Causal Structure):** Given observational data, find the DAG representing the causal structure, or, if this is not possible, give a class of DAGs to which the true DAG belongs.
- **Problem 2 (Interventional Distribution):** Given observational data, find the interventional distribution of a random variable Y after some other random variable X was set to a certain value by external intervention to make quantitative predictions on the effect of interventions.
Manipulation theorem

• The manipulation theorem (Spirtes et al. 1993) states that given an external intervention on a variable X in a causal graph, we can derive the posterior probability distribution over the entire graph by simply modifying the conditional probability distribution of X.

• Intervention amounts to removing all edges that are coming into X. Nothing else in the graph needs to be modified, as the causal structure of the system remains unchanged.

• Thus, intervention can be expressed in a simple truncated factorization formula.
The \texttt{do(.)} operator

- Interventions are defined through a new mathematical operator called \texttt{do}(X=x), which simulates physical interventions by deleting the probability factor corresponding to variable X in the joint factorization, while keeping the rest unchanged elsewhere with X fixed to x.

- The causal effect of X on Y is denoted $P(y|\texttt{do}(X=x))$. It is termed an \textit{interventional} distribution and should not be confused from the \textit{observational} distribution $P(y|x)$.

- Interventions can be expressed as a simple \textit{truncated} factorization formula:

$$P(x_1, \ldots, x_n \mid \texttt{do}(x_i = x'_i)) = \begin{cases} \prod_{j \neq i} P(x_j \mid \text{pa}_j) & \text{if } x_i = x'_i \\ 0 & \text{if } x_i \neq x'_i \end{cases}$$
The \textit{do(.)} operator

$$P(x_1, \ldots, x_n \mid \text{do}(x_i = x'_i)) = \begin{cases} \prod_{j \neq i} P(x_j \mid pa_j) & \text{if } x_i = x'_i \\ 0 & \text{if } x_i \neq x'_i \end{cases}$$

Can be rewritten as:

$$P(x_1, \ldots, x_n \mid \text{do}(x_i = x'_i)) = \begin{cases} P(x_1, \ldots, x_n \mid x_i, pa_j)P(pa_j) & \text{if } x_i = x'_i \\ 0 & \text{if } x_i \neq x'_i \end{cases}$$

Summing over all variables except x_i and y leads to the result called \textit{adjustment for direct causes}:

$$P(y \mid \text{do}(x_i = x'_i)) = \sum_{pa_i} P(y \mid x'_i, pa_i)P(pa_i)$$

In compact form:

$$P(y \mid \text{do}(x)) = \sum_{pa_x} P(y \mid x, pa_x)P(pa_x)$$
Controlling confounding bias

\[P(y \mid \text{do}(x)) = \sum_{\text{pa}_x} P(y \mid x, \text{pa}_x)P(\text{pa}_x) \]

- We adjust our measurements for possible variations of the parents of \(X \) in the causal DAG \(G \), they are acting as “covariates” or « confounders ».
- Adjustment for the direct parents amounts to partitioning the population into groups that are homogeneous relative to \(\text{pa}_x \), assessing the effect of \(X \) on \(Y \) in each homogeneous group, and then averaging the results.
- This expression requires all the parents to be observed. Are other variables appropriate for adjustment?
- What criterion should one use to decide which variables are appropriate for adjustment?
Back-Door adjustment

More generally, a set of variables \(Z \) satisfies the **back-door criterion** relative to \((X,Y)\) in a DAG \(G \) iff,

- No node in \(Z \) is a descendant of \(X \), and
- \(Z \) blocks every path between \(X \) and \(Y \) that contains an arrow into \(X \).

Theorem – *If a set of variables \(Z \) satisfies the back-door criterion relative to \((X,Y)\), then the causal effect of \(X \) on \(Y \) is identifiable and is given by the formula,*

\[
P(y \mid do(x)) = \sum_z P(y \mid x, z)P(z)
\]

Example:

- The sets \(Z = \{X_3, X_4\} \) and \(Z = \{X_4, X_5\} \) meet the back-door criterion relative to \((X_i, X_j)\)
- But \(Z = \{X_4\} \) does not!
Paradoxes & Controversies
Berkson’s paradox

• Berkson's paradox is a result in conditional probability (not related to causality) which is counterintuitive for some people: given two independent events, if you only consider outcomes where at least one event occurs, then they become negatively dependent.

• Example: Berkson's original illustration involves a retrospective study examining a risk factor for a disease in a statistical sample. Because samples are taken from a hospital in-patient population, rather than from the general public, this can result in a spurious negative association between the disease and the risk factor.

Berkson, Joseph. "Limitations of the Application of Fourfold Table Analysis to Hospital Data". Biometrics Bulletin. 1946
Berkson’s paradox

<table>
<thead>
<tr>
<th></th>
<th>E^+</th>
<th></th>
<th>E^-</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D^+</td>
<td>800</td>
<td>600</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>D^-</td>
<td>200</td>
<td>400</td>
<td>600</td>
<td>800</td>
</tr>
</tbody>
</table>

- The prevalence of the disease (D) is 50% among exposed (E) and unexposed.
- 70% are hospitalized (H) among exposed patients (30% among non exposed)
- 60% are hospitalized among diseased patients (40% among non diseased).

- **Within those hospitalized**, the prevalence of the disease is 57% among exposed and 66% among unexposed patients.
Birth weight paradox

• The birth-weight paradox concerns the relationship between the birth weight and mortality. *Children of smoking mothers are more likely to be of low birth weight and low birth weight children have a significantly higher mortality rate than others* (it is in fact 100-fold higher).

• **Contrary to expectations**, low birth weight babies of smoking mothers have a lower child mortality than low birth weight babies of nonsmokers. *Having a smoking mother might be beneficial to one's health!*

• Like the Berkson’s paradox, it is counterintuitive as it involves two independent events that become negatively dependent, having observed a third event.

Birth weight paradox

- Smoking may be harmful in that it contributes to low birth weight, but other causes (not measured) of low birth weight are generally more harmful.
- Consider a low weight baby, finding that the mother smokes reduces the likelihood that those other causes are present.
Simpson's paradox

C : taking a certain drug or treatment
E : recovery
F : gender

Under a causal interpretation the drug seems to be harmful to both males and females yet beneficial to the population as a whole!
Simpson's paradox

Three causal models capable of generating the data Model (a) dictates use of the gender-specific tables, whereas (b) and (c) dictates use of the combined table.
Simpson's paradox

As F connotes gender, the correct answer is the gender specific table, i.e.

$$P(y|do(x)) = \sum_z P(y|x,z) P(z)$$

- **Conclusion**: every question related to the effect of actions must be decided by causal considerations; statistical information alone is insufficient.
- The question of choosing the correct table on which to base our decision is a special case of the **covariate selection problem**.
Front-Door adjustment

A set of variables Z is said to satisfy the **front-door criterion** relative to (X, Y) if
- Z intercepts all directed paths from X to Y;
- there is no back-door path from X to Z;
- all back-door paths from Z to Y are blocked by X.

Theorem: If Z satisfies the front-door criterion relative to (X, Y) and if $P(x,z) > 0$, then the causal effect of X on Y is **identifiable** and is given by the formula:

$$P(y|do(x)) = \sum_z P(z|x) \sum_{x'} P(y|z,x') P(x')$$

If Z were *not observed*, the causal effect of X on Y would *not be identifiable*!
Smoking and Lung Cancer

<table>
<thead>
<tr>
<th>Group Type</th>
<th>$P(x, z)$ Group Size (% of Population)</th>
<th>$P(Y = 1 \mid x, z)$ % of Cancer Cases in Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X = 0, Z = 0$ Nonsmokers, No Tar</td>
<td>47.5</td>
<td>10</td>
</tr>
<tr>
<td>$X = 1, Z = 0$ Smokers, No Tar</td>
<td>2.5</td>
<td>90</td>
</tr>
<tr>
<td>$X = 0, Z = 1$ Nonsmokers, Tar</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>$X = 1, Z = 1$ Smokers, Tar</td>
<td>47.5</td>
<td>85</td>
</tr>
</tbody>
</table>

- If we ban smoking, will the rate of cancer cases be roughly the same as the one we find today among non smokers in the population?

- **Controlled experiments** could answer the question but they are **illegal** to conduct.
Smoking and Lung Cancer

<table>
<thead>
<tr>
<th>Group Type</th>
<th>$P(x,z)$ Group Size (% of Population)</th>
<th>$P(Y = 1 \mid x,z)$ % of Cancer Cases in Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X = 0, Z = 0$ Nonsmokers, No Tar</td>
<td>47.5</td>
<td>10</td>
</tr>
<tr>
<td>$X = 1, Z = 0$ Smokers, No Tar</td>
<td>2.5</td>
<td>90</td>
</tr>
<tr>
<td>$X = 0, Z = 1$ Nonsmokers, Tar</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>$X = 1, Z = 1$ Smokers, Tar</td>
<td>47.5</td>
<td>85</td>
</tr>
</tbody>
</table>

The tobacco industry has managed to forestall antismoking legislation (1964) by arguing that the observed correlation between smoking and lung cancer could be explained by some sort of carcinogenic genotype, U (unknown), that involves inborn craving for nicotine.
Smoking and Cancer

<table>
<thead>
<tr>
<th>Group Type</th>
<th>(P(x, z)) Group Size (% of Population)</th>
<th>(P(Y = 1 \mid x, z)) % of Cancer Cases in Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>X = 0, Z = 0</td>
<td>47.5</td>
<td>10</td>
</tr>
<tr>
<td>X = 1, Z = 0</td>
<td>2.5</td>
<td>90</td>
</tr>
<tr>
<td>X = 0, Z = 1</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>X = 1, Z = 1</td>
<td>47.5</td>
<td>85</td>
</tr>
</tbody>
</table>

\[
P(y \mid do(x)) = \sum_{z} P(z \mid x) \sum_{x'} P(y \mid z, x') \ P(x')
\]
Numerical application

• Crude analysis:

\[P(X = 1) = 0.5; P(Z = 1) = 0.5; P(Y = 1) = 0.475 \]

\[P(Y = 1 \mid X = 0) = (0.1 \times 0.475 + 0.05 \times 0.025)/0.5 = 0.0975 \]

\[P(Y = 1 \mid X = 1) = (0.9 \times 0.025 + 0.85 \times 0.475)/0.5 = 0.8525 \]

• These results seem to prove that smoking is a major contributor to lung cancer.

• However, the tobacco industry might argue that the table tells a different story - that smoking actually decreases one's risk of lung cancer…
Numerical application

\[P(y|do(x)) = \sum_z P(z|x) \sum_{x'} P(y|z, x') \, P(x') \]

\[P(Y = 1 \mid do(X = 1)) = 0.05 \times (0.1 \times 0.5 + 0.9 \times 0.5) \]
\[+ 0.95 \times (0.05 \times 0.5 + 0.85 \times 0.5) \]
\[= 0.4525 \]

\[P(Y = 1 \mid do(X = 0)) = 0.95 \times (0.1 \times 0.5 + 0.9 \times 0.5) \]
\[+ 0.05 \times (0.05 \times 0.5 + 0.85 \times 0.5) \]
\[= 0.4975 \]

Contrary to expectation, the data prove smoking to be somewhat beneficial to one's health!
 Discrimination controversy

• Another example involves a controversy called « reverse regression », which occupied the social science literature in the 1970s.

• Should we, in salary discrimination cases, compare salaries of equally qualified men and women or instead compare qualifications of equally paid men and women?

• Remarkably, the two choices may lead to opposite conclusions. It turns out that men earn a higher salary than equally qualified women and, simultaneously, men are more qualified than equally paid women.

• The moral is that all conclusions are extremely sensitive to which variables we choose to hold constant when we are comparing groups.
Discrimination controversy

- Men earns a higher salary than equally qualified women reads:
 \[\sum_Q P(S|\text{Male}, Q)P(Q) > \sum_Q P(S|\text{Female}, Q)P(Q) \]

- Men are more qualified than equally paid women reads:
 \[\sum_S P(Q|\text{Male}, S)P(S) > \sum_S P(Q|\text{Female}, S)P(S) \]

- The question we seek to answer: does sex directly influence salary? Which is the court definition of discrimination, and reads:
 \[P(S|\text{do(Male)}) > P(S|\text{do(Female)}) \]
Discrimination controversy

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>20</td>
<td>20</td>
<td>50%</td>
</tr>
<tr>
<td>H</td>
<td>20</td>
<td>40</td>
<td>66%</td>
</tr>
<tr>
<td>F</td>
<td>30</td>
<td>20</td>
<td>40%</td>
</tr>
<tr>
<td>H</td>
<td>20</td>
<td>30</td>
<td>60%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>H</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>50</td>
<td>40</td>
<td>44%</td>
</tr>
<tr>
<td>H</td>
<td>40</td>
<td>70</td>
<td>62%</td>
</tr>
</tbody>
</table>
Discrimination controversy

Let G=1 for men, G=1 and S=1 for high qualification and salary. Suppose two direct effects are positive (hence sex discrimination on salary). Conditioned on S, G and Q become negatively correlated via the open path in dotted lines.

Men earns a higher salary than equally qualified women

Men are more qualified than equally paid women
The Rules of do-calculus

- When a query is given in the form of a do-expression, for example $P(y|\textit{do}(x),z)$, its \textit{identifiability} can be decided systematically using an \textit{algebraic procedure} known as the do-calculus.

- The \textit{do-calculus} was developed by J. Pearl in 1995 to facilitate the identification of causal effects in non-parametric models.

- It consists of \textit{three inference rules} that permits to map interventional and observational distributions whenever certain conditions hold in the causal diagram G.

- The do-calculus was shown to be \textit{complete} (Tian and Pearl 2002a; Huang and Valtorta 2006; Shpitser and Pearl 2006; Bareinboim and Pearl 2012a).
Causal graphs: illustration

- We wish to assess the **total effect of the fumigants** X on yields Y.
- The causal diagram represents the investigator's understanding of the major causal influences among measurable quantities in the domain.
- Z_0, Z_1, Z_2, Z_3 represent the **eelworm population** before treatment, after treatment, and at the end of the season, respectively.
- Z_0 represents last year's eelworm population.
- B is the population of birds and other predators.

Unmeasured quantities are designated by hollow circles and dashed lines.
The Rules of do-calculus

• Using the do-calculus, one can establish that the total effect of X on Y can be estimated consistently from the observed distribution of X, Z_0, Z_1, Z_2, Z_3, and Y.

• These conclusions are obtained by performing a sequence of symbolic derivations (the 3 inference rules).

\[P(y \mid \text{do}(x)) = \sum_{z_1, z_2, z_3} P(y \mid z_2, z_3, x)P(z_2 \mid z_1, x) \]

\[\times \sum_{x'} P(z_3 \mid z_1, z_2, x')P(z_1, x') \]
Confounding & Selection bias
Confounding & Selection bias

• The biases arising from confounding and selection are fundamentally different, though both constitute threats to the validity of causal inferences.
 • The confounding bias is the result of treatment X and outcome Y being affected by common ancestral variables,
 • The selection bias is due to treatment X or outcome Y (or ancestors) affecting the inclusion of the subject in the sample.

• In both cases, we have extraneous “flow” of information between treatment and outcome, which falls under the rubric of “spurious correlation,” since it is not what we seek to estimate.

• What are the conditions for recoverability of interventional distributions for when selection and confounding biases are both present?
Confounding with latent variables

• Some relevant confounders are difficult to measure in many real-world applications (e.g., intention, mood, DNA mutation), which leads to the need of modelling explicitly latent variables that affect more than one observed variable in the system (Semi- Markovian models).

• In such models, identifiability is not always achievable.

• **Causal Effects Identifiability:** Let be \(V \) the set of observable variables, \(U \) is the set of unobservable variables. The causal effect of an action, \(\text{do}(X = x) \) is said to be identifiable from \(P \) in \(G \) if \(P(y|\text{do}(x)) \) is uniquely computable from \(P(v) \).

• The evaluation of identifiability goes through a **non-trivial algebraic process**, namely the do-calculus.
Confounding: risks and pitfalls

- Researchers must weigh the benefit of reducing confounding bias carried by those covariates against the risk of **amplifying residual bias** carried by **unmeasured confounders**.

- According to Judea Pearl, epidemiologists often adjust for wrong sets of covariate (usually Sex and Age but other covariates are missing).

- Is the prevailing practice in epidemiology misguided?
Selection bias

- Another major challenge that needs to be addressed when evaluating the effect of interventions is the problem of selection bias, caused by preferential exclusion of samples from the data.

- Selection bias is a major obstacle to valid causal and statistical inferences; it can hardly be detected in either experimental or observational studies.

- **Example**: in a typical study of the effect of training program on earnings, subjects achieving higher incomes tend to report their earnings more frequently than those who earn less.
Selection bias

• To illuminate the nature of this bias, consider a variable S affected by both X (treatment) and Y (outcome), indicating entry into the data pool.

• Such preferential selection to the pool amounts to conditioning on S, which creates spurious association between X and Y.

• Our assumption about the selection mechanism are embodied in an augmented causal graph G_s.

• Illustration: Effect of training program on earnings

• S represents the selection mechanism. $S=1$ indicates presence in the sample, and $S=0$ exclusion.
Recoverability

- Under what conditions $P(y|\text{do}(x))$ can be recovered from data drawn from $P(y, x|S = 1)$?

- **Recoverability from Selection Bias:** Given a causal graph G_s augmented with S, $P(y|\text{do}(x))$ is said to be recoverable from selection biased data in G_s if $P(y|\text{do}(x))$ is expressible in terms of the distribution under selection bias $P(v|S = 1)$.

- In this example, $P(y|\text{do}(x))$ is not recoverable
Osteoporotic fracture risk assessment

- Prospective cohort study with 7500 elderly osteoporotic women followed-up during 4 years.
- A plausible causal BN was learned from a combination of non-experimental data and qualitative assumptions that are deemed likely by health experts.
- Inclusion of a selection mechanism and an unobserved confounder.
- We seek to estimate the strength of the causal effect of psychotropic drugs on the risk of hip fracture:

$$P(\text{Fracture} | \text{do(Psycho)}) = ?$$

P.Caillet et al. “Hip fracture in the elderly: a re-analysis of the EPIDOS Study with causal Bayesian Networks”, Plos One, 2015
Missing data
Missing data

- All branches of experimental science are plagued by missing data

- The “missing data” problem arises when values for one or more variables are missing from recorded observations

- Occurs often in social science, epidemiology, biology and survival data analysis etc.

- Caused by varied factors such as high cost involved in measuring variables, failure of sensors, reluctance of respondents in answering certain questions

- Improper handling of missing data can bias outcomes and potentially distort the conclusions drawn from a study.
Misingness mechanism: \(m \)-graph

- Associated with every partially observed variable \(V_j \in V_{\text{miss}} \) are two other variables \(R_j \) and \(V_j^* \).

- \(V_j^* \) is a proxy variable that is actually observed.

- \(R_j \) represents the status of the causal mechanism responsible for the missingness of \(V_j^* \).

\[
v_i^* = f(r_{v_i}, v_i) = \begin{cases} v_i & \text{if } r_{v_i} = 0 \\ \frac{v_i}{m} & \text{if } r_{v_i} = 1 \end{cases}
\]

Observed and partially missing variables are represented by full and hollow circles respectively.
Missingness mechanisms

- V_j^* is a proxy variable that is actually observed, and R_i represents the status of the causal mechanism responsible for the missingness of V_j.

- Data that are: (a) MCAR, (b) MAR, (c) & (d) MNAR. Hollow and solid circles denote partially and fully observed variables respectively.

Recoverability with missing data

Let V_{obs}, V_{miss} be the set of observed and missing variables

- **Recoverability from Data Missingness Bias:** Given a causal graph G augmented with the missingness variables R, $P(y|\text{do}(x))$ is said to be recoverable in G if $P(y|\text{do}(x))$ is expressible in terms of the distributions $P(V_{obs}, V_{miss}|R = 0)$.
Conclusions

• Testing for cause and effect is difficult, discovering cause effect is even more difficult.
• But, once the **causal diagram** is provided (both from *expert knowledge* and data), identification of causal effects is straightforward using the *do-calculus* rules.
• Many **paradoxes** and **controversies** in social and medical sciences can be illustrated and understood by simple graphical means.
• The **data missingness** and **selection mechanisms** can easily be represented in the diagram for **bias correction** purposes.
• **Inference of causal relationships from massive data sets** is still a challenge but may eventually lead to new discoveries (e.g. cancer)
References

• J. Pearl "Do-Calculus Revisited" UCLA Cognitive Systems Laboratory, Conference on Uncertainty in Artificial Intelligence (UAI) 2012.
• J.A. Myers et al. « Effects of adjusting for instrumental variables on bias and precision of effect estimates. Am. J. of Epidemiology 2011.
Thank you for your attention, any question?