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3D medical imagery (ex. aneurysm artery cerebral).
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1. Introduction 1.1 Tubular Objects

1. Introduction

Tubular Objects

3D medical imagery (ex. aneurysm artery cerebral).

Volumic images of wood trunk (to detect knots).

Industrial context : metallic tube with bending machine.

B. Kerautret et al. (LORIA, Université de Lorraine) 3D Geometric Analysis of Tubular Objects Colloque de clôture DigitalSnow 3 / 22



1. Introduction 1.2 Objective of geometric measure

1.2 Objective of geometric measure

Analyze of 3D tube

Motivation : (retro-engineering ) recover the parametric model of the tube (LRA

model).
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B. Kerautret et al. (LORIA, Université de Lorraine) 3D Geometric Analysis of Tubular Objects Colloque de clôture DigitalSnow 4 / 22



1. Introduction 1.2 Objective of geometric measure

1.2 Objective of geometric measure

Analyze of 3D tube

Motivation : (retro-engineering ) recover the parametric model of the tube (LRA

model).

Data points obtained from laser scan.

Method independent of the type of data : set of point, 3D volume , 2.5D (height

map).

full scan partial scan partial scan (direction)

voxels height mapB. Kerautret et al. (LORIA, Université de Lorraine) 3D Geometric Analysis of Tubular Objects Colloque de clôture DigitalSnow 4 / 22



1. Introduction 1.3 Existing Works

1.3 Existing Works

Existing method dealing with a set of points

Minimal cover and thinning [Lee 00].

point source (1000) thinned set of point interpolation by B Spline

Results extracted from the article [Lee 00]
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1. Introduction 1.3 Existing Works

1.3 Existing Works

Existing method dealing with a set of points

Minimal cover and thinning [Lee 00].

Improvement with tube with non constant diameter [Lee & Kim 04].

Missing precision for geometric analysis [Bauer & Polthier 09].

Bauer and Polthier propose a method to recover the parametric model

[Bauer & Polthier 09].

source scan partiel projection

decomposition in arcs/segments reconstruction

Results extracted from the article [Bauer & Polthier 09]
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1. Introduction 1.3 Existing Works

1.3 Existing Works (2)

Extraction methods from median axis

Method given from volumic data (see review [Cornea & Silver 07]).

Sensible small defects.

(a) thinning (b) geometric (c) potential field (d) proposed

1 min 4s 0.5 s 3min 6s+3s
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1. Introduction 1.3 Existing Works

1.3 Existing Works (3)

Other methods

Method based on GVF [Xu & Prince 98] to process volumetric discrete object

[Bauer & Bischof 08].

Method to process incomplete set of points [Tagliasacchi et al. 09].
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2. Extraction of Centerline from Tubular Objects

2. Extraction of Centerline from Tubular Objects

Main idea :

Exploit an accumulation image defined from normal vectors.

Idea inspired from the pith detection of wood trunk :

⇒ PhD thesis of Adrien Krähenbühl

Simple dependance through the surface normals.
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2. Extraction of Centerline from Tubular Objects

Main idea :

Exploit an accumulation image defined from normal vectors.

Idea inspired from the pith detection of wood trunk :

⇒ PhD thesis of Adrien Krähenbühl

Simple dependance through the surface normals.

Method defined by 3 main steps :

Step 1 : accumulation of the surface normals.

Step 2 : tracking of the local maxima accumulation.

Step 3 : optimisation of the position of the digital points of previous step.
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2. Extraction of Centerline from Tubular Objects 2.1 Accumulation Image defined from Normal Vectors

2.1 Accumulation Image defined from Normal Vectors

Accumulation according the surface normals

From the input mesh faces fk , in the normal direction
−→
nk .

fk

−→
nk

directional scan
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2.1 Accumulation Image defined from Normal Vectors

Accumulation according the surface normals

From the input mesh faces fk , in the normal direction
−→
nk .

Increase by 1 all voxels intersecting the line defined by
−→
nk .

⇒ on a maximal distance R + ǫ.

Retain the direction of the vector contributing to the accumulation.

Compute the principal direction of an accumulation voxel :
−→
dk =

−→
dj + (

−→
nk ∧

−→
nj )

αmin

R

ǫ

fj
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fk
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directional scan
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2. Extraction of Centerline from Tubular Objects 2.1 Accumulation Image defined from Normal Vectors

2.1 Image d’accumulation définie à partir des vecteurs normaux (2)

Input: mesh // Triangular mesh of a tube
accRadius // Accumulation length from center of faces
minNorm = 0.1 // Minimum norm value
Ouput: accImage // Accumulation of normal vector number passing through a coordinate
dirImage // Cross product of all normals passing through a coordinate
maxAcc // Maximum number of normals passing through an (x,y,z) coordinate
maxPt // maxAcc coordinates
Variable: lastVectors // The last considered normal for each (x,y,z) coordinate
mainAxis // Vector contributing to the cross product of a directional vector
lastVectors = Image3D(mesh.dimensions())

maxAcc = 0

foreach face in mesh do
currentPt = face.center

normalVector = face.normalVector().normalized()

while distance(currentPt, face.center) < accRadius do
if accImage[currentPt]!= 0 then

mainAxis = lastVectors[currentPt] × normalVector

if norm(mainAxis) > minNorm then
dirImage[currentPt] += mainAxis*sign(mainAxis • dirImage[currentPt])

lastVectors[currentPt] = normalVector

accImage[currentPt]++

if accImage[currentPt] > maxAcc then
maxAcc = accImage[currentPt]

maxPt = currentPt

currentPt += normalVector
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2. Extraction of Centerline from Tubular Objects 2.1 Accumulation Image defined from Normal Vectors

2.1 Image d’accumulation définie à partir des vecteurs normaux (3)

Illustration of the construction

Accumumation from normals.
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2.1 Image d’accumulation définie à partir des vecteurs normaux (3)

Illustration of the construction

Accumumation from normals.

Image of accumulation.

Recover the source voxel associated to a voxel.

Robustess towards different types of data

partial mesh,

noise,

digital surface,

low resolution mesh.
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2. Extraction of Centerline from Tubular Objects 2.2 Centerline Tracking from Image Accumulation

2.2 Centerline Tracking from Image Accumulation

Basic extraction

Single threshold t not direct.

Choice of parameter t .

Not necessary connected.

t = 150
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2.2 Centerline Tracking from Image Accumulation

Basic extraction

Single threshold t not direct.

Choice of parameter t .
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2.2 Centerline Tracking from Image Accumulation

Basic extraction

Single threshold t not direct.

Choice of parameter t .

Not necessary connected.
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2. Extraction of Centerline from Tubular Objects 2.2 Centerline Tracking from Image Accumulation

2.2 Centerline Tracking from Image Accumulation

Basic extraction

Single threshold t not direct.

Choice of parameter t .

Not necessary connected.

t = 25
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2. Extraction of Centerline from Tubular Objects 2.2 Centerline Tracking from Image Accumulation

2.2 Centerline Tracking from Image Accumulation

Basic extraction

Single threshold t not direct.

Choice of parameter t .

Not necessary connected.

Tracking algorithm

Start from maximal accumulation point C0.

Define patch image I i
patch for the current point Ci .

Exploit main tubular direction
−→
dk from I i

patch.

Ci
−→
dk
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2.2 Centerline Tracking from Image Accumulation

Basic extraction

Single threshold t not direct.

Choice of parameter t .

Not necessary connected.

Tracking algorithm

Start from maximal accumulation point C0.

Define patch image I i
patch for the current point Ci .
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patch.
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2. Extraction of Centerline from Tubular Objects 2.2 Centerline Tracking from Image Accumulation

2.2 Centerline Tracking from Image Accumulation (2)

patchImageSize = 2 * aRadius ;
centerline = emptySet()

continueTracking = true

patchSize = 2 * accRadius

currentPt = startPt

lastVect = trackInFront? dirImage( startPt ) : - dirImage( startPt )

previousPt = startPt - lastVect * trackStep

while continueTracking do
centerline.append( currentPt )

dirVect = dirImage[currentPt].normalized()

if lastVect.dot(dirVect) < 0 then
dirVect = -dirVect

continueTracking = isInsideTube( accImage, currentPt, previousPt, trackStep, π/3 )

previousPt = currentPt

// Defined the next image patch center point
centerPatch = currentPt + ( dirVect * trackStep )

if not accImage.domain().contains( centerPatch ) then
break

// Extract a 2D image of size 2 * accRadius from the 3D image accImage, centered on
// centerPatch and directed along dirVect

patchImage = extractPatch( accImage, centerPatch, dirVect, 2 * accRadius )

maxCoords = getMaxCoords( patchImage )

lastVect = dirVect

previousPt = currentPt

currentPt = patchSpaceToAccImageSpace( maxCoords)

return centerline
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2. Extraction of Centerline from Tubular Objects 2.3 Optimisation of the center line position

2.3 Optimisation of the center line position (1)

Main drawback

Due to digital space, the center line is not perfectly smooth/centered.

Maximal accumulation not always perfectly centered in case of noise.
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2.3 Optimisation of the center line position (1)

Main drawback

Due to digital space, the center line is not perfectly smooth/centered.

Maximal accumulation not always perfectly centered in case of noise.

Influence the geometric analysis

⇒ need a simple and robust centered process.
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2. Extraction of Centerline from Tubular Objects 2.3 Optimisation of the center line position

2.3 Optimisation of the center line position (2)

Main idea of the optimisation process

Minimize the fitting error Es(C) between the center

line position C and the tube of radius R.

Es(C) =

N−1∑

i=0

(‖
−−→
CMi‖ − R)2

. (1)

C

M0

M1 M2

M3
M4

R

B. Kerautret et al. (LORIA, Université de Lorraine) 3D Geometric Analysis of Tubular Objects Colloque de clôture DigitalSnow 15 / 22



2. Extraction of Centerline from Tubular Objects 2.3 Optimisation of the center line position

2.3 Optimisation of the center line position (2)

Main idea of the optimisation process

Minimize the fitting error Es(C) between the center

line position C and the tube of radius R.

Es(C) =

N−1∑

i=0

(‖
−−→
CMi‖ − R)2

. (1)

C

M0

M1 M2

M3
M4

P0

P1 P2

P3P4

−→
f

Minimisation from simple gradient descent

By derivation :

∇Es(C) = 2

N−1∑

i=0

−−→
CMi

‖
−−→
CMi‖

(R − ‖
−−→
CMi‖). (2)

Can be interpreted as elastic forces, minimized by applying on C at each step :
−→
f =

∑N
i=0

−−→
PiMi .
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2. Extraction of Centerline from Tubular Objects 2.3 Optimisation of the center line position

2.3 Optimisation of the center line position (3)

Simple optimisation

Only one parameter ǫo for convergence.

Direct to implement and fast convergence.

Comparable process used to fit 3D curves on unorganized data points

[Fang et al. 1992].
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3. Reconstruction and Geometric Analysis 3.1 Reconstruction

3.1 Reconstruction

Reconstruction on various types of data :

⇒ full mesh,

R = 6, t=6.23s, 151 444 faces
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Reconstruction on various types of data :

⇒ full mesh, partial mesh,
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3. Reconstruction and Geometric Analysis 3.1 Reconstruction

3.1 Reconstruction

Reconstruction on various types of data :

⇒ full mesh, partial mesh, reduced scaned area,

R = 6, t=4.36s, 52 914 faces
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3. Reconstruction and Geometric Analysis 3.1 Reconstruction

3.1 Reconstruction

Reconstruction on various types of data :

⇒ full mesh, partial mesh, reduced scaned area, digital object, Height map

R = 8,t=22.33s, 645 450 faces
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3. Reconstruction and Geometric Analysis 3.2 Geometric Analysis

3.2 Arc/line detection

Main idea

3d arcs detection based on tangent space [Latecki & Lakamper 00].

Extend to 3D the previous work of 2D arc detection [Nguyen & Debled 11].

Detect co-linear sequence of points in the tangent space.
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B. Kerautret et al. (LORIA, Université de Lorraine) 3D Geometric Analysis of Tubular Objects Colloque de clôture DigitalSnow 18 / 22



3. Reconstruction and Geometric Analysis 3.2 Geometric Analysis

3.2 Arc/line detection

Main idea

3d arcs detection based on tangent space [Latecki & Lakamper 00].

Extend to 3D the previous work of 2D arc detection [Nguyen & Debled 11].

Detect co-linear sequence of points in the tangent space.

index of centerline point

ta
n
g
e
n
t

a
n
g
le

va
ri

a
ti
o
n

 0

 1

 2

 3

 4

 5

 6

 0  50  100  150  200  250

Tangent space values
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3. Reconstruction and Geometric Analysis 3.2 Geometric Analysis

Implementation and demonstration online

Implementation

Implemented using the Library [DGtal].

All 3D illustrations applied from the DGtalTools package.

Will be included as new tools in DGtalTools.

B. Kerautret et al. (LORIA, Université de Lorraine) 3D Geometric Analysis of Tubular Objects Colloque de clôture DigitalSnow 19 / 22



3. Reconstruction and Geometric Analysis 3.2 Geometric Analysis

Implementation and demonstration online

Implementation

Implemented using the Library [DGtal].

All 3D illustrations applied from the DGtalTools package.

Will be included as new tools in DGtalTools.

Online demonstration

Online demonstration construction is in progress.

Will be available in the ”workshop” section of the IPOL journal (www.ipol.im).
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4. Conclusion

4. Conclusion

Simple method to extract the centerline of tubular object.

Fast with only few parameters.

Independant of the type of input data (mesh, voxels, heightmap).

Perspectives

Extend in gray level images.

Improve the tracking with the procesing of joint.

Adaptation to deal with non constant radius (need in the optimisation)
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4. Conclusion

Merci de votre attention !
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