

DigitalSnow Final meeting
Digital Level Layers for Curve Decomposition and Vectorization

july 9th 2015, Autrans

Yan Gerard (ISIT) yan.gerard@udamail.fr

Plan

Introduction

About tangent estimators

Digital Level Layers

DLL decomposition

Algorithm

Plan

Introduction

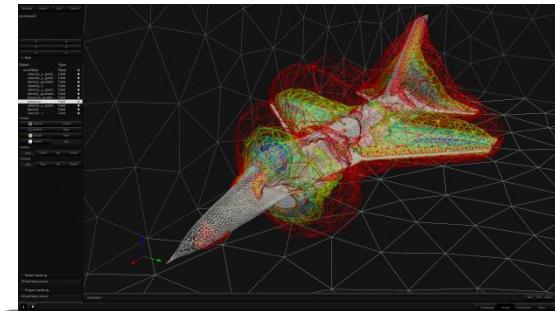
Geometric design
(3D artists, designers...)

Martin Newell's
Utah Teapot

Real world data acquisition
(3D-scanners, computer vision,
motion capture, medical imaging...)

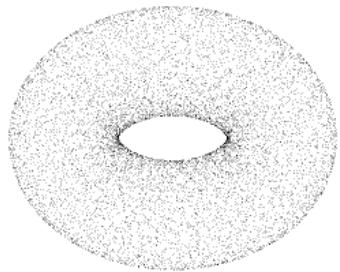
3D models
(geometry)

Building
(3D printer, factory...)



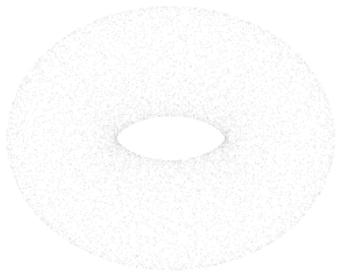
Computer simulation
(Finite Elements Methods...)

Images
(video games, movies, FX,
Augmented Reality...)

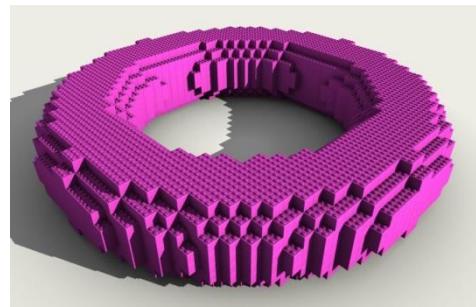


Points cloud

3D models
(*geometry*)

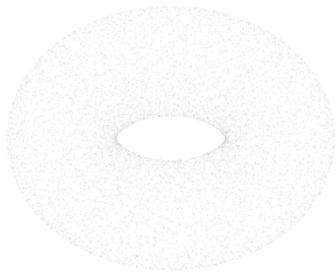


Points cloud

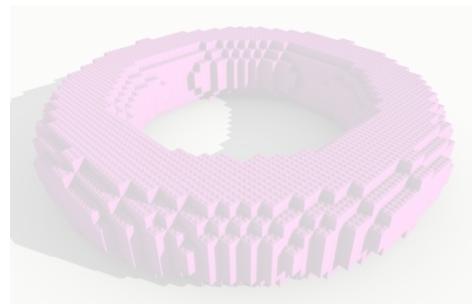


Sets of voxels

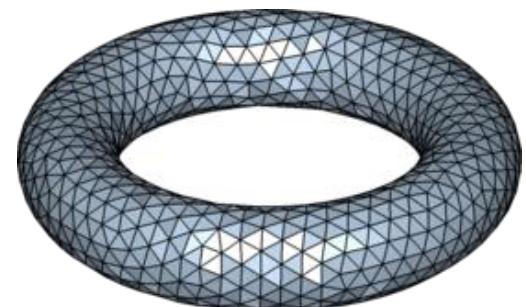
3D models
(*geometry*)



Points cloud

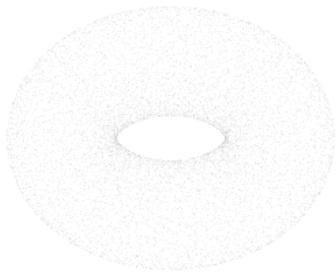


Sets of voxels

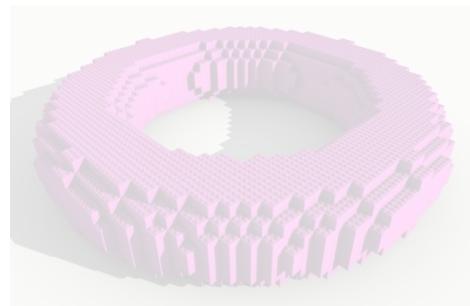


Mesh

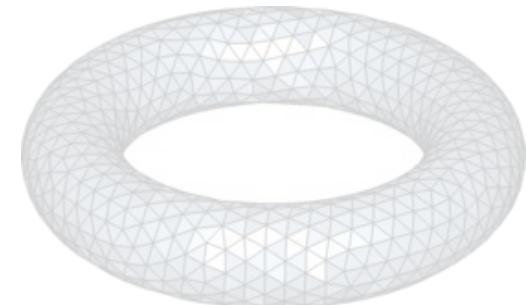
3D models
(*geometry*)



Points cloud



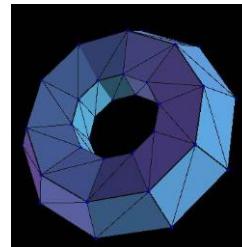
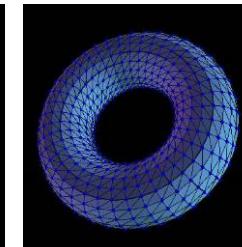
Sets of voxels



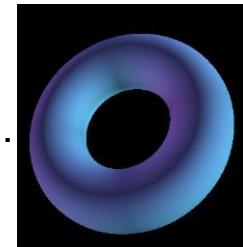
Mesh

3D models
(*geometry*)

Control Mesh

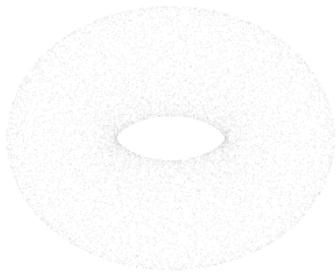
1 iteration of
Loop scheme

Limit shape

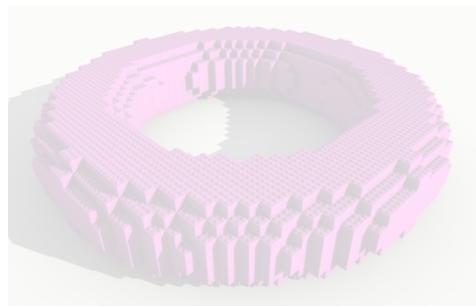


....

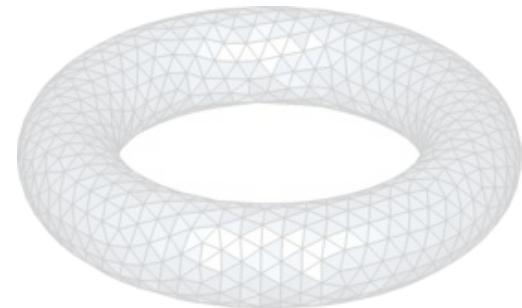
Subdivision surfaces



Points cloud

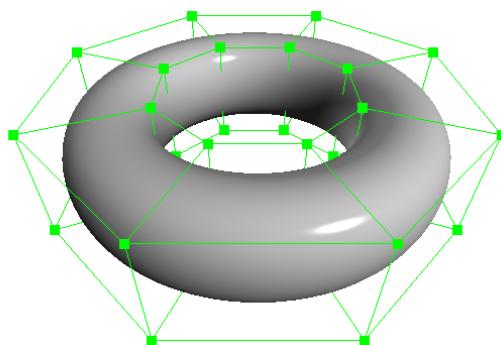


Sets of voxels



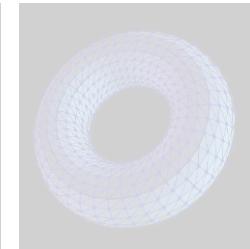
Mesh

3D models
(geometry)



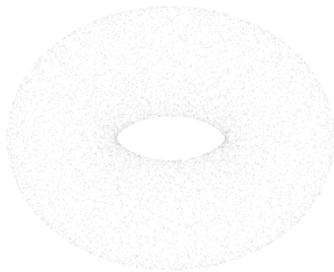
Parametric shapes
(Bézier, B-splines, NURBS...)

Control Mesh

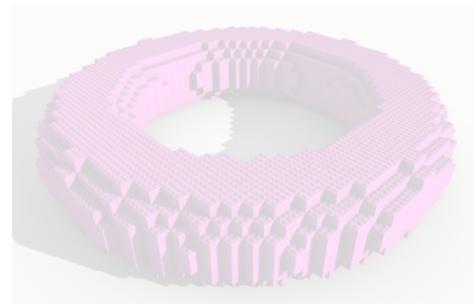
1 iteration of
Loop scheme

Limit shape

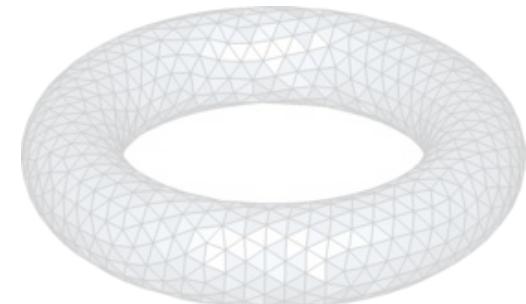
Subdivision surfaces



Points cloud

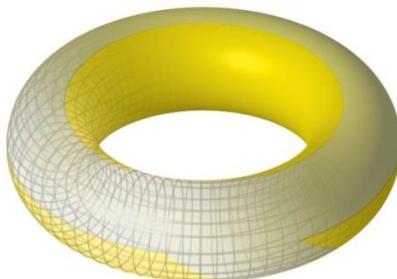
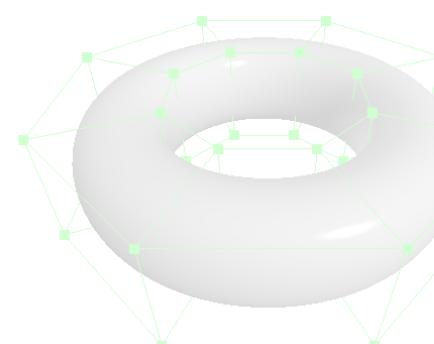


Sets of voxels

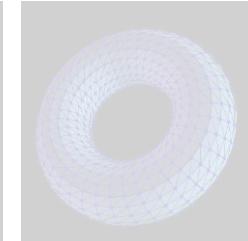


Mesh

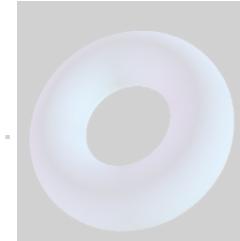
3D models
(geometry)

Level sets
(equation)Parametric shapes
(Bézier, B-splines, NURBS...)

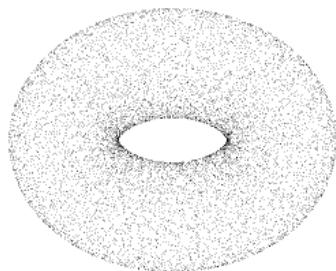
Control Mesh

1 iteration of
Loop scheme

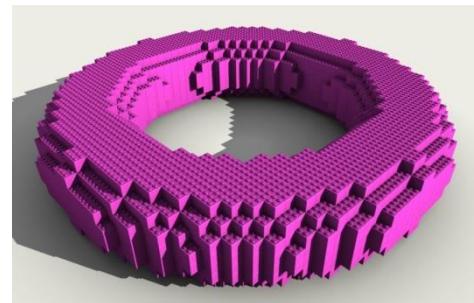
Limit shape



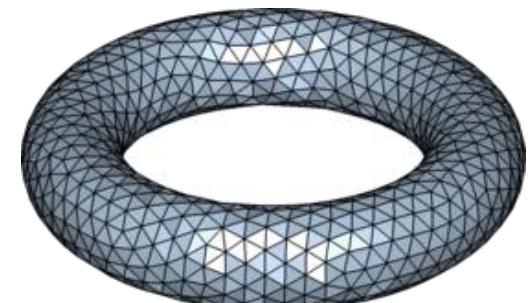
Subdivision surfaces



Points cloud

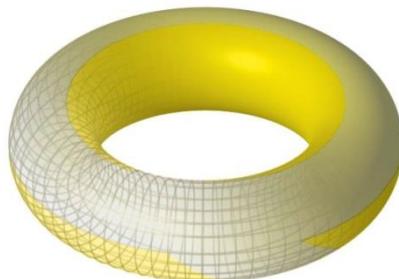
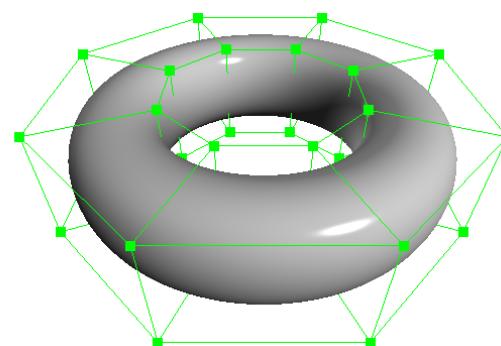


Sets of voxels

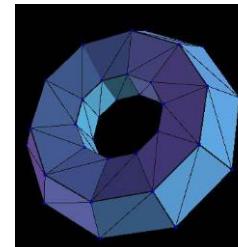


Mesh

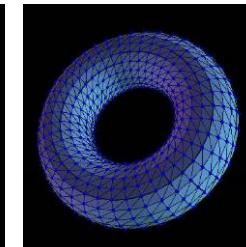
3D models
(geometry)

Level sets
(equation)Parametric shapes
(Bézier, B-splines, NURBS...)

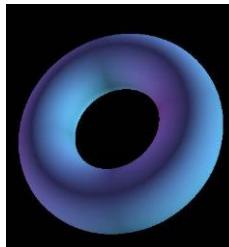
Control Mesh



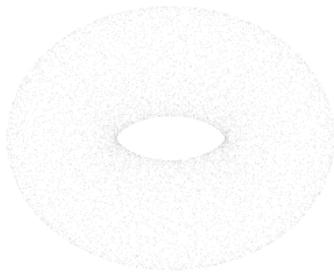
Subdivision surfaces

1 iteration of
Loop scheme

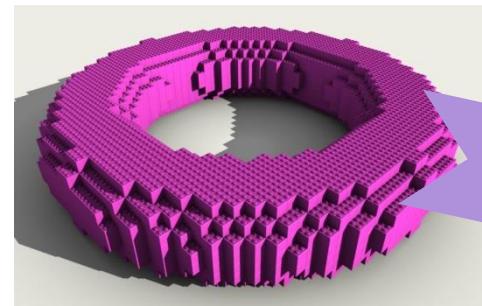
....



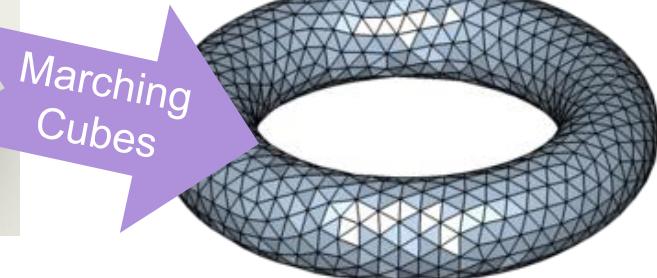
Limit shape



Points cloud

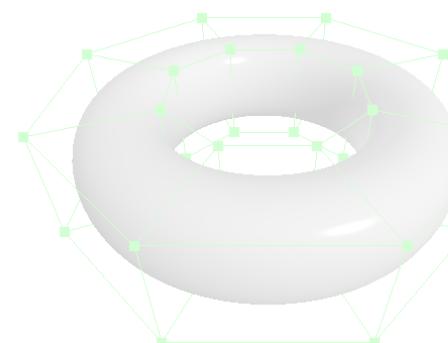


Sets of voxels



Mesh

3D models
(geometry)

Level sets
(equation)

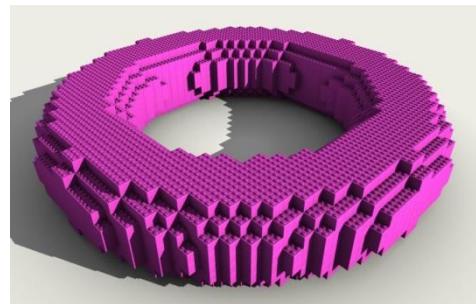
Control Mesh

1 iteration of
Loop scheme

Limit shape

Parametric shapes
(Bézier, B-splines, NURBS...)

Subdivision surfaces



Sets of voxels

Just **export** the digital model **in a mesh** with marching cubes and simplification.

That's the option followed by most people
(it's a good option).

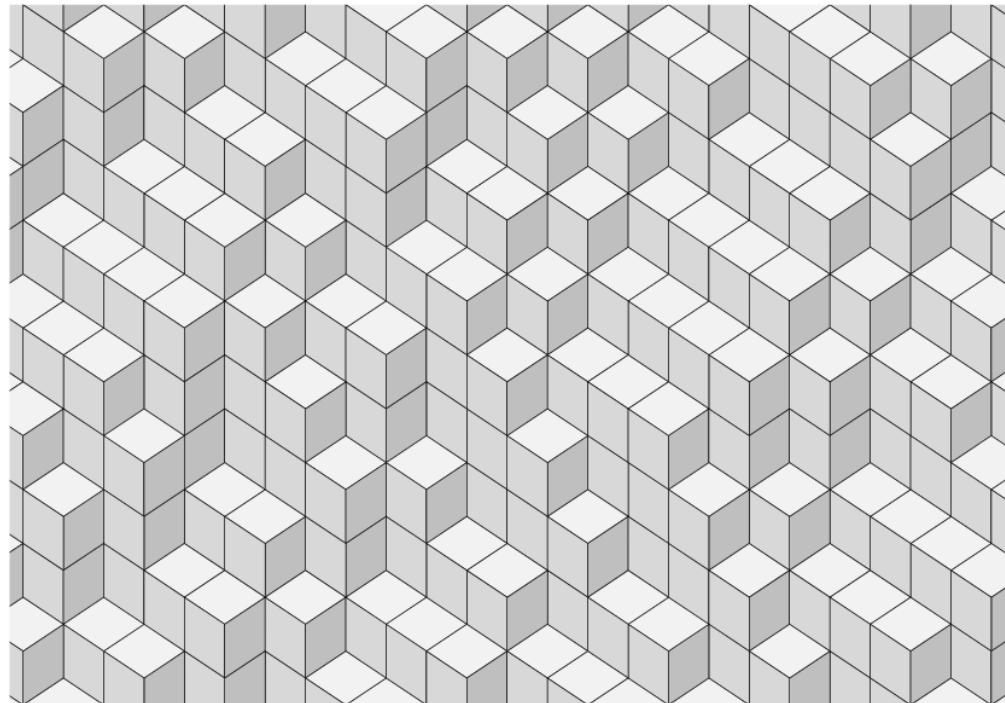
Let me my voxels!!!

But some people are stubborn.

Are there some better reasons to do Digital Geometry ?

But some people are stubborn.
May be, they played to much legos during
their childhood.

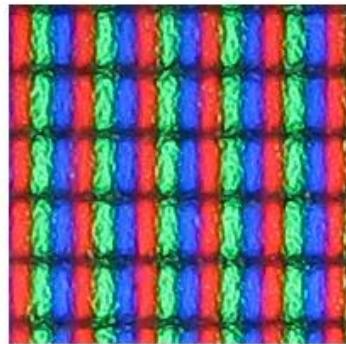
Are there some better reasons to do Digital Geometry ?



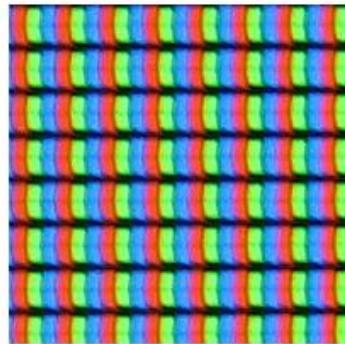
A stepped surface @ Thomas Fernique

For the beauty of theory ☺

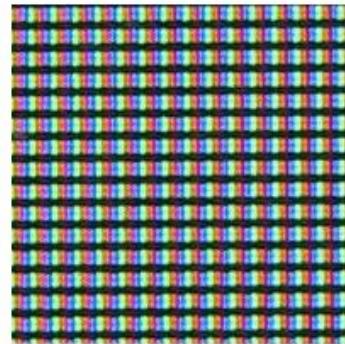
Are there some better reasons to do Digital Geometry ?



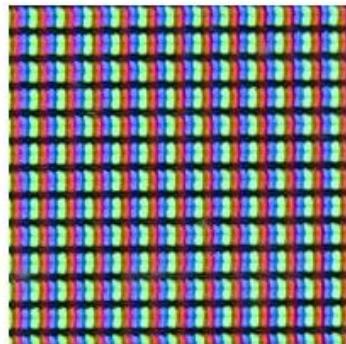
Dell E248WFP
24" 1920x1200 (94ppi)



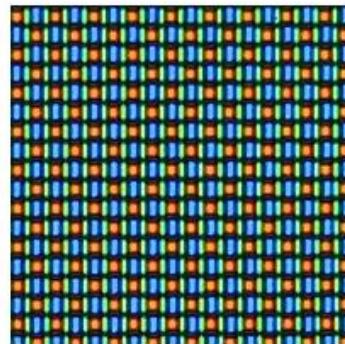
Apple iPad (Original)
9.7" 1024x768 (132ppi)



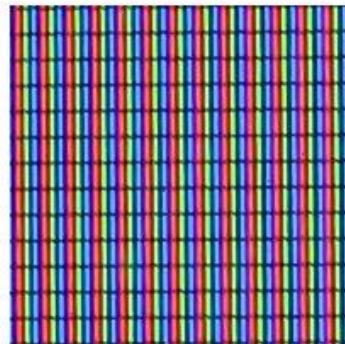
Apple The New iPad (3rd Gen)
9.7" 2048x1536 (264ppi)



Asus (Google) Nexus 7
7" 1280x800 (216ppi)

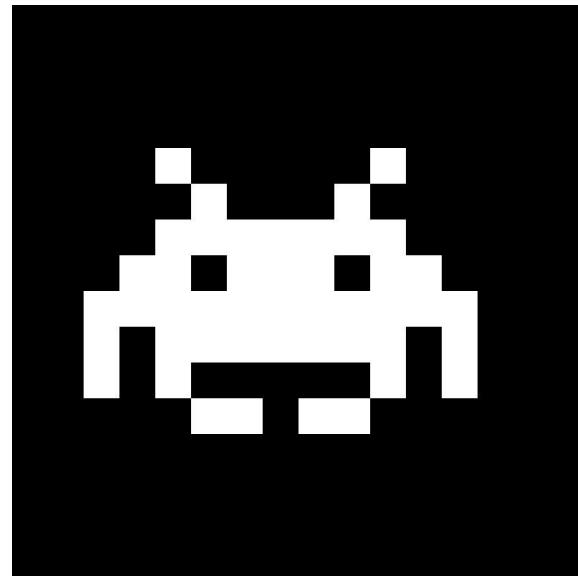


Samsung Galaxy SIII
4.8" 1280x720 (306ppi)



Sony Playstation Vita
5" 960x544 (220ppi)

Screens are lattices of pixels.



Binary image

Images are tabs of pixel values.

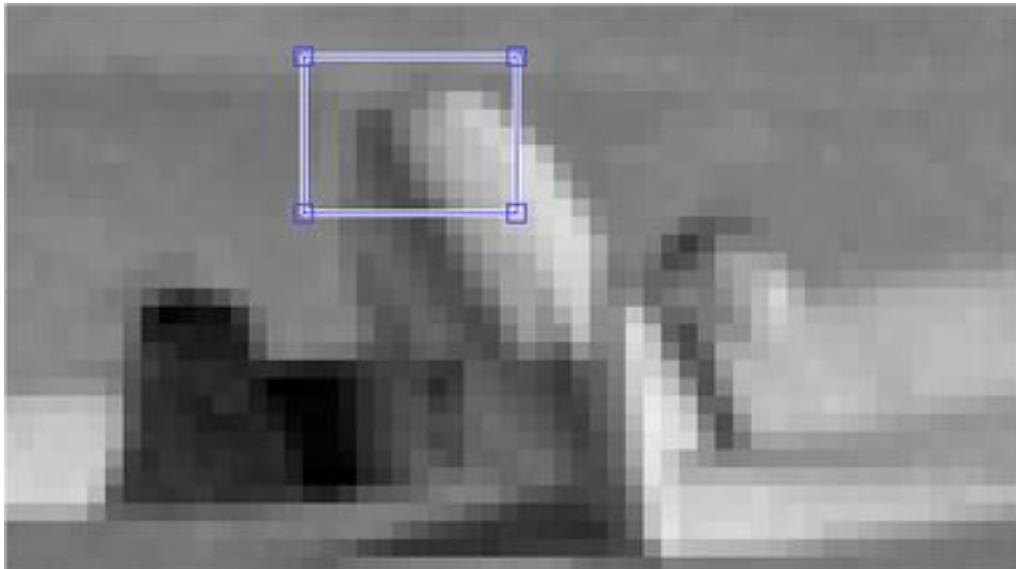


Image with grey-levels

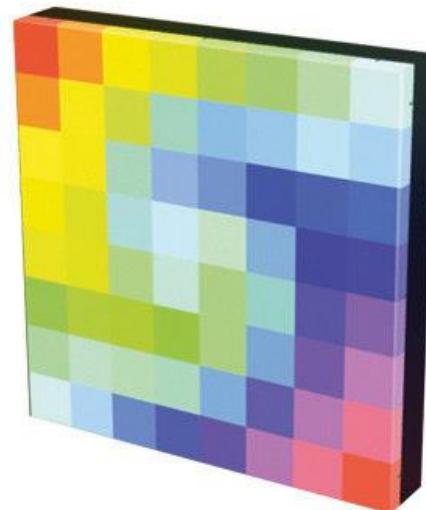
134	134	136	138	136	132	128	128	133	137	139	138
126	133	137	139	137	128	119	126	130	129	124	125
119	122	129	124	118	115	120	147	181	182	152	128
116	125	117	93	87	117	141	160	185	203	198	161
120	127	115	84	79	111	142	166	178	191	207	200
120	131	119	87	73	97	135	155	176	187	196	210
126	133	116	91	77	84	118	150	173	188	192	200
133	135	117	97	84	78	101	131	160	177	185	199
138	132	111	104	90	78	78	105	142	170	178	191

The values of the tab

Images are tabs of pixel values.

Array RGB					
Page 3 – blue intensity values	0.689	0.706	0.118	0.884	...
	0.535	0.532	0.653	0.925	...
	0.314	0.265	0.159	0.101	...
	0.553	0.633	0.528	0.493	...
	0.441	0.465	0.512	0.512	...
	0.208	0.401	0.421	0.398	...
Page 2 – green intensity values	0.342	0.647	0.515	0.816	...
	0.111	0.300	0.205	0.526	...
	0.523	0.428	0.712	0.929	...
	0.214	0.604	0.918	0.344	...
	0.100	0.121	0.113	0.126	...
	0.208	0.101	0.204	0.175	...
Page 1 – red intensity values	0.112	0.986	0.234	0.432	...
	0.765	0.128	0.863	0.521	...
	1.000	0.985	0.761	0.698	...
	0.455	0.783	0.224	0.395	...
	0.021	0.500	0.311	0.123	...
	1.000	1.000	0.867	0.051	...
	1.000	0.945	0.998	0.893	...
	0.990	0.941	1.000	0.876	...
	0.902	0.867	0.834	0.798	...

RGB image

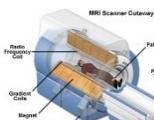


Images are tabs of pixel values.

Cameras

3D scan

Kinect



MRI

US

...

The input is digital

Computation

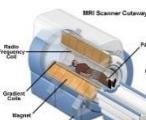
The output is digital

0111001010010

Cameras

3D scan

Kinect



MRI

US

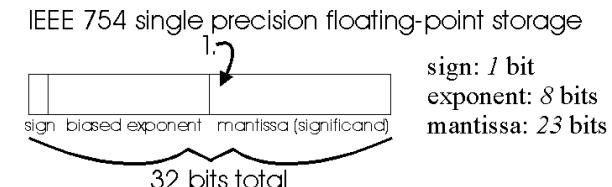
...

The input is digital

Integer arithmetic

Which
arithmetic
for the
computation ?

Floating Point Arithmetic



The output is digital

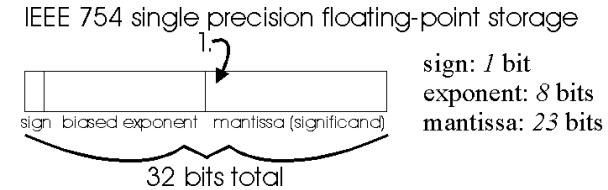
0111001010010

Integer arithmetic

Suitable for computers
(exact computations)

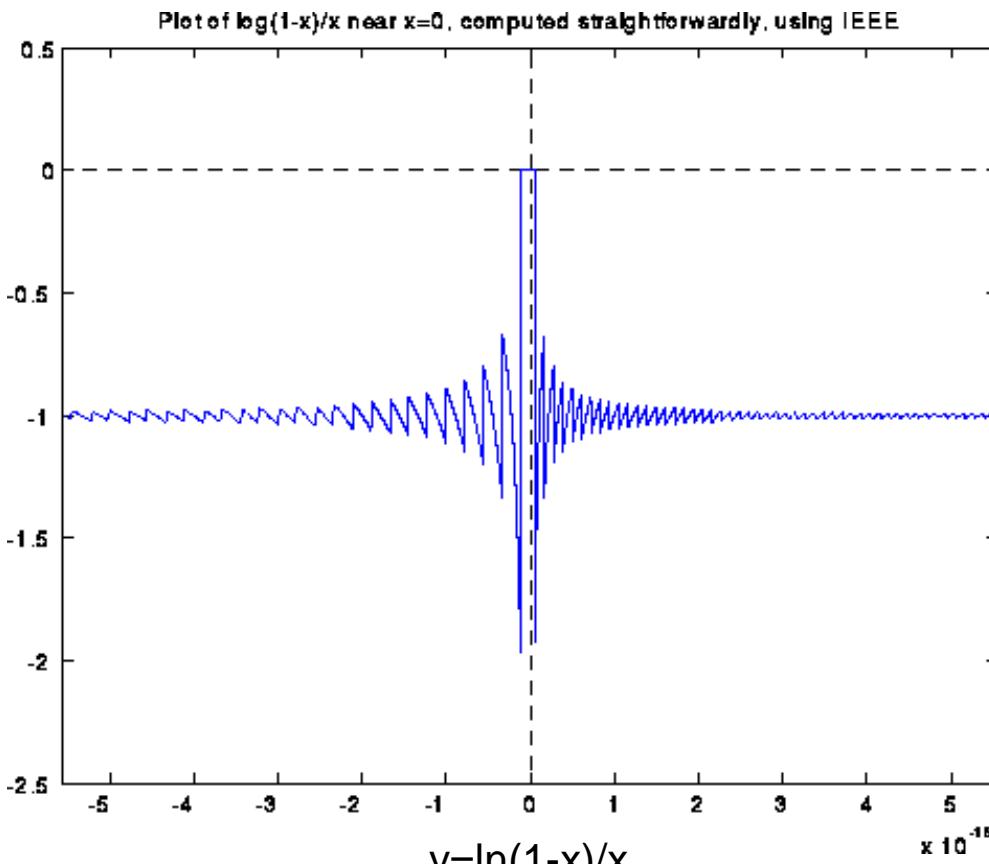
Requires digital mathematics...

Floating Point Arithmetic



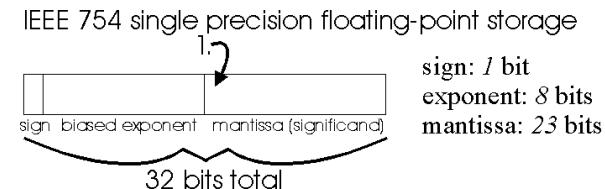
Suitable for mathematics
(continuous objects)

Problems of inaccuracy...



with IEEE 754 standard

Floating Point Arithmetic



Suitable for mathematics
(continuous objects)

Problems of inaccuracy...

Input = integers

(or integers multiplied by a fixed resolution)

Use
integer
arithmetic
with suitable
digital
mathematical
theories

Use
Floating point
numbers
and
classical
continuous
Mathematics
(and do as there
was no problem of
accuracy)

Output = integers

Input = integers

(or integers multiplied by a fixed resolution)

Most popular option.

Output = integers

Use
Floating point
numbers
and
classical
continuous
Mathematics
(and do as there
was no problem of
accuracy)

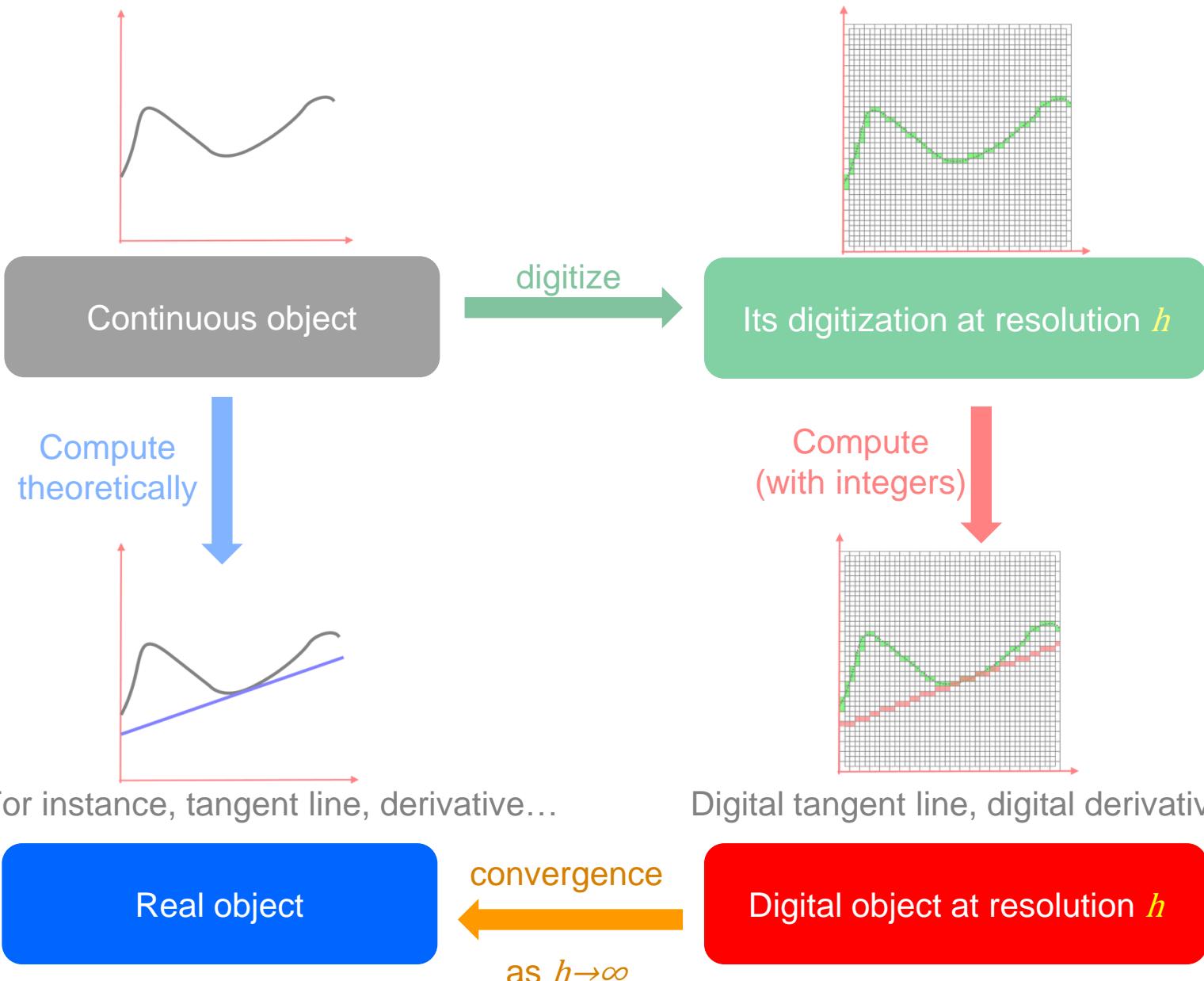
Input = integers
(or integers multiplied by a fixed resolution)

Use
integer
arithmetic
with suitable
digital
mathematical
theories

The developpment of
digital mathematics
is a **huge** challenge

We can not do whatever
we want. There are
some constraints...

Output = integers



Plan

Introduction

About tangent estimators

Digital Primitives

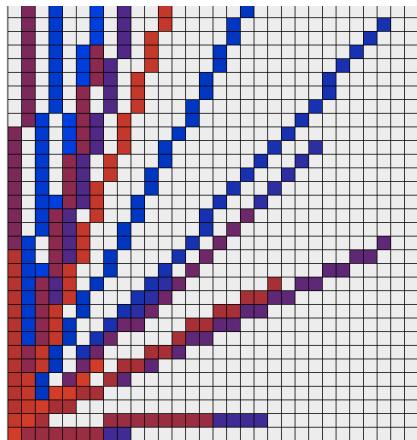
Measurements

Transformations and Combinatorics

Plan

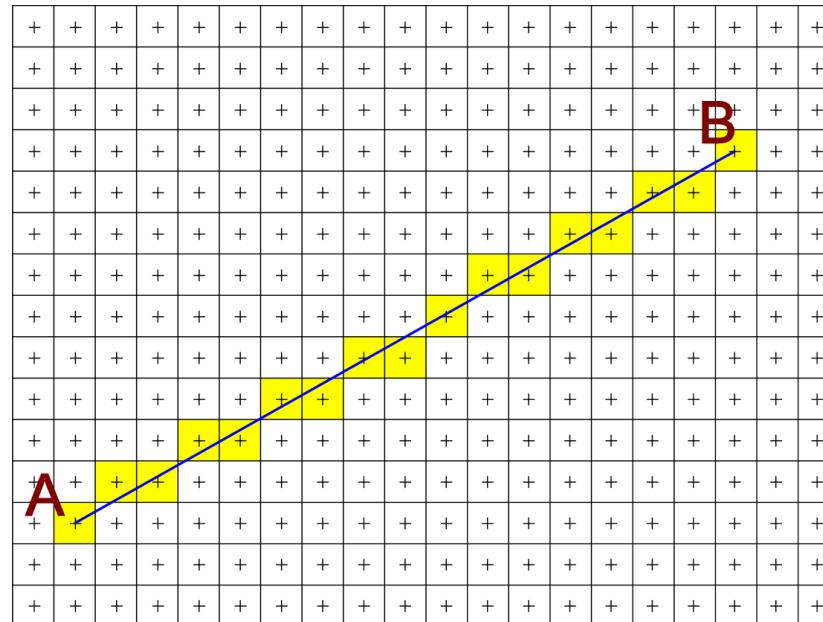
About tangent estimators

In the early 60's, the beginning of computer graphics required the first algorithms to display figures on the screen.



First requirement:
display **straight lines**
and other elementary figures.

Working for IBM, *Jack Elton Bresenham* developed an « optimized » algorithm to draw a line (1962).



Bresenham straight line from A to B.

The concept of digital line can be easily defined...

Digital lines definition:

Digital lines of \mathbb{Z}^2 are subsets of \mathbb{Z}^2 characterized by a double inequality:

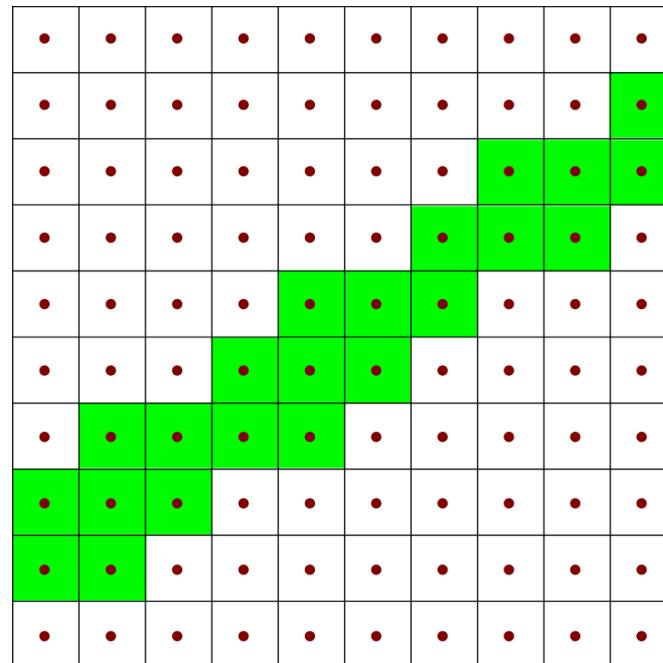
$$h \leq ax + by < h + \Delta$$

It's exactly the same for affine sub-spaces of codimension 1 (digital hyperplanes) of \mathbb{Z}^d .

Digital lines definition:

Digital lines of Z^2 are subsets of Z^2 characterized by a double inequality:

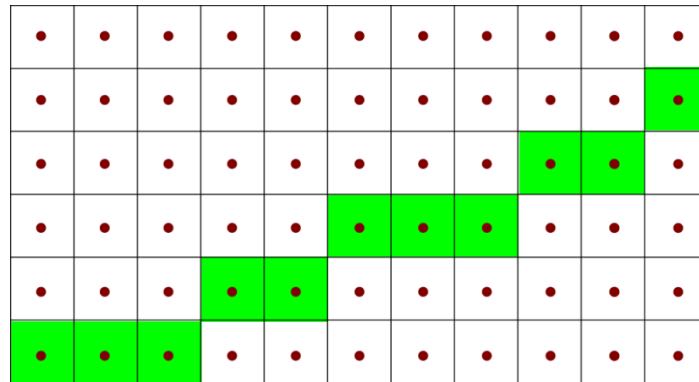
$$h \leq ax+by < h + \Delta$$



Digital lines definition:

Digital lines of \mathbb{Z}^2 are subsets of \mathbb{Z}^2 characterized by a double inequality:

$$h \leq ax+by < h + \Delta$$



A digital line is *naïve* if $\Delta = \max\{|a|, |b|\}$.

It's 8-connected.

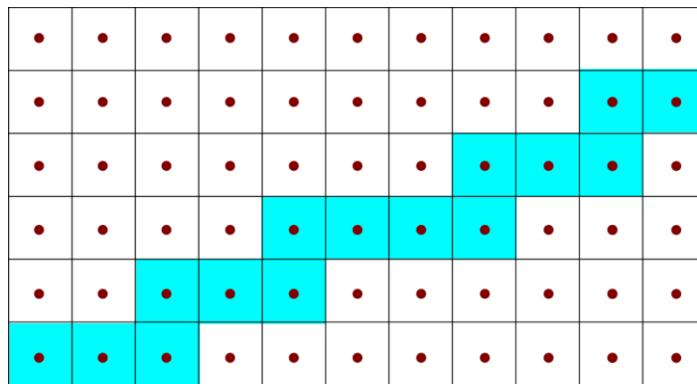
The complementary has two 4-connected components.

There is no simple point.

Digital lines definition:

Digital lines of \mathbb{Z}^2 are subsets of \mathbb{Z}^2 characterized by a double inequality:

$$h \leq ax + by < h + \Delta$$

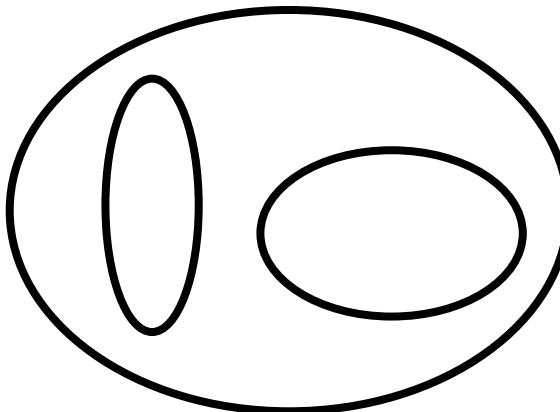


A digital line is *standard* if $\Delta = |a| + |b|$.

It's 4-connected.

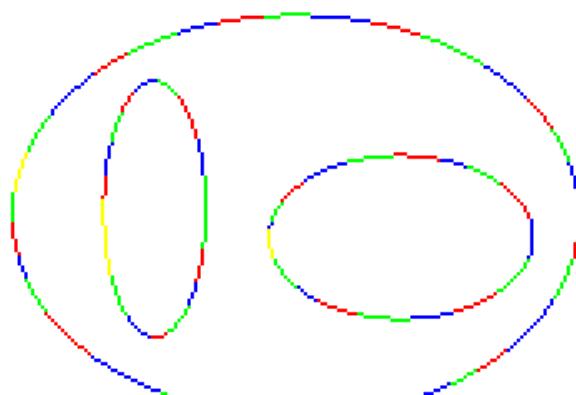
The complementary has two 8-connected components.

There is no simple point.



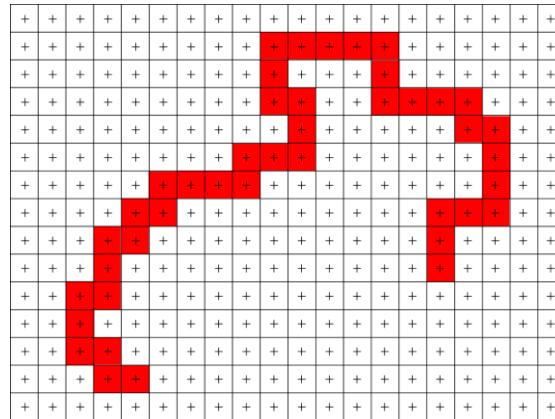
Input: A digital curve

Segmentation in pieces of
digital straight lines
(72 pieces)

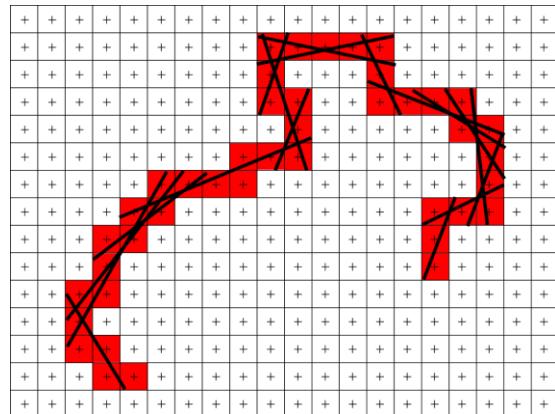


Worst case complexity:
linear time
I. Debled-Rennesson, J-P Reveilles, 2th DGCI, 1992.

Output: Its decomposition in Digital Straight Segments



Input: A digital curve

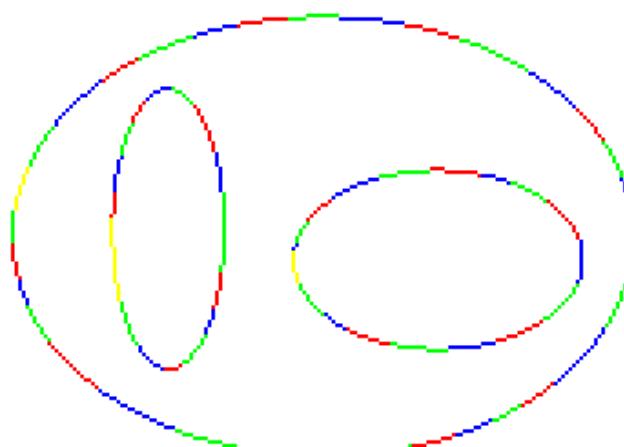


Worst Case Complexity:

Linear Time

J-O Lachaud, A. Vialard, F. De Vieilleville, DGCI 2005.

Output: Its Tangential Cover

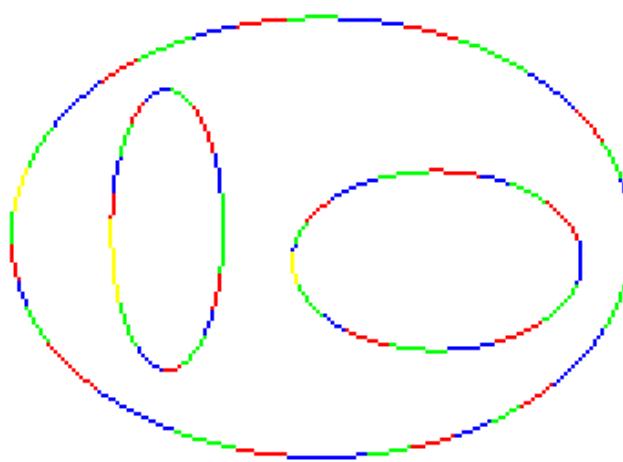


Interest Maximal Digital Straight Segments around a point x provide tangent direction at x .

Average convergence rate
 $O(h^{2/3})$
In J-O Lachaud, 2006

Locally convex shapes

Good news:
it's multigrid convergent
(under some assumptions)
J. Lachaud, A. Vialard, F. De Vieilleville, DGCI 2005.

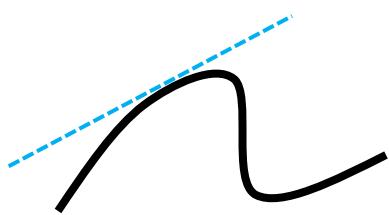
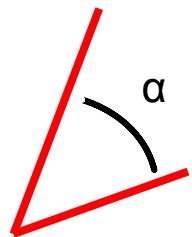


Interest: Maximal Digital Straight Segments around a point x provide the *tangent direction* at x .

There exist other ways to provide multigrid convergent tangent estimators...

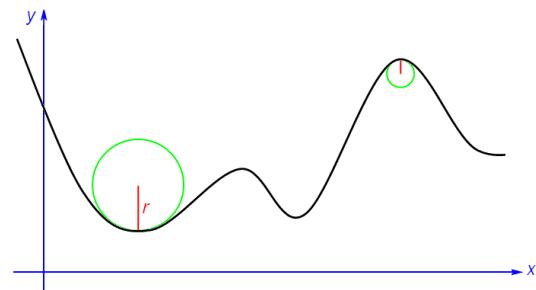
Why this interest for computing the tangent or normal direction ?

To provide measurements...

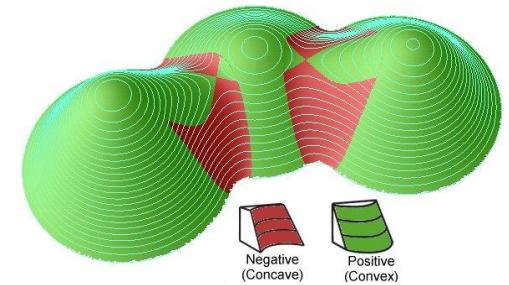


Tangent
and
normal
directions

Angles



Curvatures of curves and surfaces

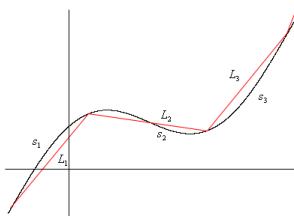
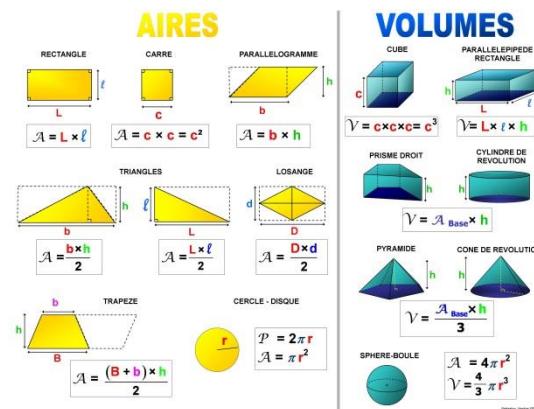


Negative
(Concave)

Positive
(Convex)

Why this interest for computing the tangent or normal direction ?

To provide measurements...

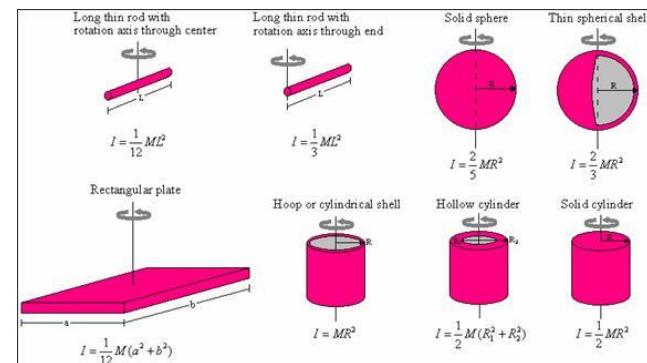


Length, areas, volumes

$$\text{Length} = \int 1 \, ds$$

$$\text{Area} = \iint 1 \, dS$$

$$\text{Volume} = \iiint 1 \, dV$$



Sums
(barycenter coordinates, moment...)

$$\text{Sum} = \int f(x) \, ds$$

$$\text{Sum} = \iint f(x) \, dS$$

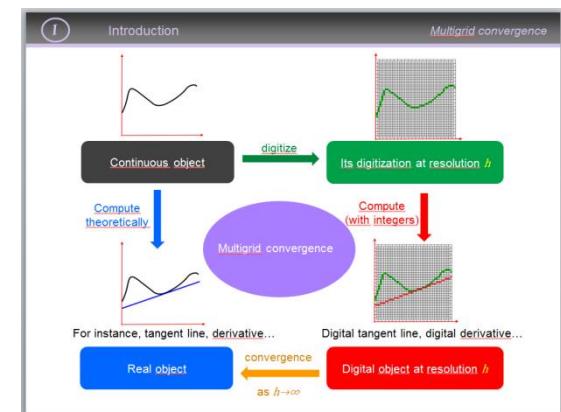
$$\text{Sum} = \iiint f(x) \, dV$$

Why this interest for computing the tangent or normal direction ?

To provide measurements...

Preserve the relations
between measurements
(turning Number Theorem,
Gauss-Bonnet...)

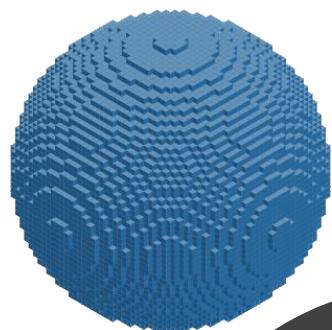
Don't forget
Multigrid convergence...



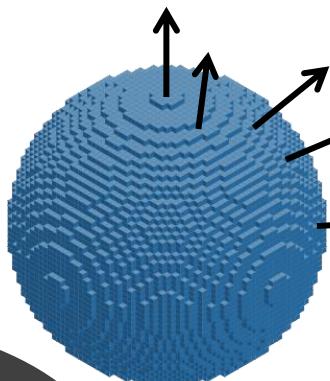
Review for 2D in Book chapter « *Multigrid convergent Discrete estimators* »
from *D. Coeurjolly, J-O Lachaud and T. Roussillon*.

Why this interest for computing the tangent or normal direction ?

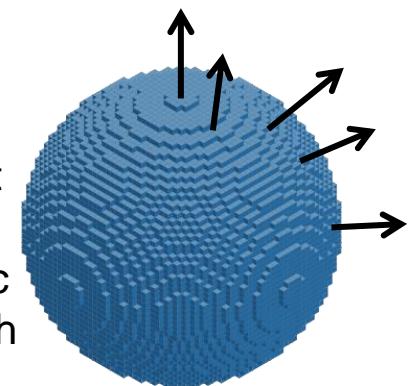
To provide measurements...



Compute the
normal field



Weight the
measurement
with the metric
associated with
the normal



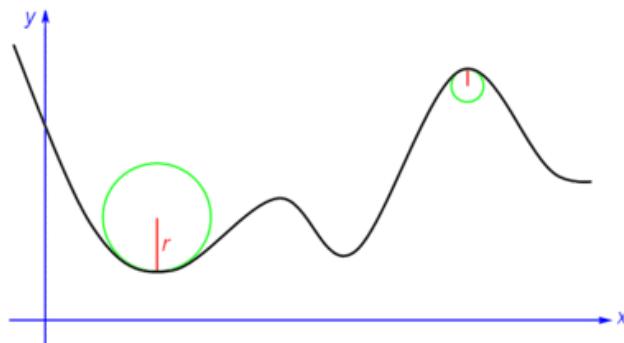
Use a multigrid convergent
computation of normals...

It can guarantee the
Multigrid convergence of
the measurement.

Everything is cool, but...
Can we do better than using digital straight segments ?

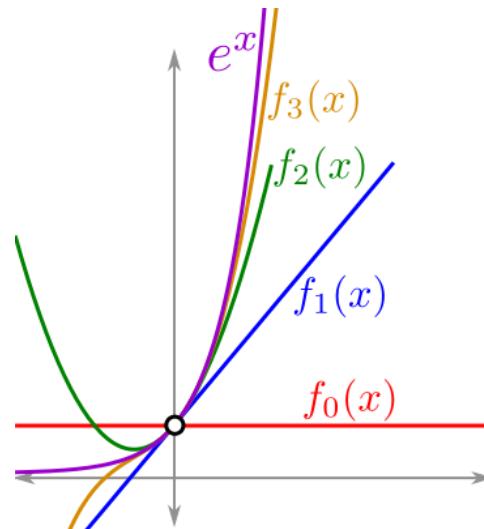
Not only for tangent estimation, but also for **conversion from raster to vector graphics**.

Use digital primitives of higher degree .



Curvature is defined with
osculating circles

Use digital circles



An analytical function is approximated by
its *Taylor Polynomial* of degree n.

Use a more generic approach

Use digital primitives of higher degree .

Use a more generic approach

Plan

Introduction

About tangent estimators

Digital Level Layers

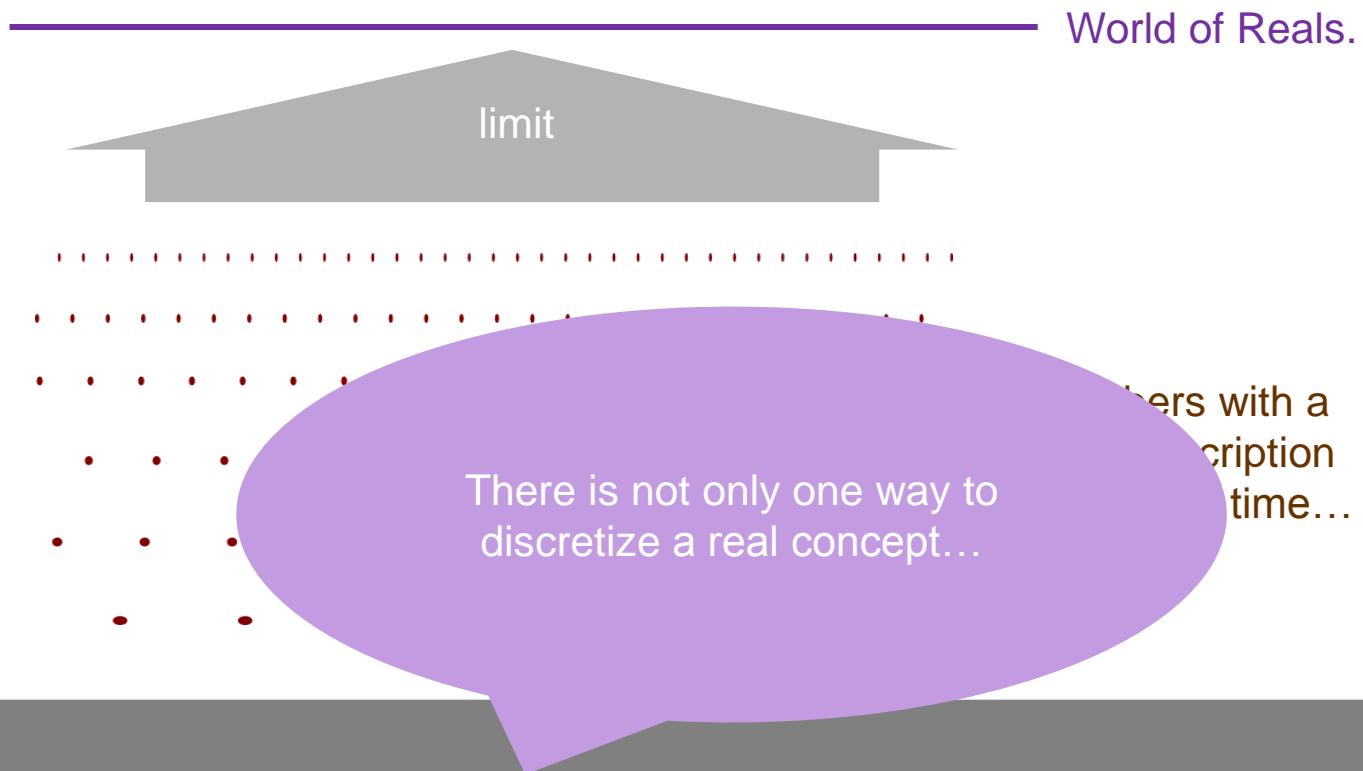
DLL decomposition

Algorithm

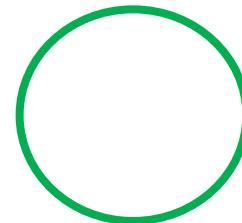
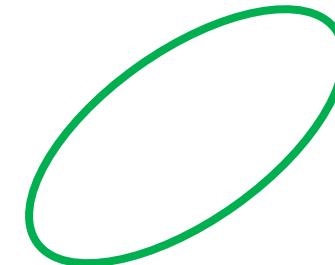
III

Digital Level Layers

Usual geometry is based on real numbers, which by paradox are "unreal".



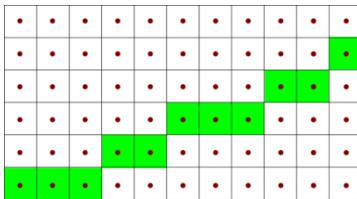
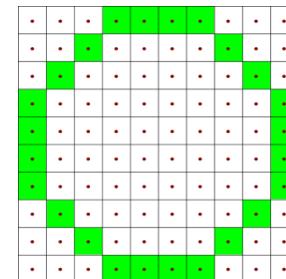
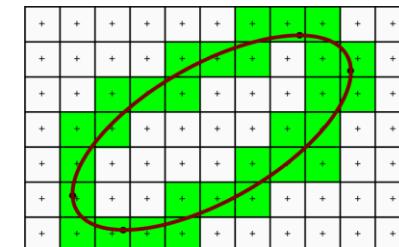
Different discrete **objects** or **concepts** have the same **limit** ...



Continuous figures.

Three approaches can be used to define digital primitives:

- topological
- morphological
- analytical



Digital figures.

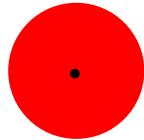
+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+

Task: define a digital primitive for S.

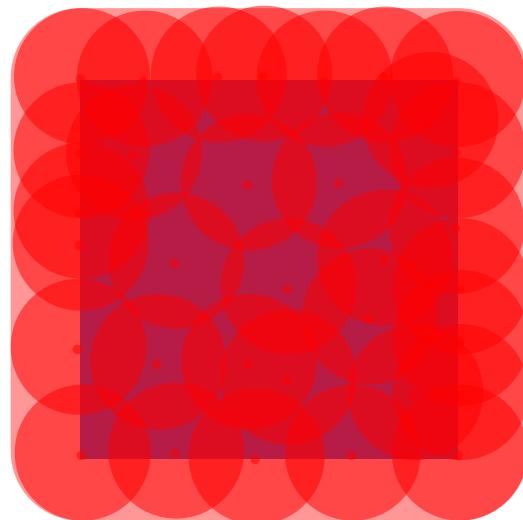
Task: define a digital primitive for S.

The *Minkowski's sum* $S+B$ is the set of points covered by the structuring elements as it moves all along the shape.

A shape S

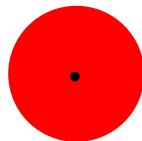


A structuring element B

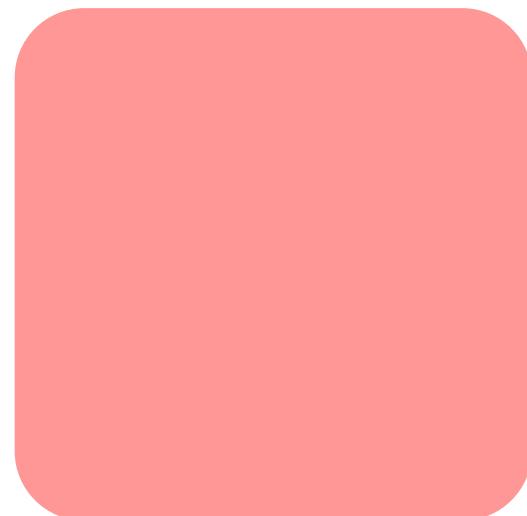


The *Minkowski's sum* $S+B$ is the set of points covered by the structuring elements as it moves all along the shape.

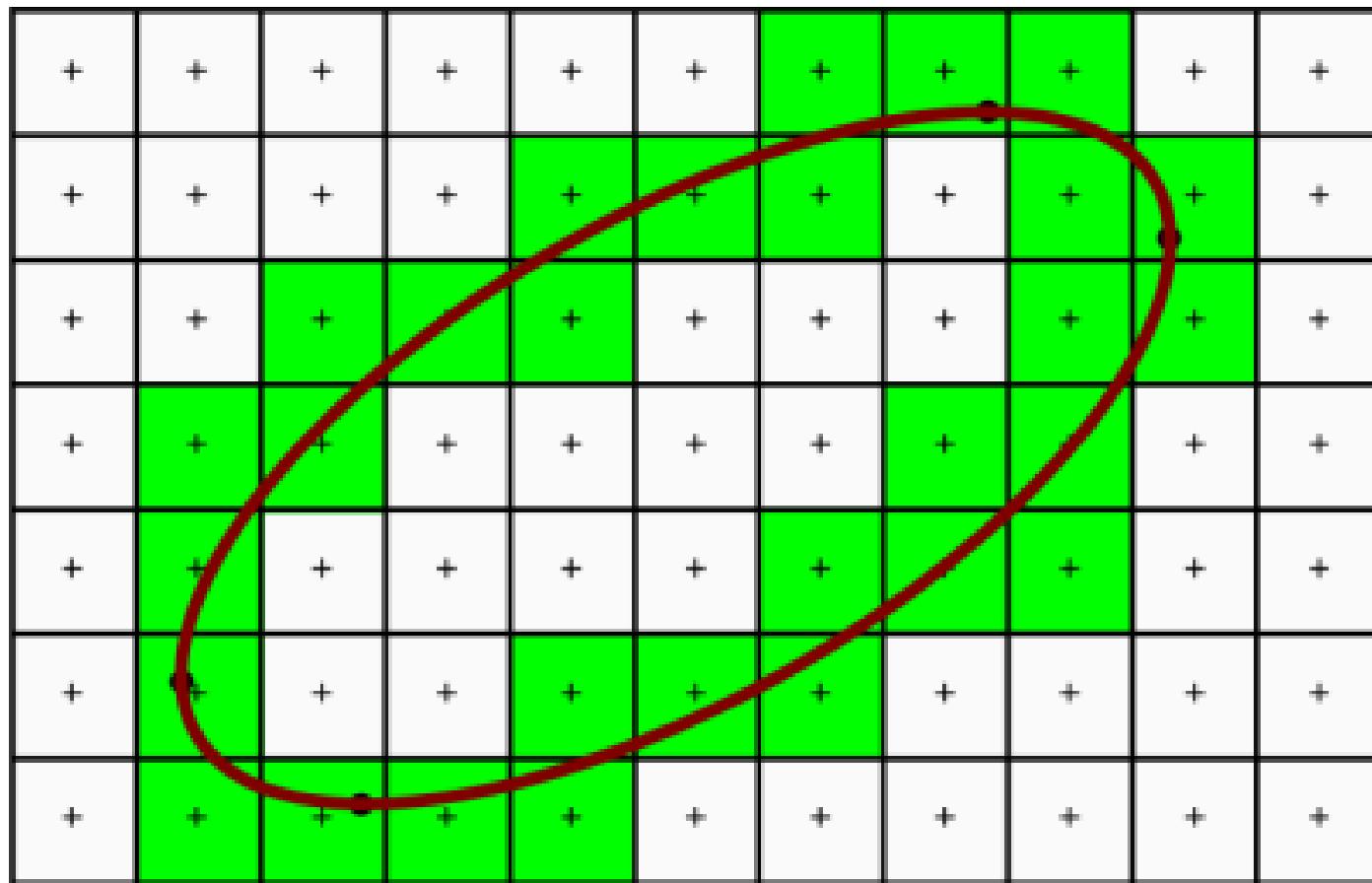
A shape S



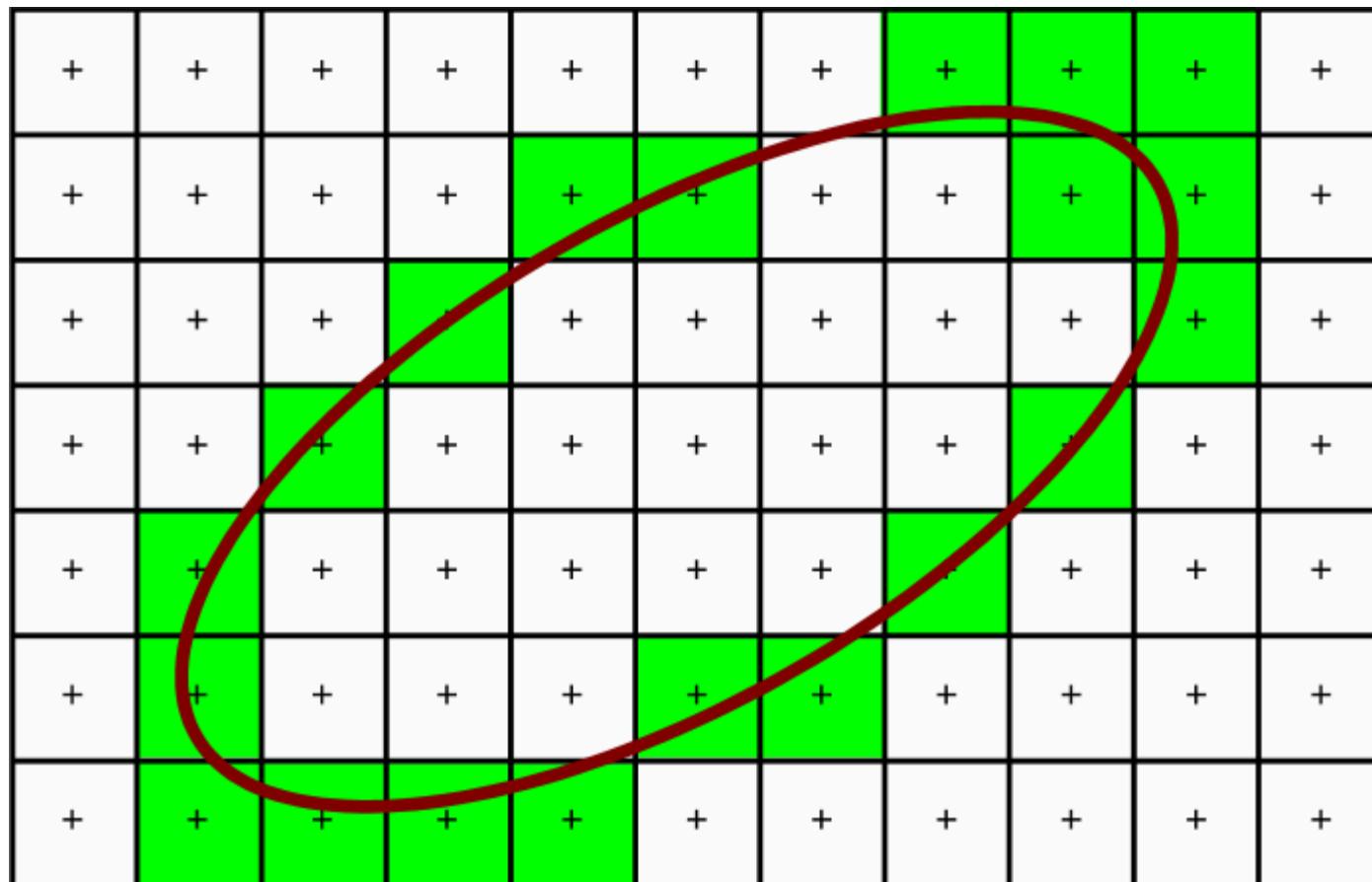
A structuring element B



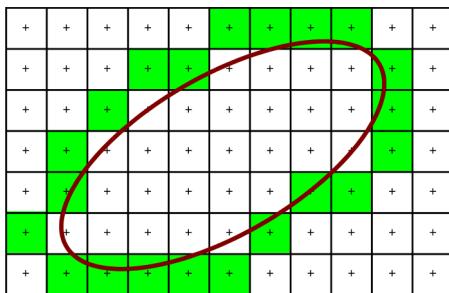
The dilation of S by B



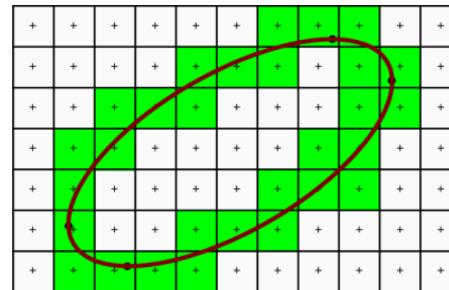
Structuring element



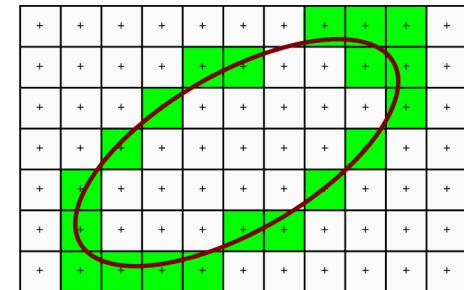
We relax the equality $f(x)=h$ in a double inequality $h-\Delta/2 \leq f(x) < h + \Delta/2$.



Topological approach.



Morphological approach.

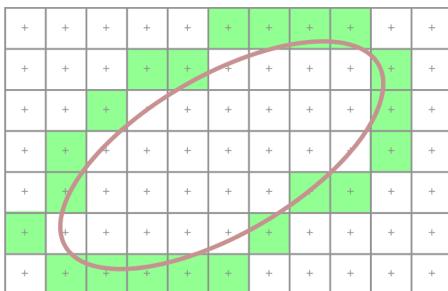


Analytical approach.

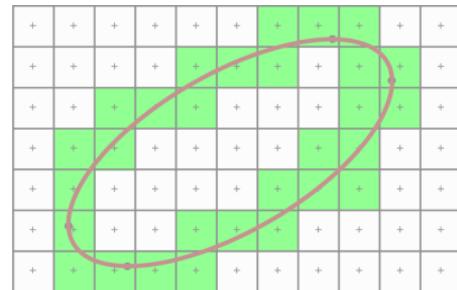
The 3 definitions collapse for lines in \mathbb{Z}^2 , planes in \mathbb{Z}^3 ... hyperplanes in \mathbb{Z}^d
(affine sub-spaces of codimension 1)

Each approach has its own parameters but there is a correspondance.

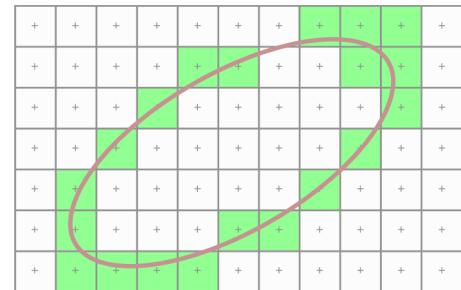
Topology	Morphology	Algebra
Neighborhood	Structuring element	value Δ
$Ball\ N_\infty$	$Ball\ N_1$	$\Delta = N_\infty (a)$
$Ball\ N_1$	$Ball\ N_\infty$	$\Delta = N_1 (a)$



Topological approach.



Morphological approach.

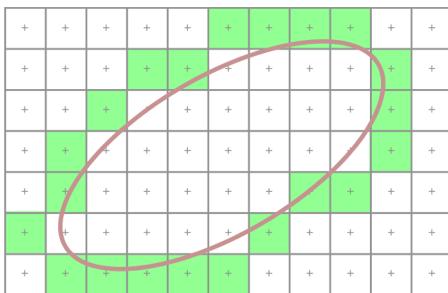


Analytical approach.

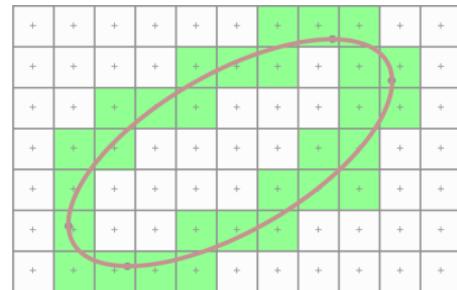
The 3 definitions **collapse** for lines in \mathbb{Z}^2 , planes in \mathbb{Z}^3 ... hyperplanes in \mathbb{Z}^d
(affine sub-spaces of codimension 1)

Each approach has its own parameters but there is a correspondance.

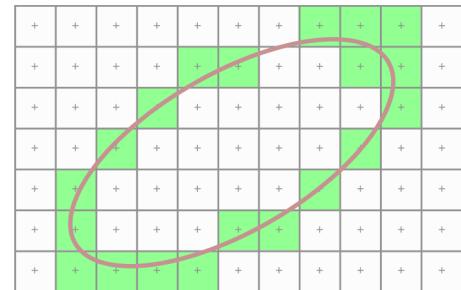
Topology	Naïve class.	Morphology	Algebra
Neighborhood		Structuring element	value Δ
$Ball\ N_\infty$		$Ball\ N_1$	$\Delta = N_\infty (a)$
$Ball\ N_1$		$Ball\ N_\infty$	$\Delta = N_1 (a)$



Topological approach.



Morphological approach.



Analytical approach.

The 3 definitions collapse for lines in \mathbb{Z}^2 , planes in \mathbb{Z}^3 ... hyperplanes in \mathbb{Z}^d
(affine sub-spaces of codimension 1)

Each approach has its own parameters but there is a correspondence.

Topology	Morphology	Algebra
Neighborhood	Structuring element	value Δ
$Ball\ N_\infty$	$Ball\ N_1$	$\Delta = N_\infty (a)$
$Ball\ N_1$	$Ball\ N_\infty$	$\Delta = N_1 (a)$

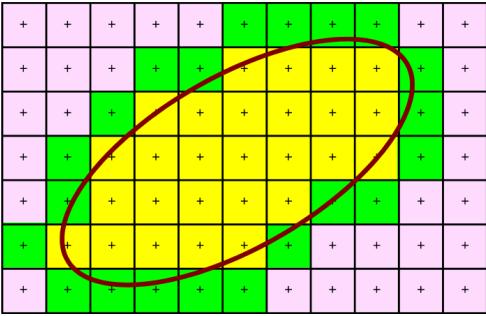
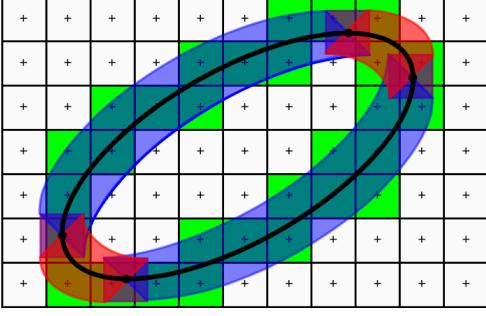
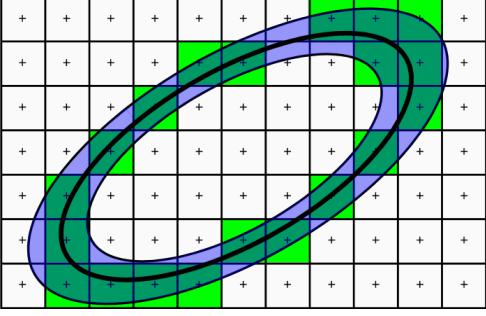
The 3 definitions collapse for lines in \mathbb{Z}^2 , planes in \mathbb{Z}^3 ... hyperplanes in \mathbb{Z}^d
(affine sub-spaces of codimension 1)



They don't collapse for arbitrary shapes.

	Topology	Morphology	Analysis
Properties			
Topology			
Morphology			
Algebraic characterization			
Recognition algorithm			

Advantages and drawbacks?

		Topology	Morphology	Analysis
		Properties		
Properties	Topology			
Topology				
Morphology				
Algebraic characterization				
Recognition algorithm				

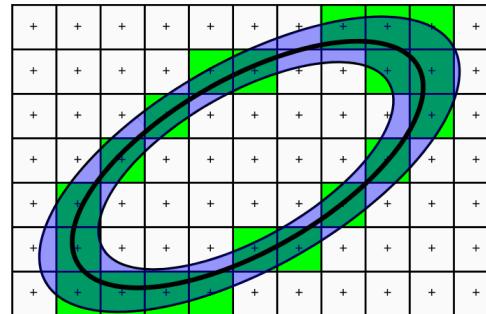
Analysis



Topology

Morphology

Analysis



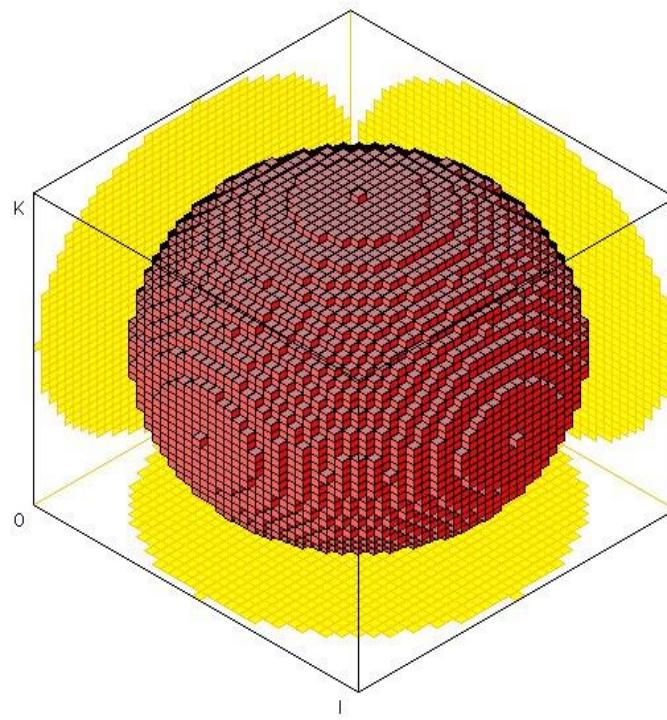
Topology

Morphology

Digital Level Layer definition:

A *Digital Level Layer* (name coming from *Level sets*) is a subset of \mathbb{Z}^d characterized by a double inequality:

$$h \leq f(x) < h'$$

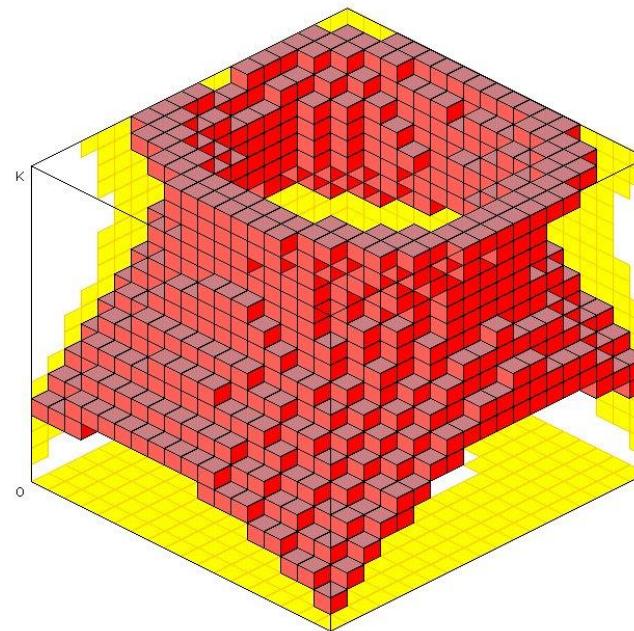


Digital Level Layer (DLL for short)

Digital Level Layer definition:

A *Digital Level Layer* (name coming from *Level sets*) is a subset of \mathbb{Z}^d characterized by a double inequality:

$$h \leq f(x) < h'$$



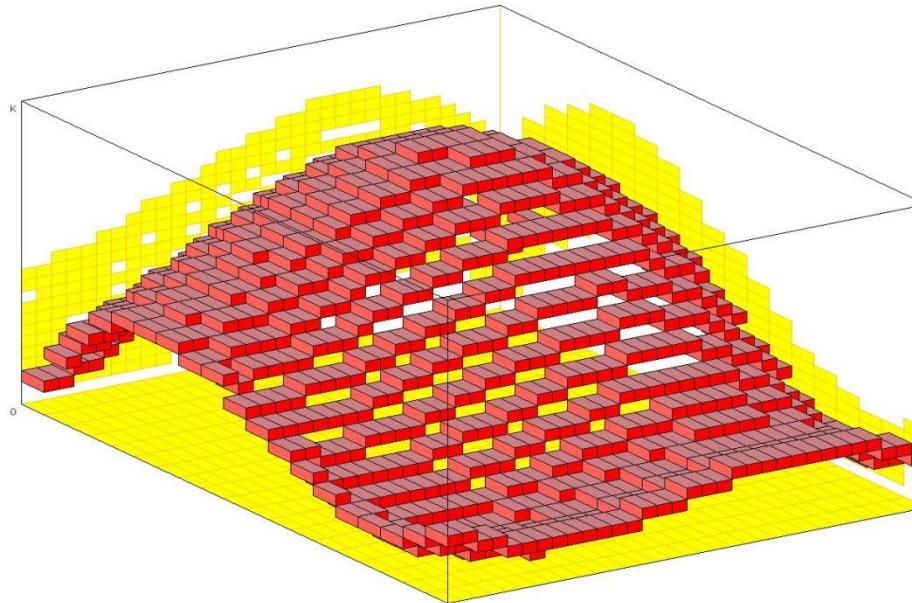
Digital Level Layer (DLL for short)

Digital Level Layer definition:

A *Digital Level Layer* (name coming from *Level sets*) is a subset of \mathbb{Z}^d characterized by a double inequality:

$$h \leq f(x) < h'$$

The advantage of DLL is that they are described by double-inequalities:
They can be used in *Vector Graphics* (for zooming or any transformation).



Digital Level Layer (DLL for short)

Digital Level Layer definition:

A *Digital Level Layer* (name coming from *Level sets*) is a subset of \mathbb{Z}^d characterized by a double inequality:

$$h \leq f(x) < h'$$

Digital Level Layers
generalize
Digital Straight Lines.

What about Tangent
estimations and
multigrid convergence?

Digital Level Layer definition:

A *Digital Level Layer* (name coming from *Level sets*) is a subset of \mathbb{Z}^d characterized by a double inequality:

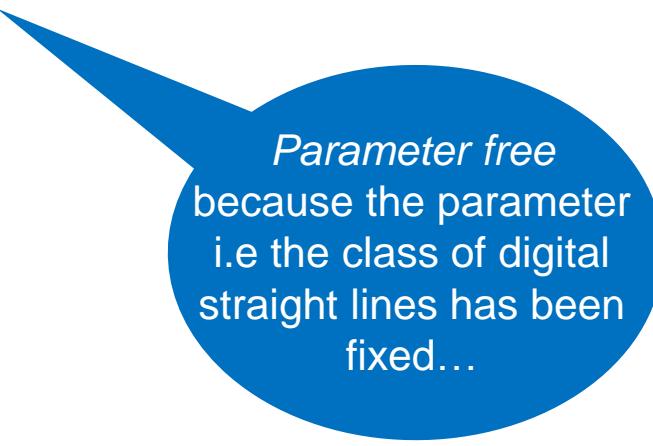
$$h \leq f(x) < h'$$

Review of multigrid convergent estimators developed in Digital Geometry.

Method	Authors	Assumption on the continuous curve	Order of derivative	Worst case Error bound
Maximal DSS with <i>thickness</i> =1	A. Vialard, J-O Lachaud, F De Vieilleville	Locally convex, C^3	$k=1$	$O(h^{1/3})$
Convolutions	S. Fourey, F. Brunet, A. Esbelin, B. R. Malgouyres	C^3 or C^2	Any k	$O(h^{(2/3)^k})$
Maximal DLL with <i>thickness</i> >1	L. Provot, Y. Gerard	C^{k+1}	Any k	$O(h^{1/(k+1)})$

Review of multigrid convergent estimators developed in Digital Geometry.

Maximal DSS with <i>thickness=1</i>	A. Vialard, J-O Lachaud, F De Vieilleville	Locally convex, C^3	$k=1$	$O(h^{1/3})$
---	--	--------------------------	-------	--------------



Parameter free
because the parameter
i.e the class of digital
straight lines has been
fixed...

Review of multigrid convergent estimators developed in Digital Geometry.

All approaches are able to deal with noisy shapes (using their parameters).

Maximal DSS with <i>thickness</i> =1	A. Vialard, J-O Lachaud, F De Vieilleville	Locally convex, C^3	$k=1$	$O(h^{1/3})$
Convolutions	S. Fourey, F. Brunet, A. Esbelin, B. R. Malgouyres	C^3 or C^2	Any k	$O(h^{(2/3)^k})$
Maximal DLL with <i>thickness</i> >1	L. Provot, Y. Gerard	C^{k+1}	Any k	$O(h^{1/(k+1)})$

Review of multigrid convergent estimators developed in Digital Geometry.

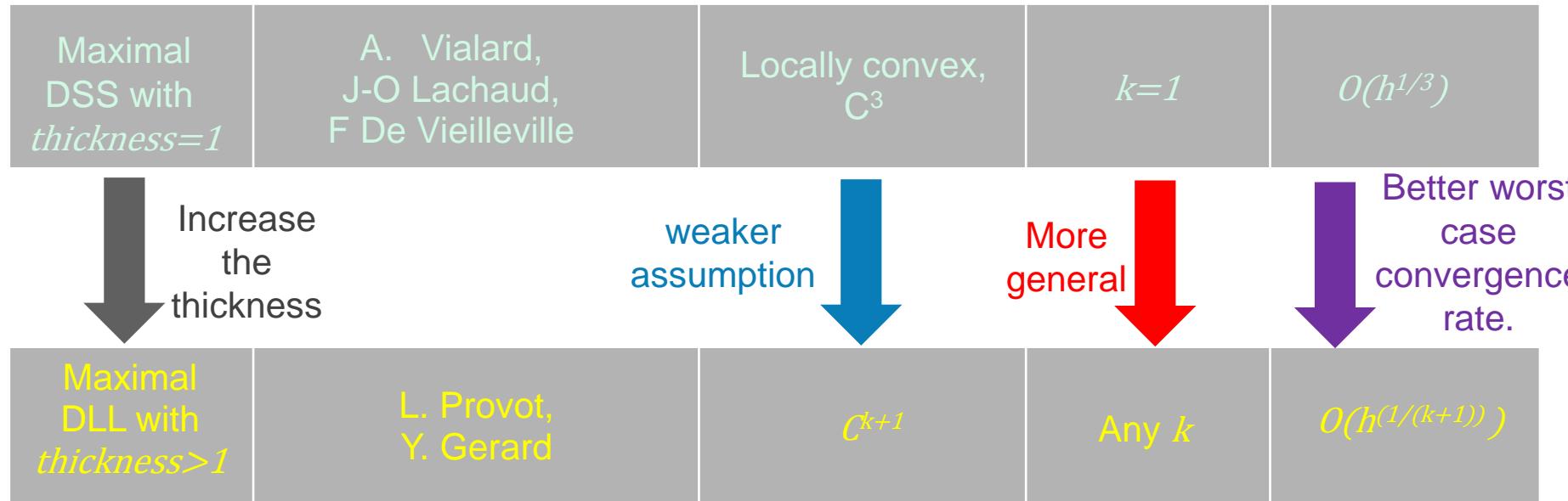
Can be applied on contours of a shape,
not only the graph of a function...

Maximal DSS with <i>thickness</i> =1	A. Vialard, J-O Lachaud, F De Vieilleville	Locally convex, C^3	$k=1$	$O(h^{1/3})$
--------------------------------------	--	--------------------------	-------	--------------

Maximal DLL with <i>thickness</i> >1	L. Provot, Y. Gerard	C^{k+1}	Any k	$O(h^{1/(k+1)})$
--------------------------------------	-------------------------	-----------	---------	------------------

Applied on a digital function
 $f:Z \rightarrow Z$

Review of multigrid convergent estimators developed in Digital Geometry.



Maximal DLL with *thickness*=1

There is the convergence result for $k=1$.
There should exist extensions for $k>1$ under some conditions...

Review of multigrid convergent estimators developed in Digital Geometry.

Iterative version with deleting and points insertion for computing the derivative along a curve.
It remains linear.

Computation in worst case linear time for a single DLL.

Maximal DSS with <i>thickness</i> =1	A. Vialard, J-O Lachaud, F De Vieilleville	Locally convex, C^3	$k=1$	$O(h^{1/3})$
--------------------------------------	--	--------------------------	-------	--------------

Maximal DLL with <i>thickness</i> >1	L. Provot, Y. Gerard	C^{k+1}	Any k	$O(h^{1/(k+1)})$
--------------------------------------	-------------------------	-----------	---------	------------------

Computation in $O(n^{2(k+1)})$ in theory but close to linear time in practice for a single DLL.

No iterative version with deleting and points insertion for computing the derivative along a curve. It becomes quadratic.

Review of multigrid convergent estimators developed in Digital Geometry.

More restrictive and less accurate but faster...

Maximal DSS with <i>thickness</i> =1	A. Vialard, J-O Lachaud, F De Vieilleville	Locally convex, C^3	$k=1$	$O(h^{1/3})$
--------------------------------------	--	--------------------------	-------	--------------

Maximal DLL with <i>thickness</i> >1	L. Provot, Y. Gerard	C^{k+1}	Any k	$O(h^{1/(k+1)})$
--------------------------------------	-------------------------	-----------	---------	------------------

Review of multigrid convergent estimators developped in Digital Geometry.

Maximal
DLL with
thickness > 1

L. Provot,
Y. Gerard

C^{k+1}

Any k

$O(h^{1/(k+1)})$

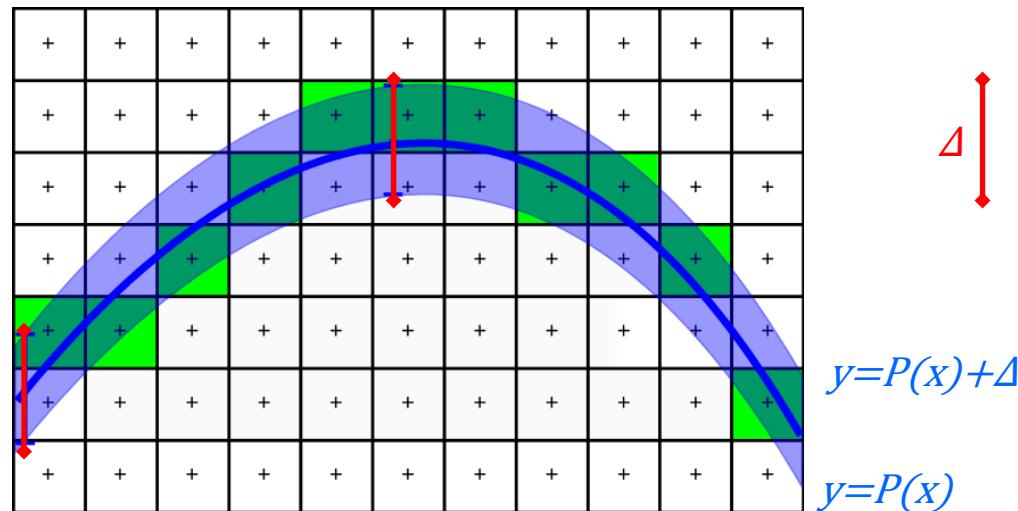
How does it work ?

We use DLL with double inequality:

$$P(x) \leq y < P(x) + \Delta$$

with a fixed $\Delta > 1$ and a chosen maximal degree k for $P(x)$.

If we choose a high Δ , it allows more noise, but becomes less precise.



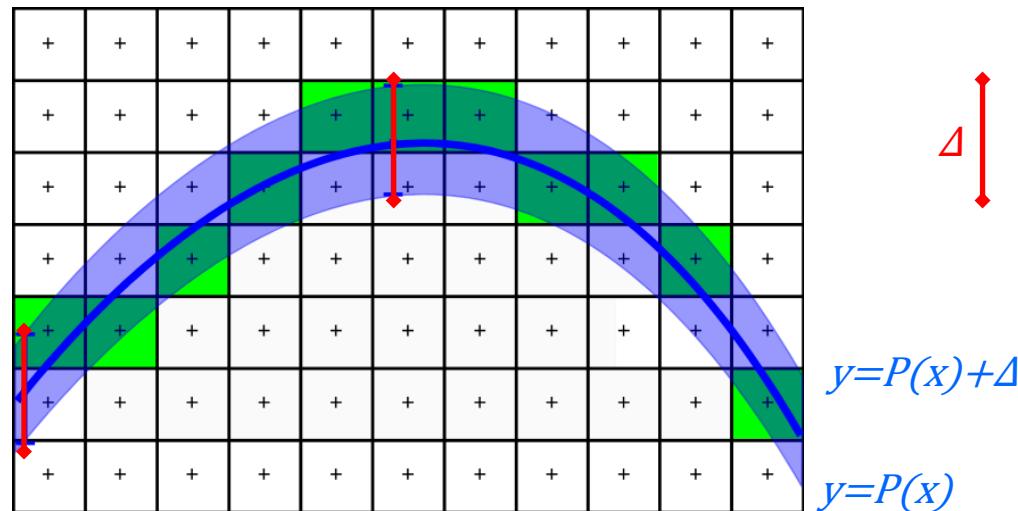
How does it work ?

We use DLL with double inequality:

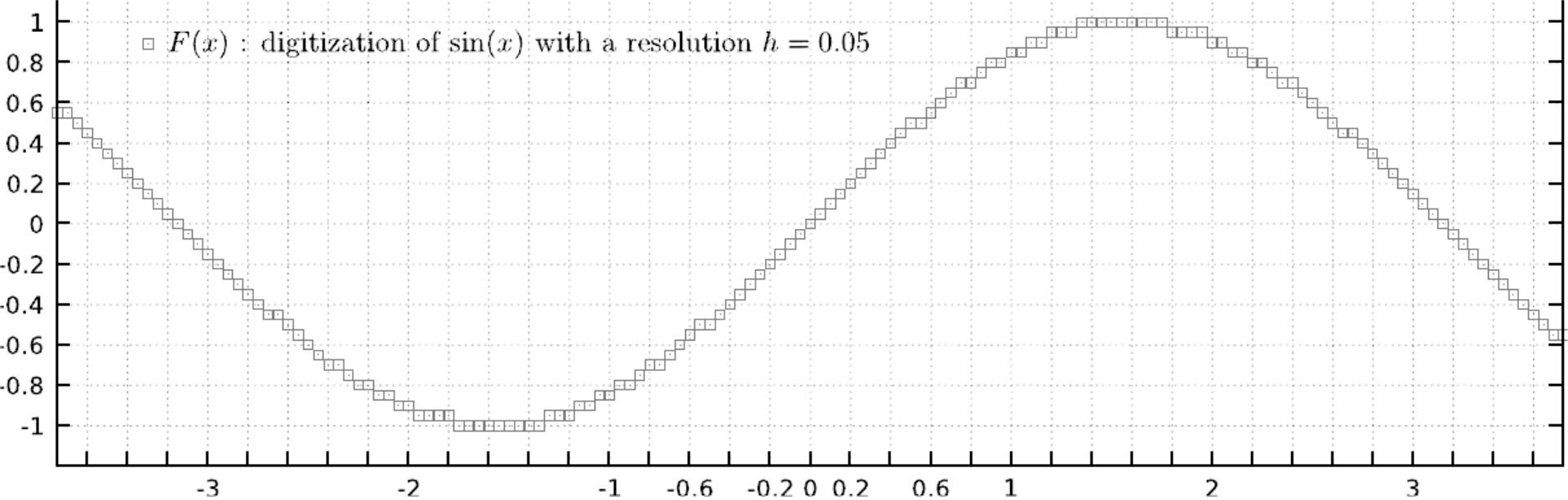
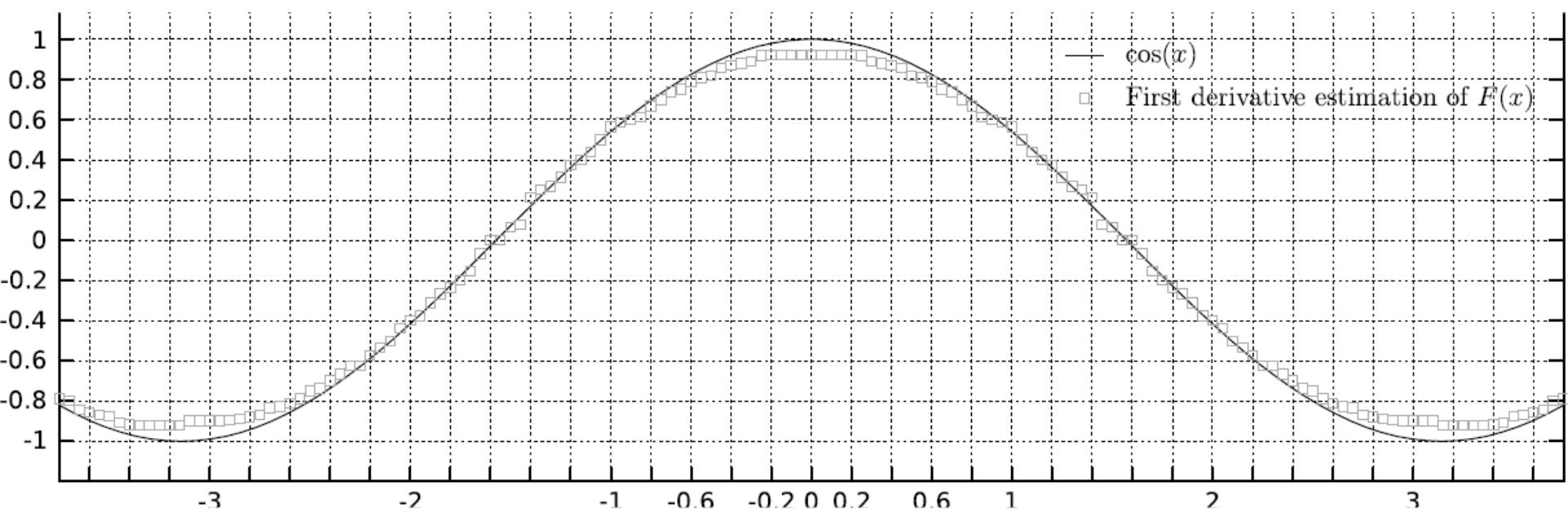
$$P(x) \leq y < P(x) + \Delta$$

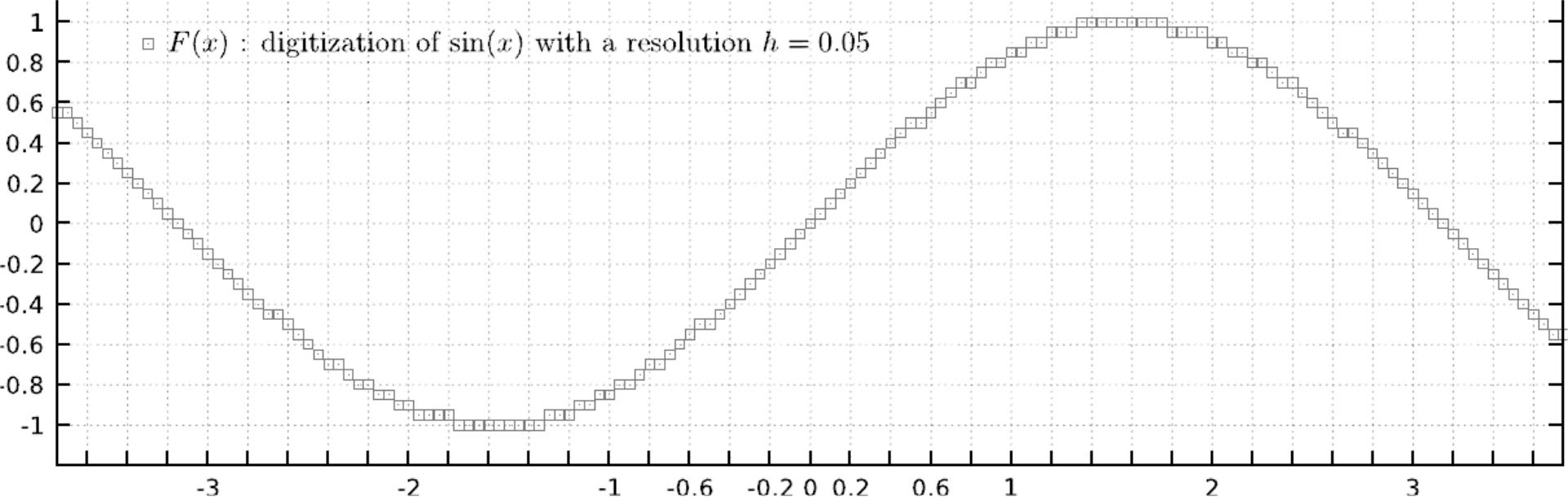
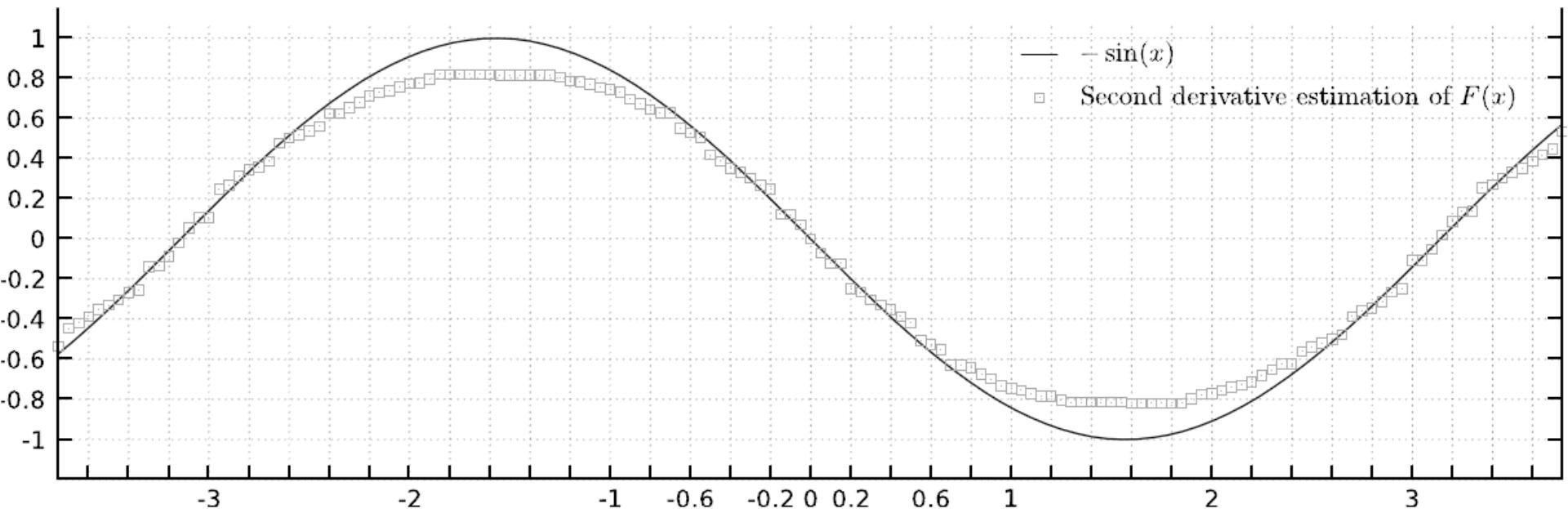
with a fixed $\Delta > 1$ and a chosen maximal degree k for $P(x)$.

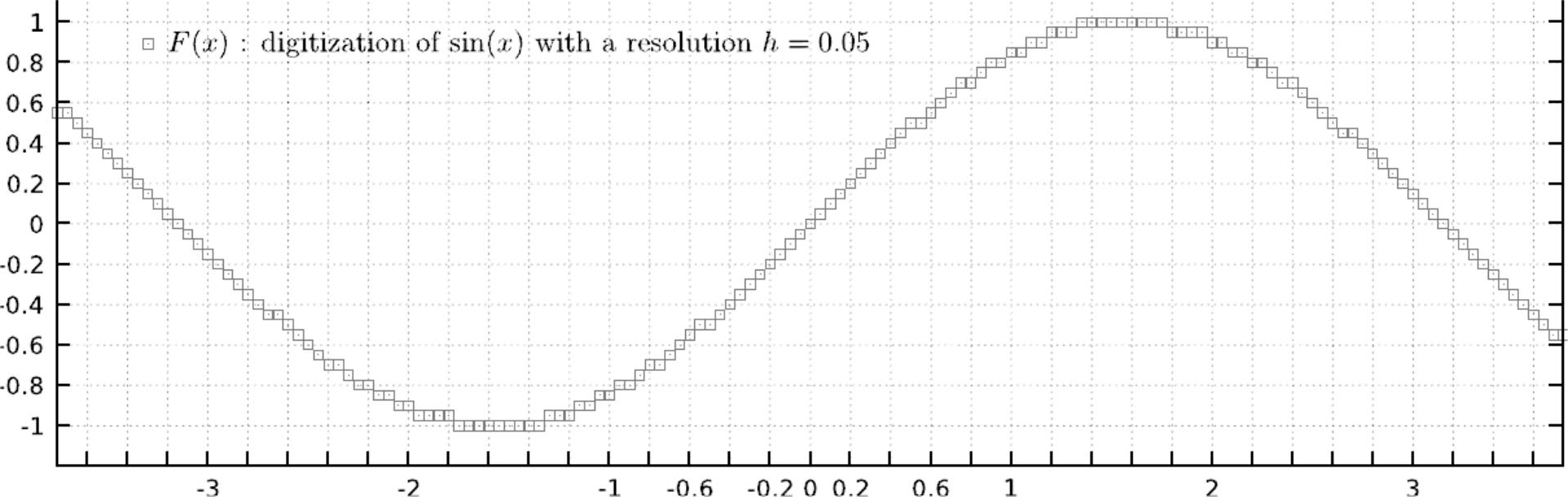
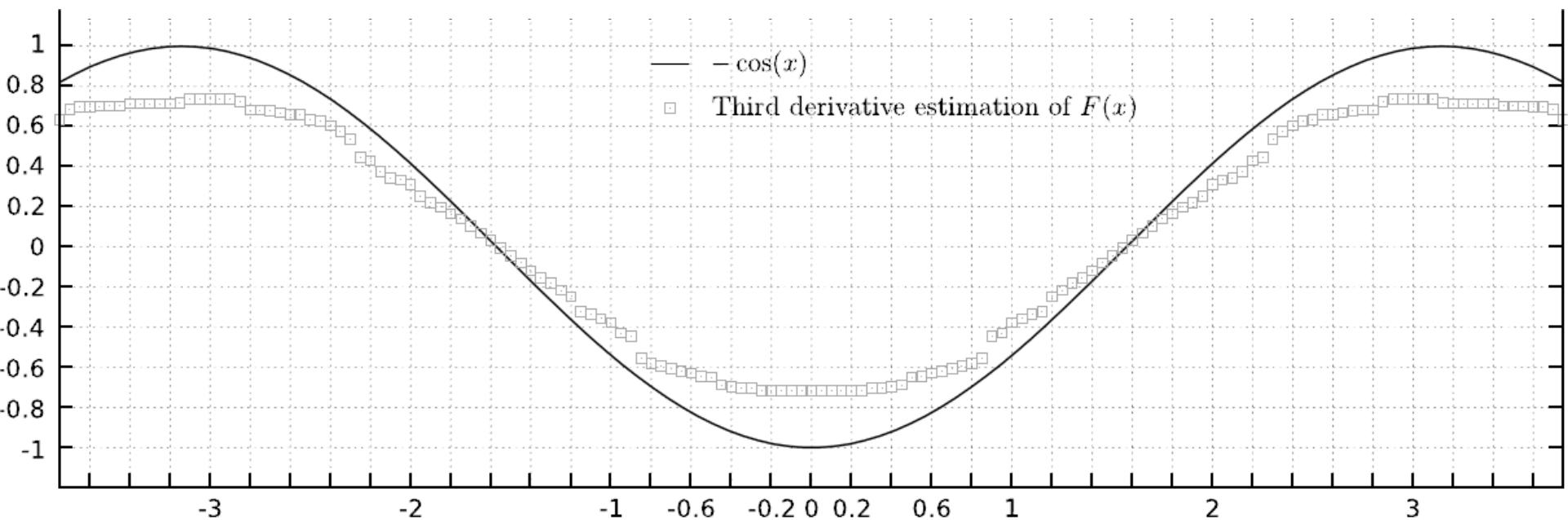
If we choose a high Δ , it allows more noise, but becomes less precise.

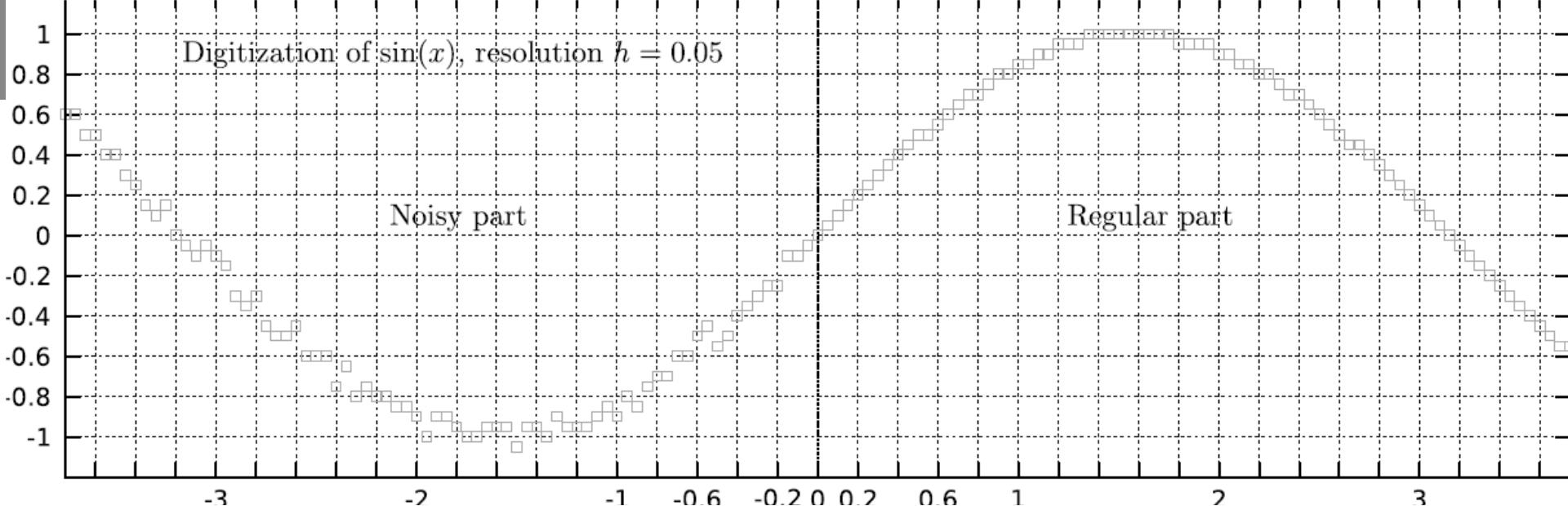
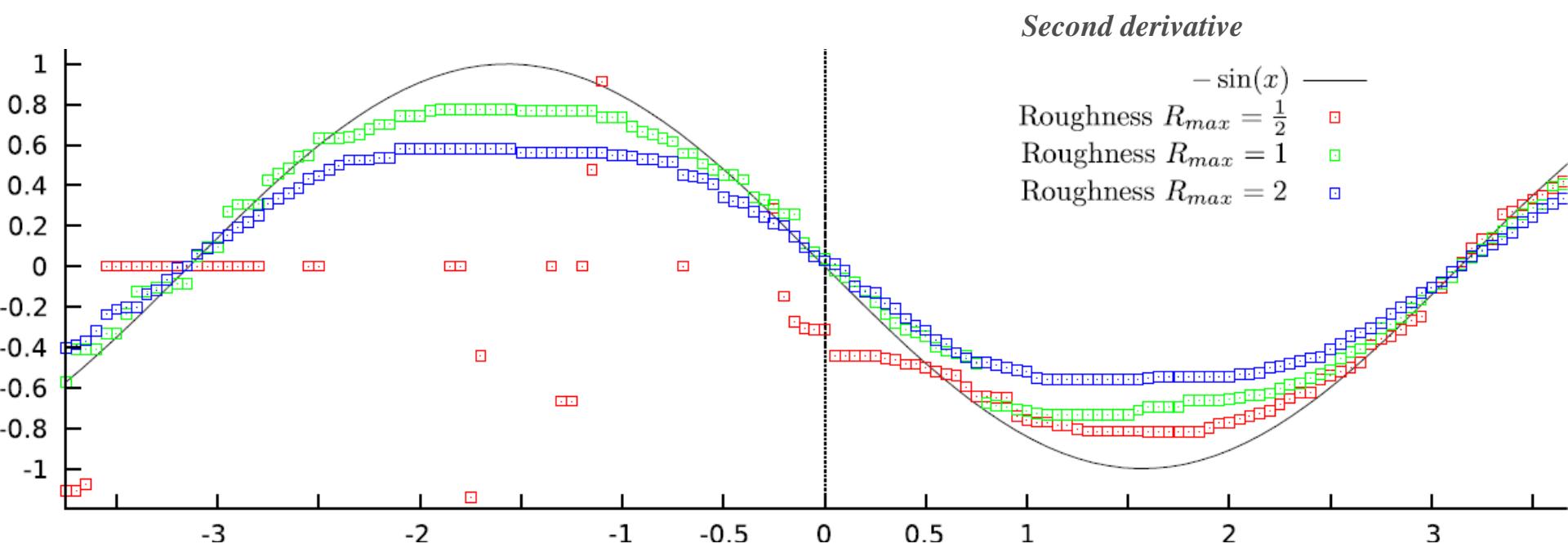


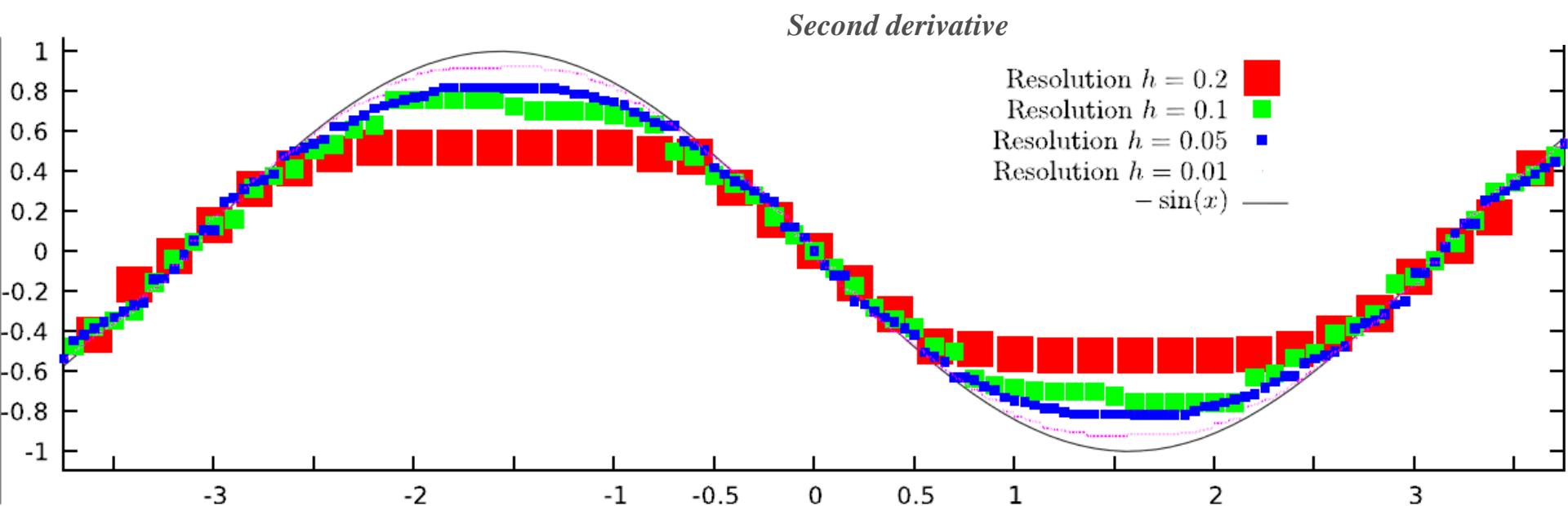
$P(x)$ provides directly the derivative of order k .











Plan

I

Introduction

II

About tangent estimators

III

Digital Level Layers

IV

DLL decomposition

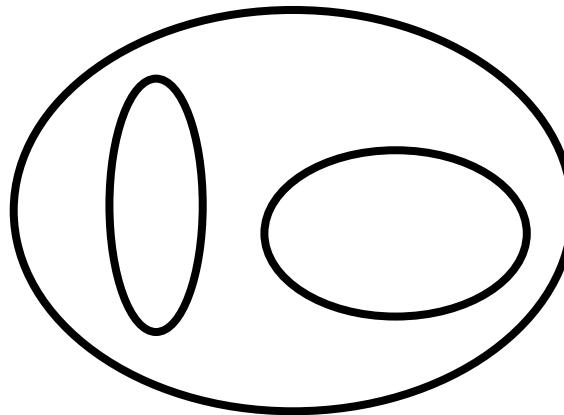
V

Algorithm

Plan

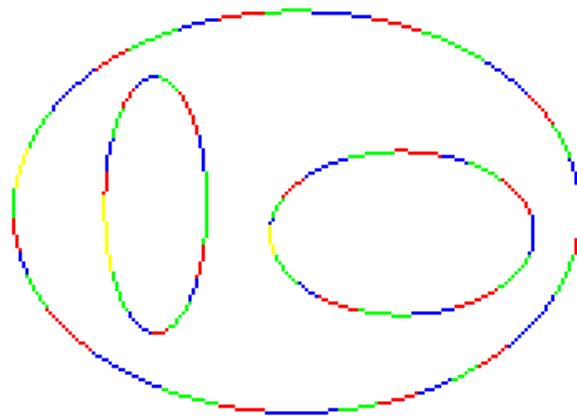
IV

DLL decomposition



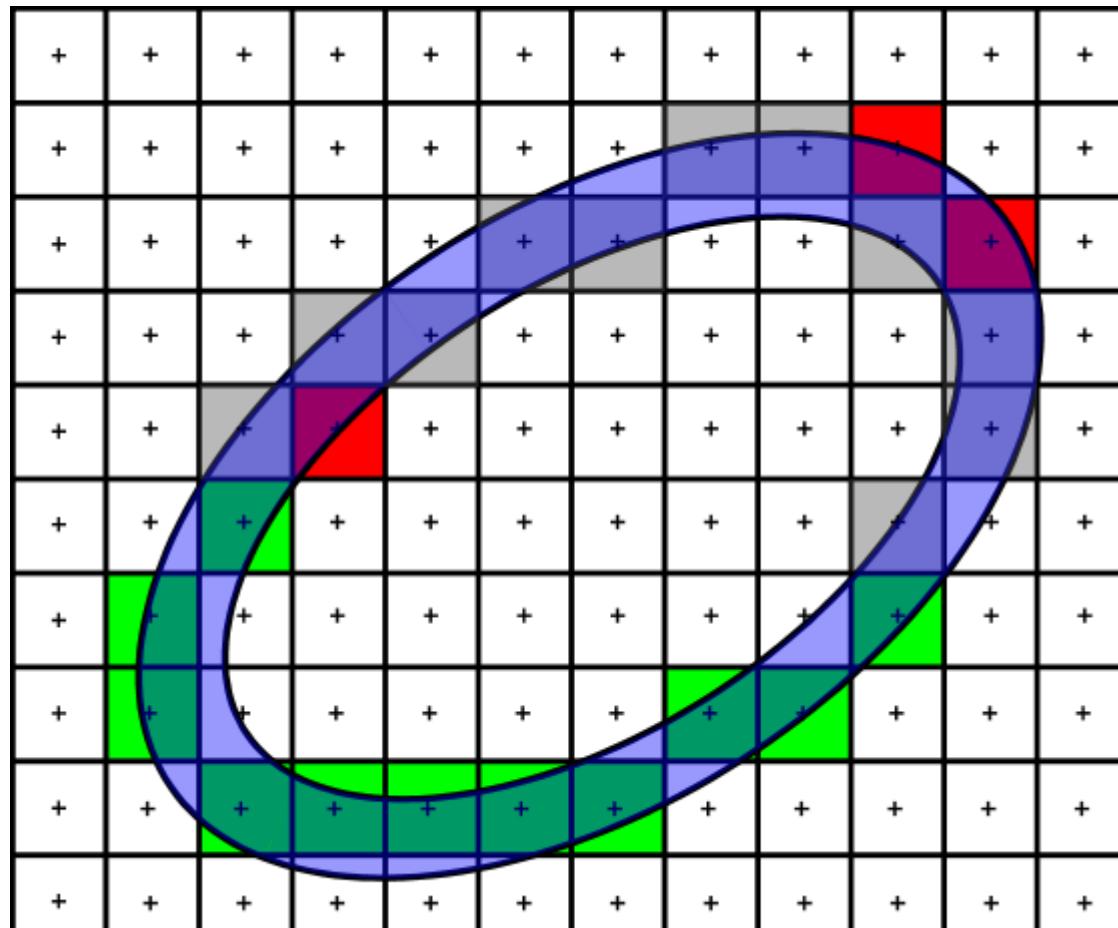
Input: A digital curve

Segmentation in pieces of
digital straight lines
(72 pieces)



Output: Its decomposition in Digital Straigh Segments

Principle :



Input: Lattice set S

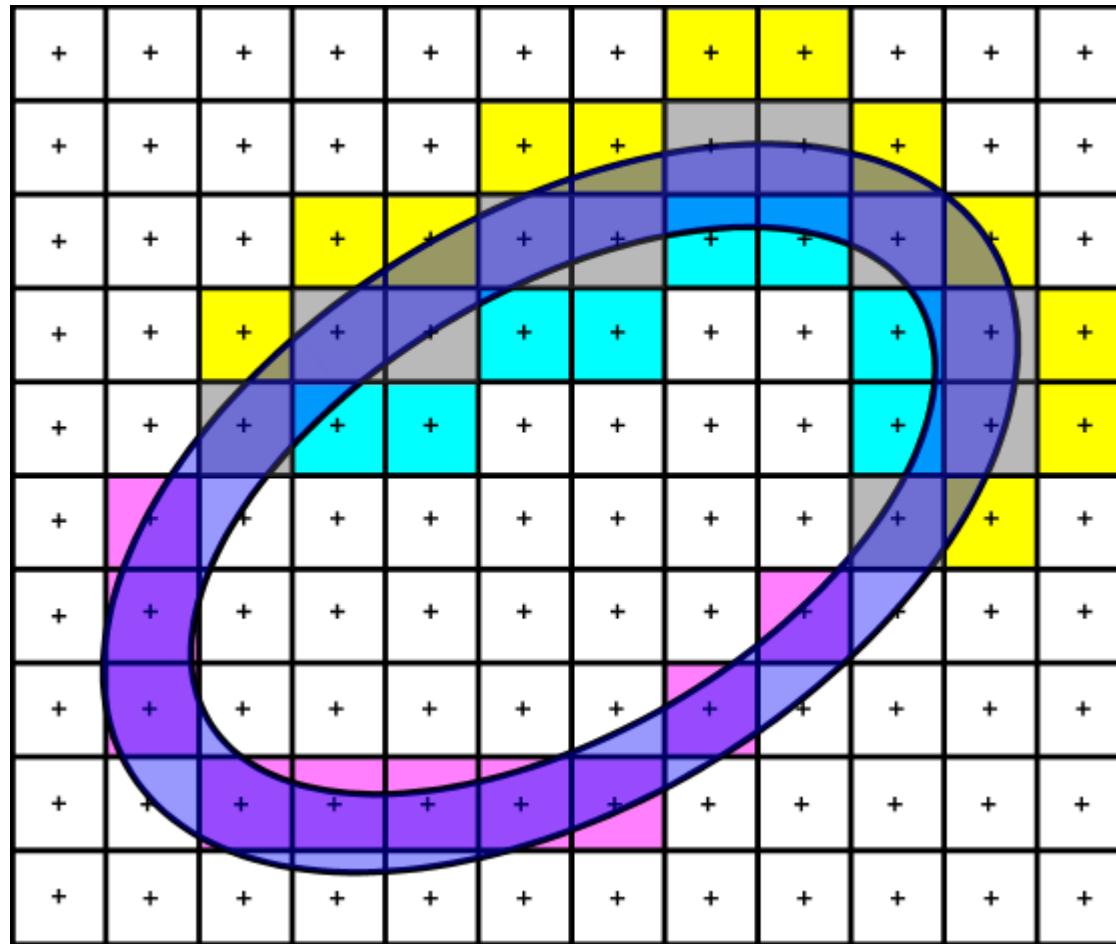
Recognition

DLL containing S

Digitization

Undesired neighbors

Principle :



Input: Lattice set S

Recognition

DLL containing S

Digitization

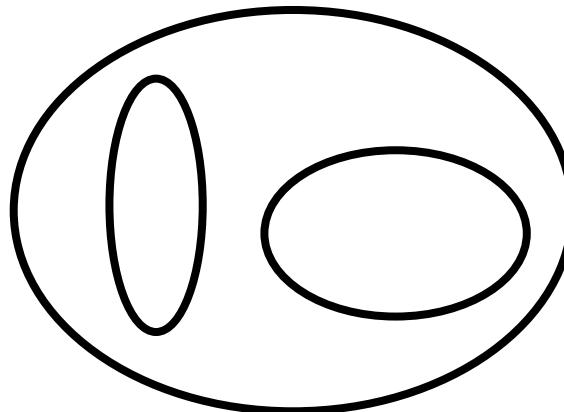
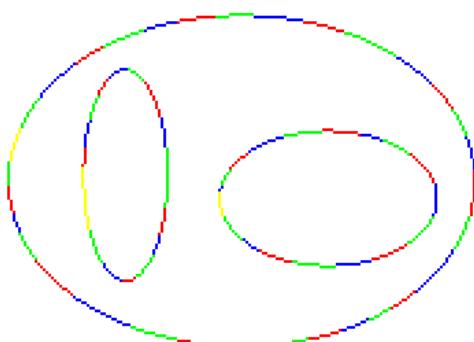
Undesired neighbors

+

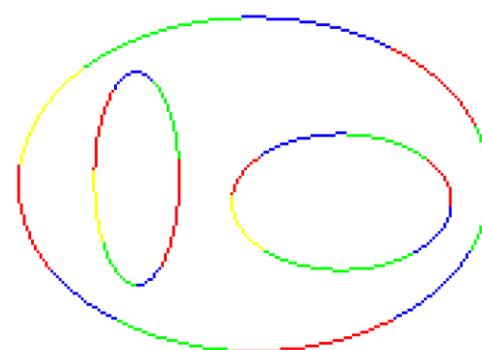
Forbidden neighbors

Recognition

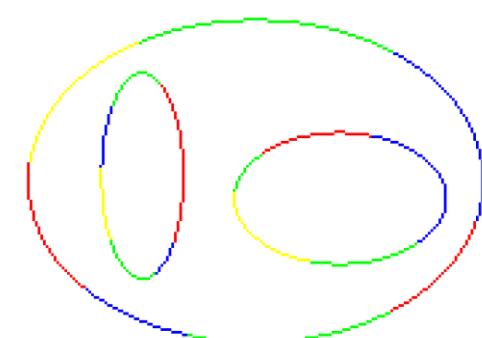
DLL between the inliers and outliers



Segmentation in pieces of
digital straight lines
(72 pieces)

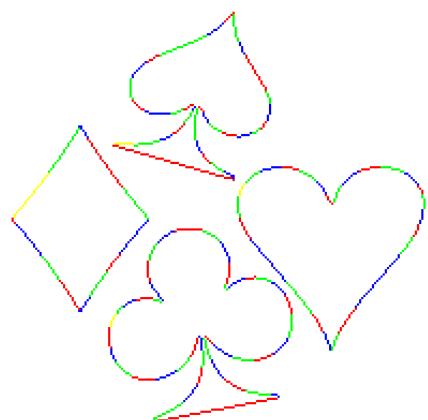


Segmentation in pieces of
digital circles (DLL)
(24 pieces)

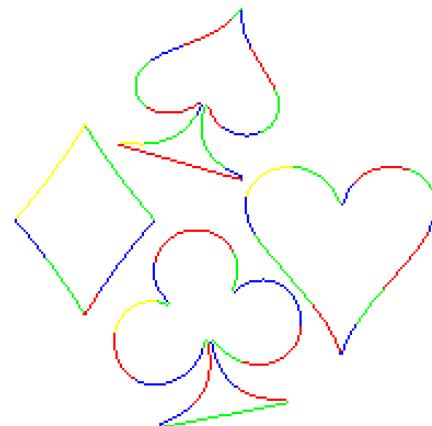


Segmentation in pieces of
digital conics (DLL)
(18 pieces)

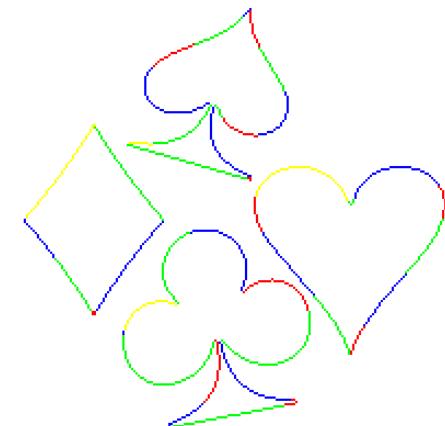
We decompose the digital curve in Digital Level Layers (DLL)



Segmentation in pieces of
digital straight lines
(116 pieces)



Segmentation in pieces of
digital circles (DLL)
(50 pieces)

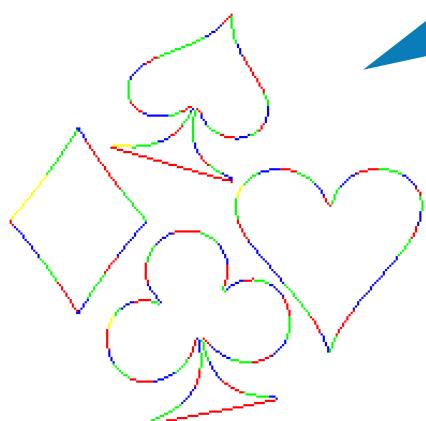


Segmentation in pieces of
digital conics (DLL)
(42 pieces)

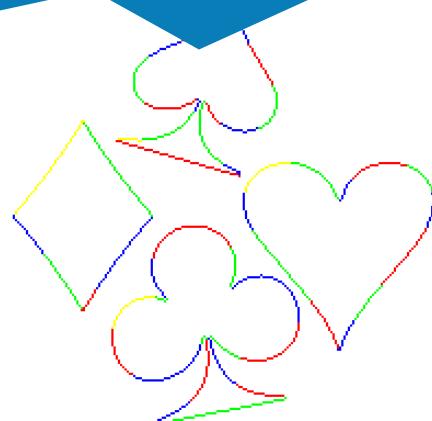
We decompose the digital curve in Digital Level Layers (DLL)

It provides a vector description of a digital curve which is **smoother** than DSS.

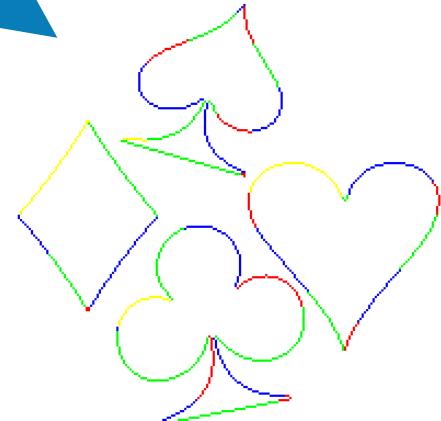
All cases computed with a **UNIQUE** algorithm
(with, as parameter, a chosen basis of polynomials like in SVM)



Segmentation in pieces of
digital straight lines
(116 pieces)



Segmentation in pieces of
digital circles (DLL)
(50 pieces)



Segmentation in pieces of
digital conics (DLL)
(42 pieces)

Paper, Demo and code are available on IPOL (*thanks to Bertrand Kerautret*)

 IPOL Journal · Image Processing On Line

HOME · ABOUT · ARTICLES · PREPRINTS · WORKSHOPS · NEWS · SEARCH

Digital Level Layers for Digital Curve Decomposition and Vectorization

Laurent Provot, Yan Gerard, Fabien Feschet

[article](#) [demo](#) [archive](#)

published * 2014-07-30 [→ BibTeX](#)
reference * LAURENT PROVOT, YAN GERARD, AND FABIEN FESCHET, *Digital Level Layers for Digital Curve Decomposition and Vectorization*, *Image Processing On Line*, 4 (2014), pp. 169–186. <http://dx.doi.org/10.5201/ipol.2014.67>

Communicated by Bertrand Kerautret
Demo edited by Bertrand Kerautret

Abstract

The purpose of this paper is to present Digital Level Layers and show the motivations for working with such analytical primitives in the framework of Digital Geometry. We first compare their properties to morphological and topological counterparts, and then we explain how to recognize them and use them to decompose or vectorize digital curves and contours.

Download

- full text manuscript PDF low-res. (1.2M) PDF (1.1M) [\[?\]](#)
- source code TGZ

Preview

Loading takes a few seconds. Images and graphics are degraded here for faster rendering. See the downloadable PDF documents for original high-quality versions.

LOW RESOLUTION PDF: Images may show compression artifacts. A full resolution PDF is available at www.ipol.im.

Published in *Image Processing On Line* on 2014-07-30.
Submitted on 2013-02-10, accepted on 2013-05-06.
ISSN 2105-1232 © 2014 IPOL & the authors CC-BY-NC-SA
This article is available online with supplementary materials, software, datasets and online demo at
<http://dx.doi.org/10.5201/ipol.2014.67>

Digital Level Layers for Digital Curve Decomposition and Vectorization

Laurent Provot¹, Yan Gerard², Fabien Feschet²

Plan

I

Introduction

II

About tangent estimators

III

Digital Level Layers

IV

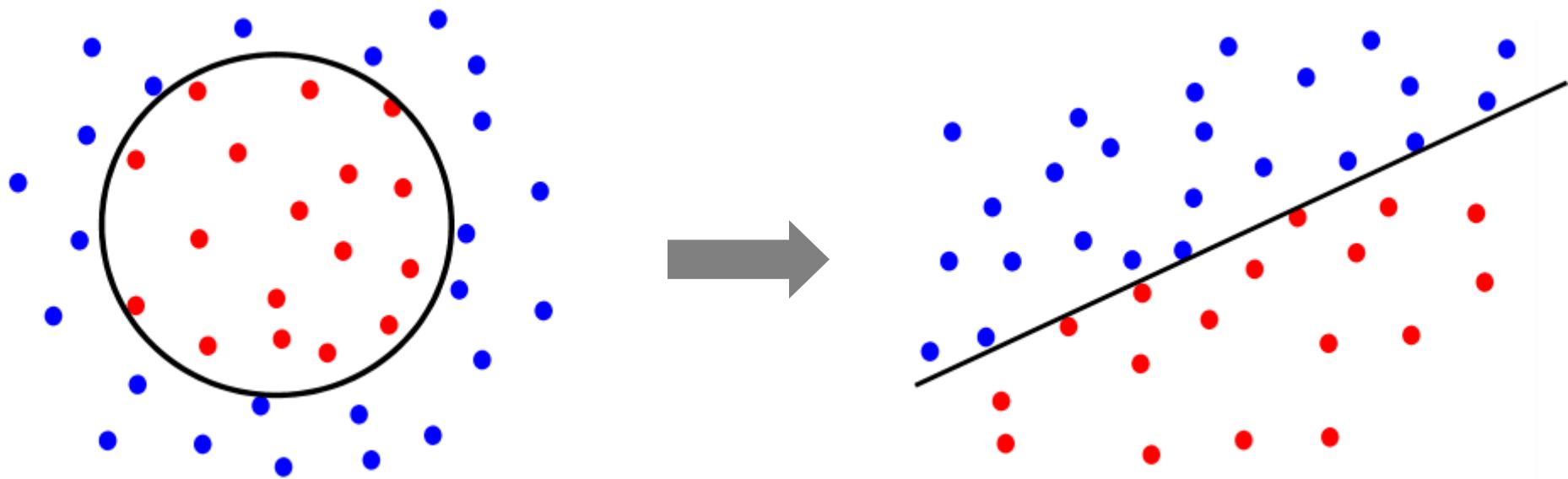
DLL decomposition

V

Algorithm

Plan

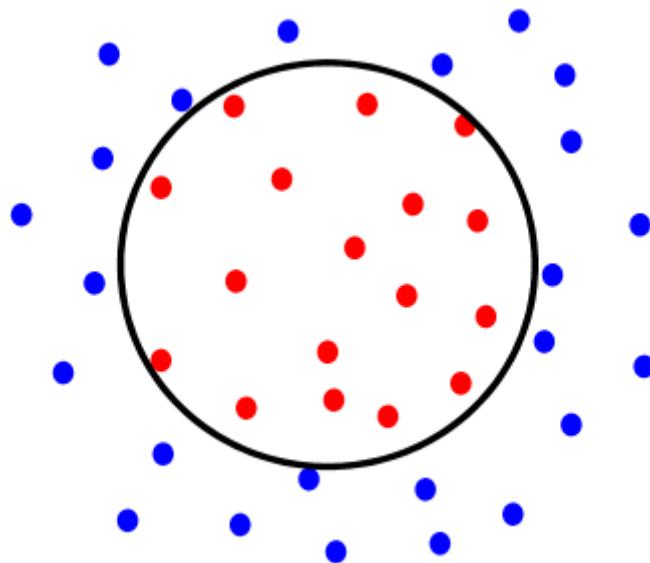
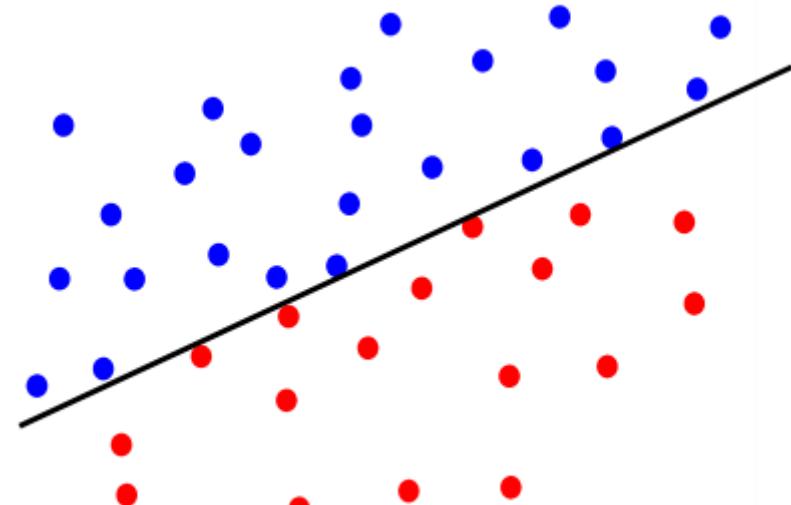
Algorithm



Problem of separation
by a level set $f(x)=0$
with f in a given linear space

Problem of linear separability
in a descriptive space of higher dimension

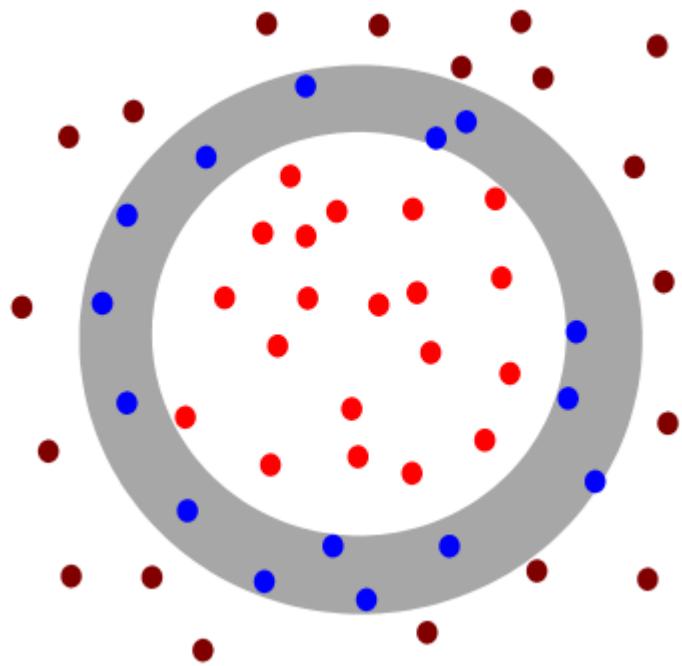
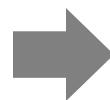
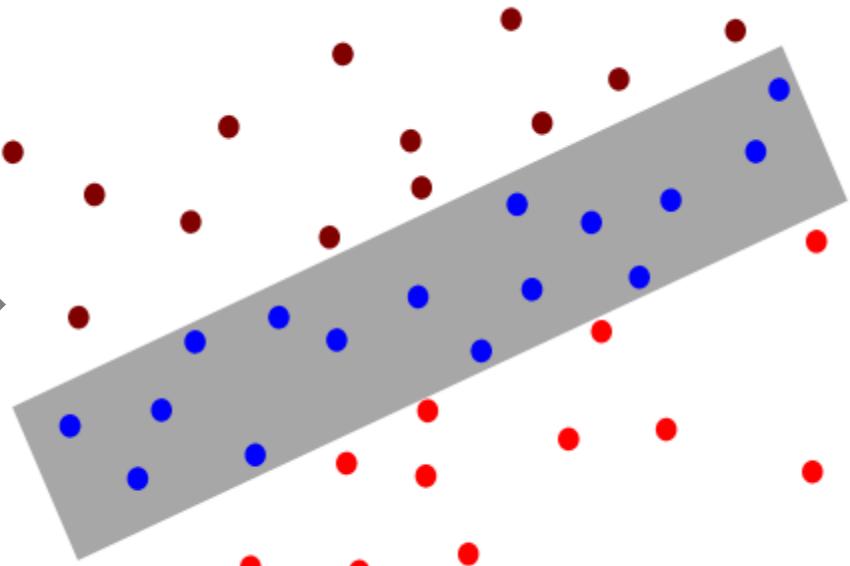
Kernel trick (Aizerman et al. 1964) is the principle of *Support Vector Machines*.



Problem of separation
by a level set $f(x)=0$
with f in a given linear space

Problem of linear separability
in a descriptive space of higher dimension

GJK (*Gilbert Johnson Keerthi*, 1988) computes
the closest pair of points from the two convex hulls.
It's widely used for collision detection.



Problem of separation
by two level sets $f(x)=h$ and $f(x)=h'$
with f in a given linear space

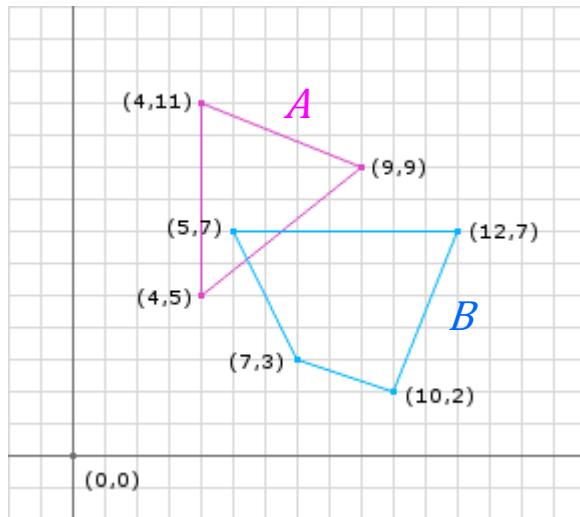
Problem of linear separability
by two parallel hyperplanes
We introduce a variant of GJK in nD

GJK (Gilbert Johnson Keerthi, 1988) computes
the closest pair of points from the two convex hulls.
It's widely used for collision detection.

Input : two polytopes $A \subset \mathbb{R}^d$ and $B \subset \mathbb{R}^d$ given by their vertices.

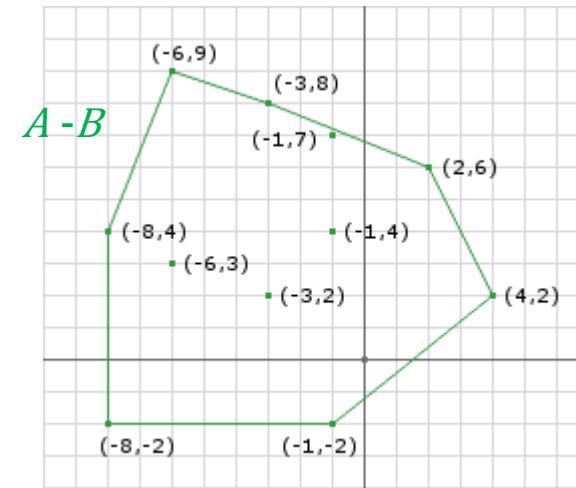
Question : do they intersect ?

More general question: compute their minimal distance.



A and B

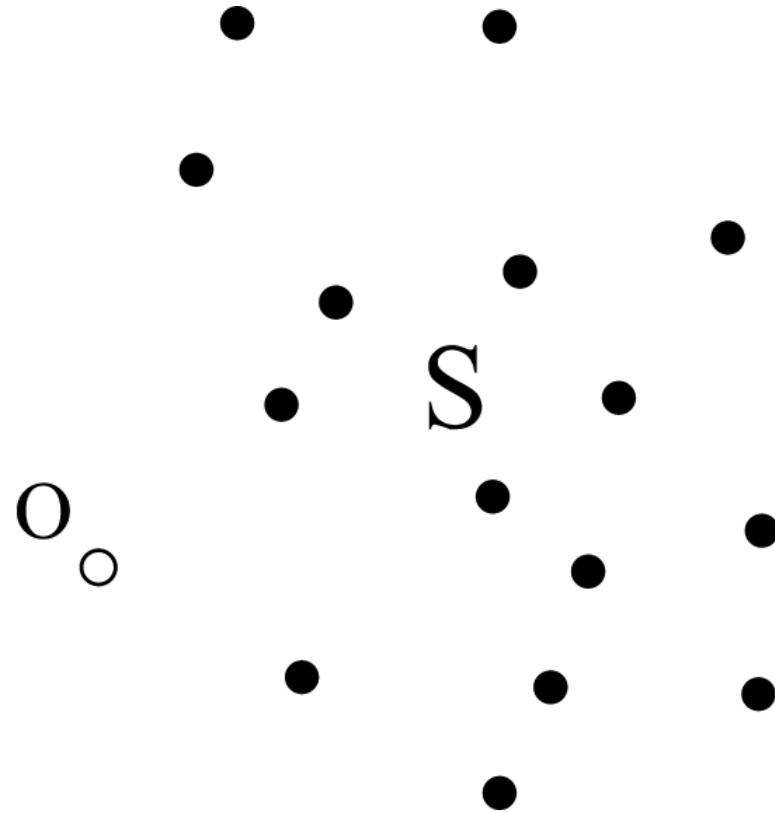
$$\text{distance}(A, B) = \text{distance}(0, A - B)$$



Difference $A - B$

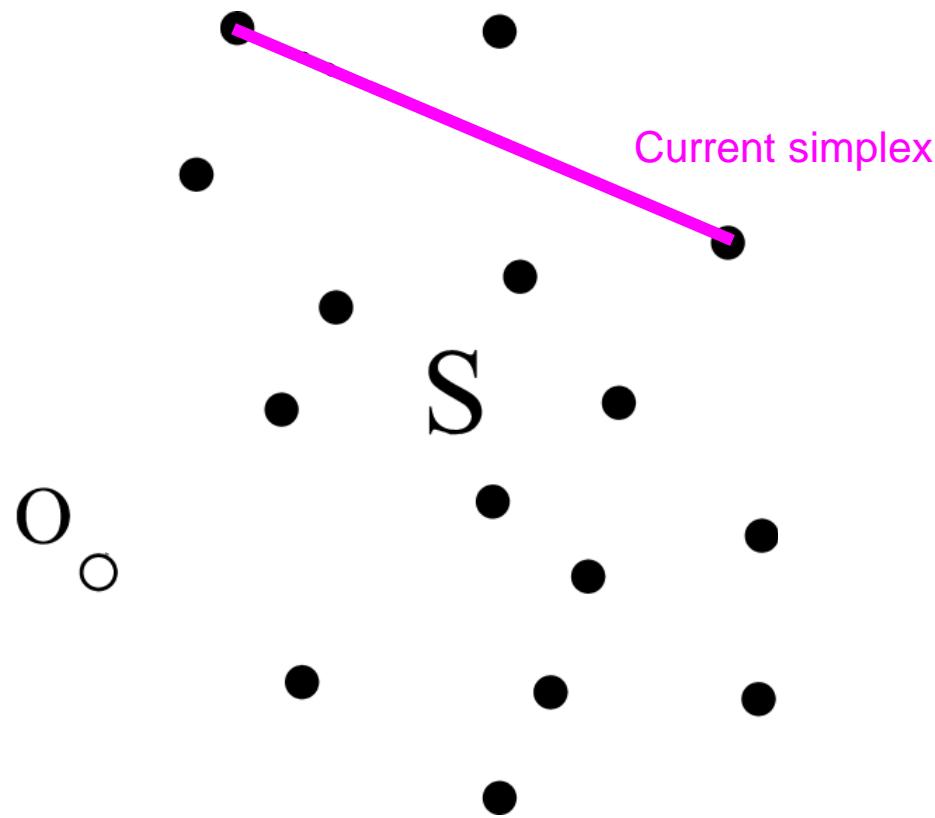
Principle of GJK algorithm :
compute the distance between the origin O and $B - A$.

Principle of GJK algorithm :
compute the distance between the origin O and $B-A$.

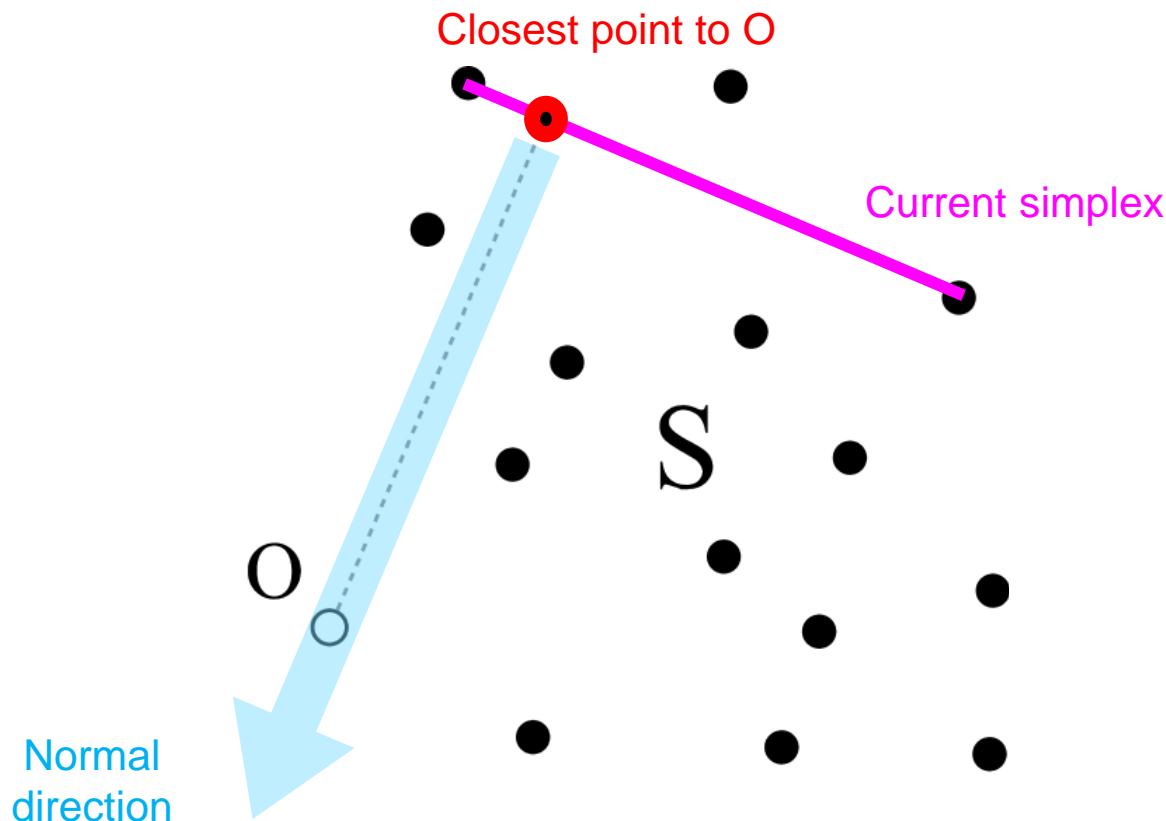


Principle of GJK algorithm :

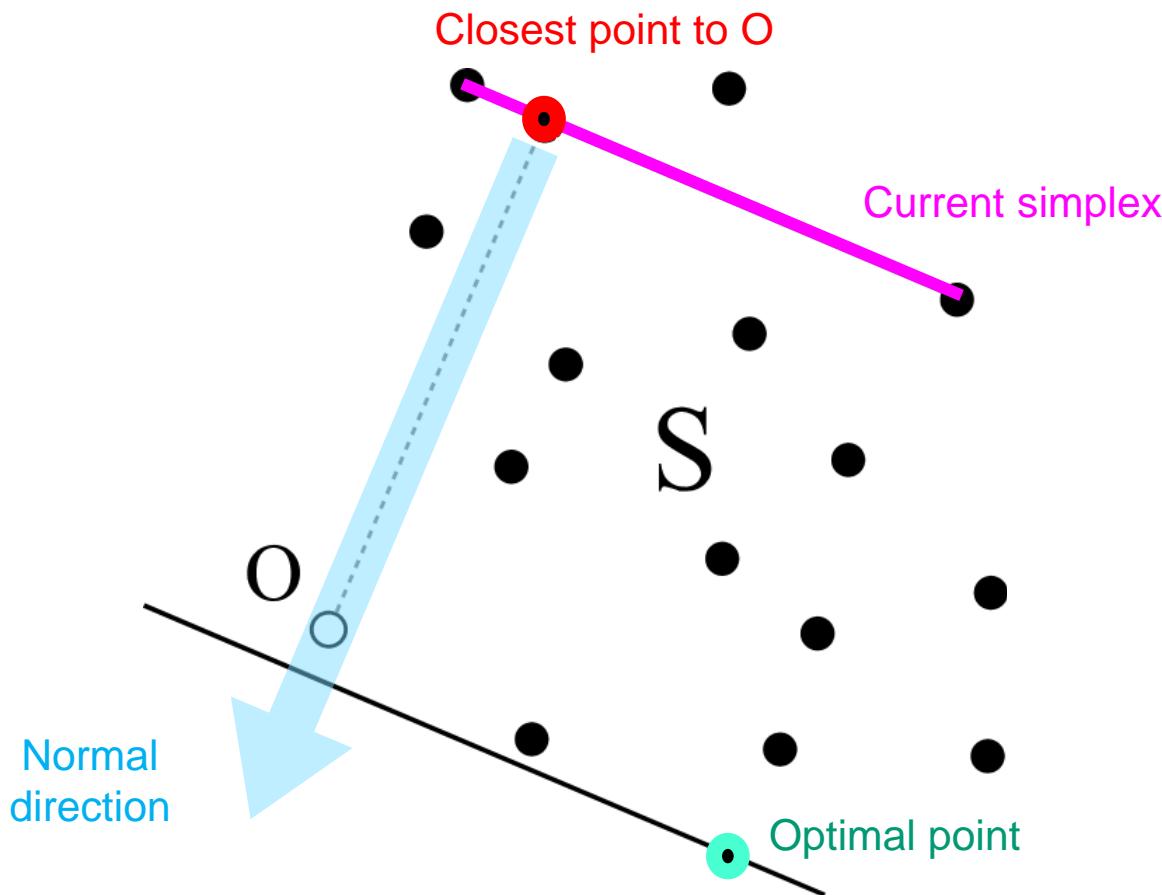
compute the distance between the origin O and $B-A$.



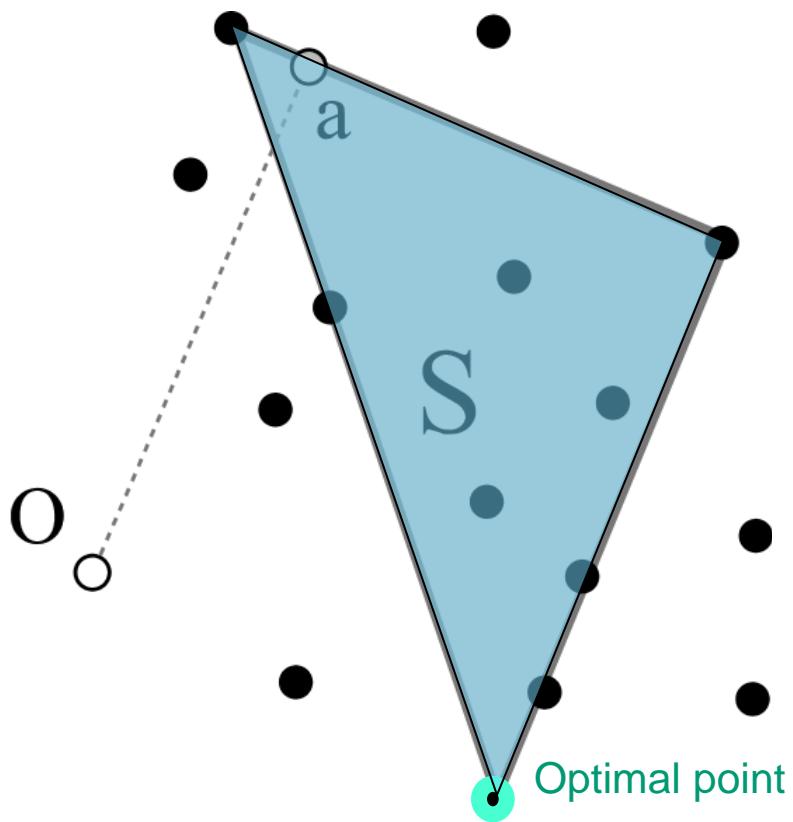
Principle of GJK algorithm :
compute the distance between the origin O and $B-A$.



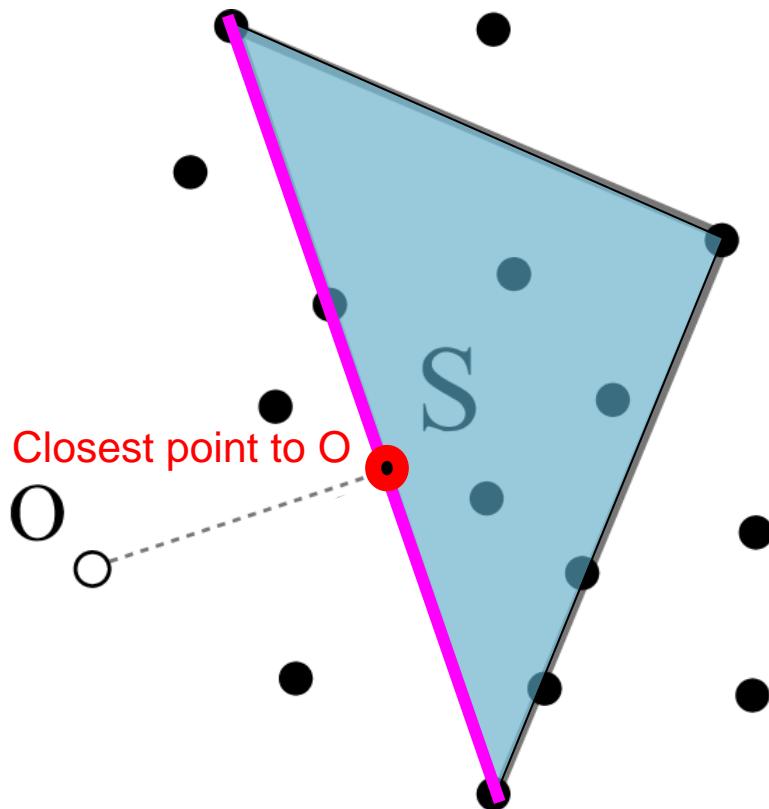
Principle of GJK algorithm :
compute the distance between the origin O and $B-A$.



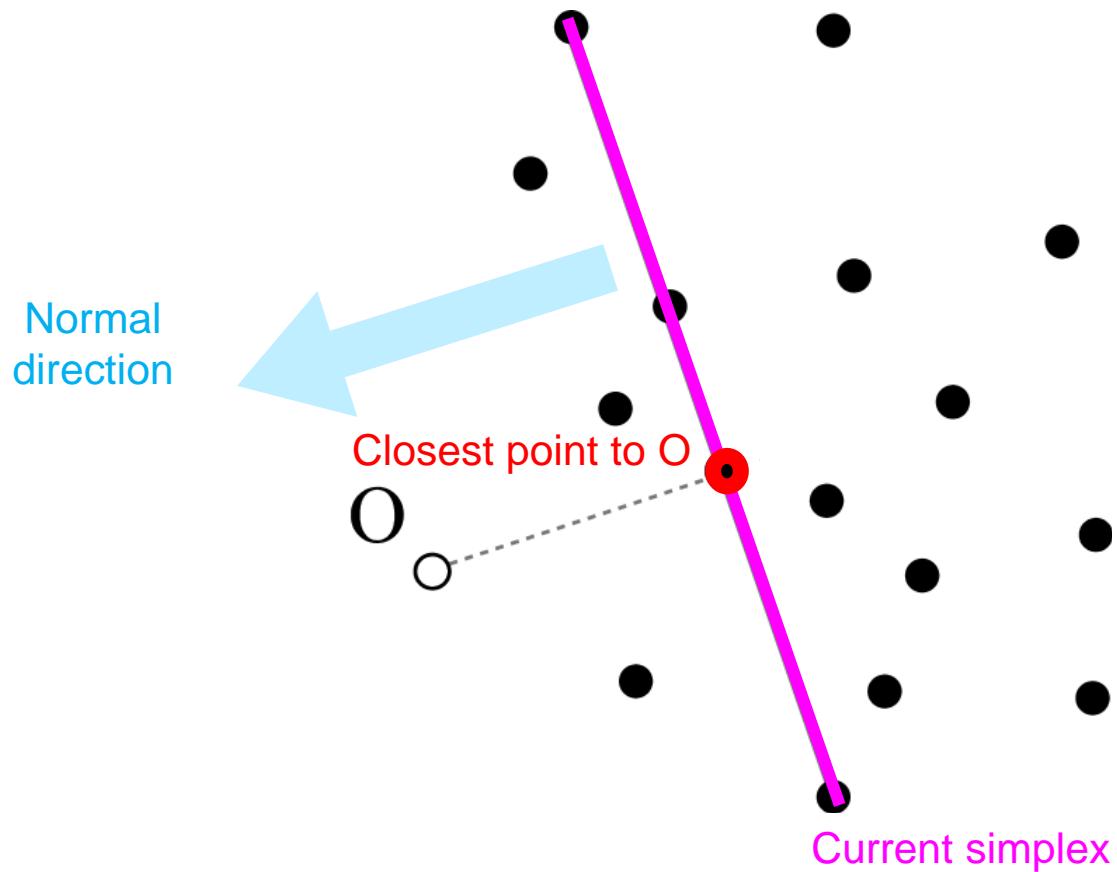
Principle of GJK algorithm :
compute the distance between the origin O and $B-A$.



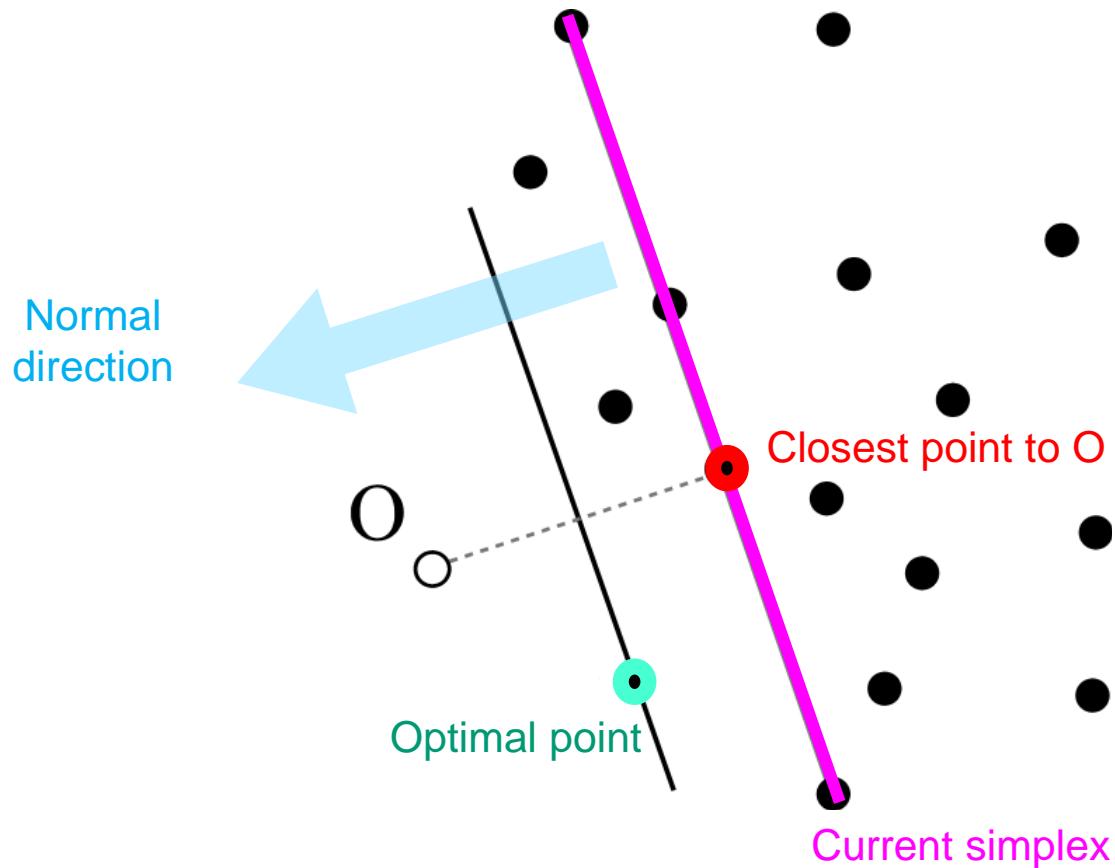
Principle of GJK algorithm :
compute the distance between the origin O and $B-A$.



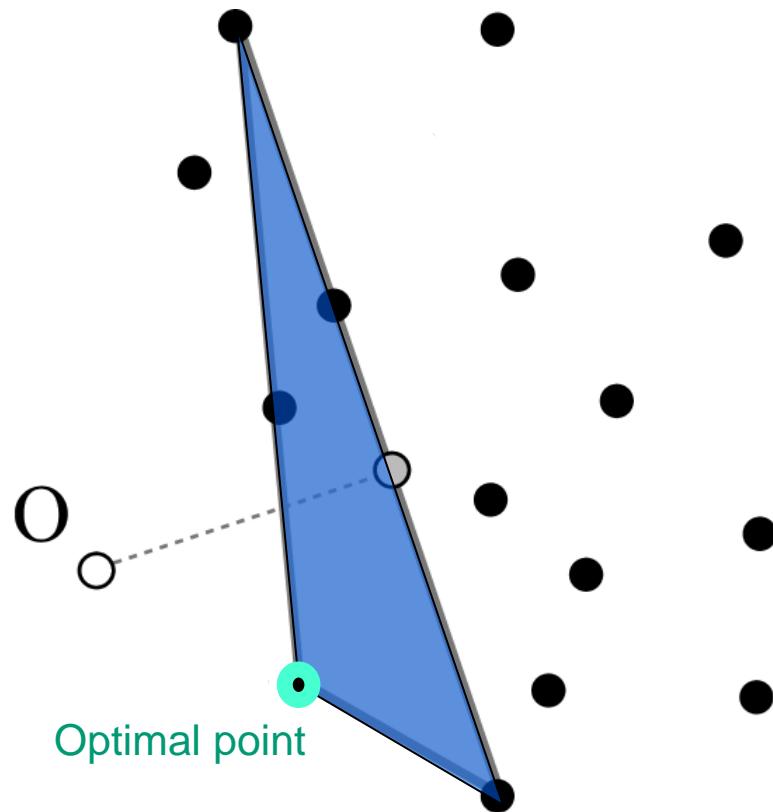
Principle of GJK algorithm :
compute the distance between the origin O and $B-A$.



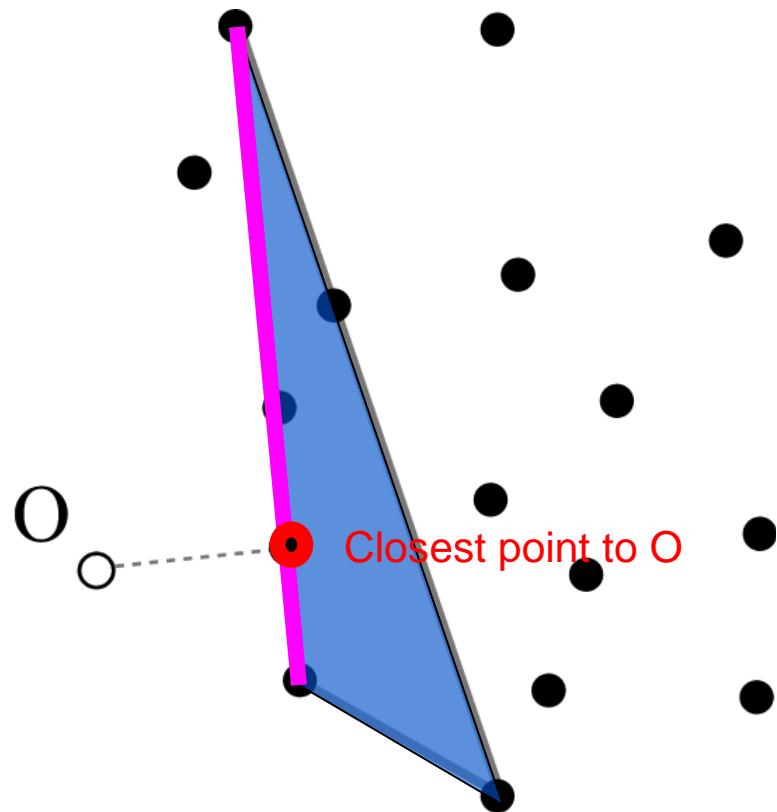
Principle of GJK algorithm :
compute the distance between the origin O and $B-A$.



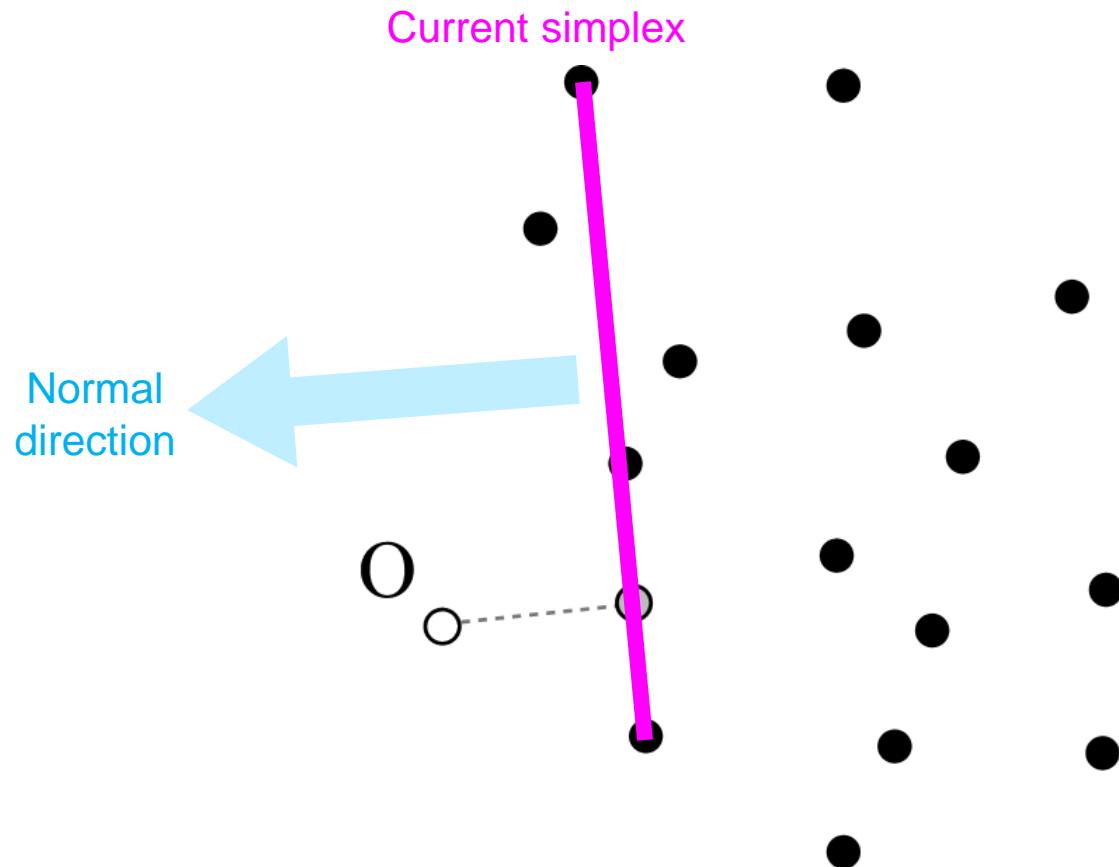
Principle of GJK algorithm :
compute the distance between the origin O and $B-A$.



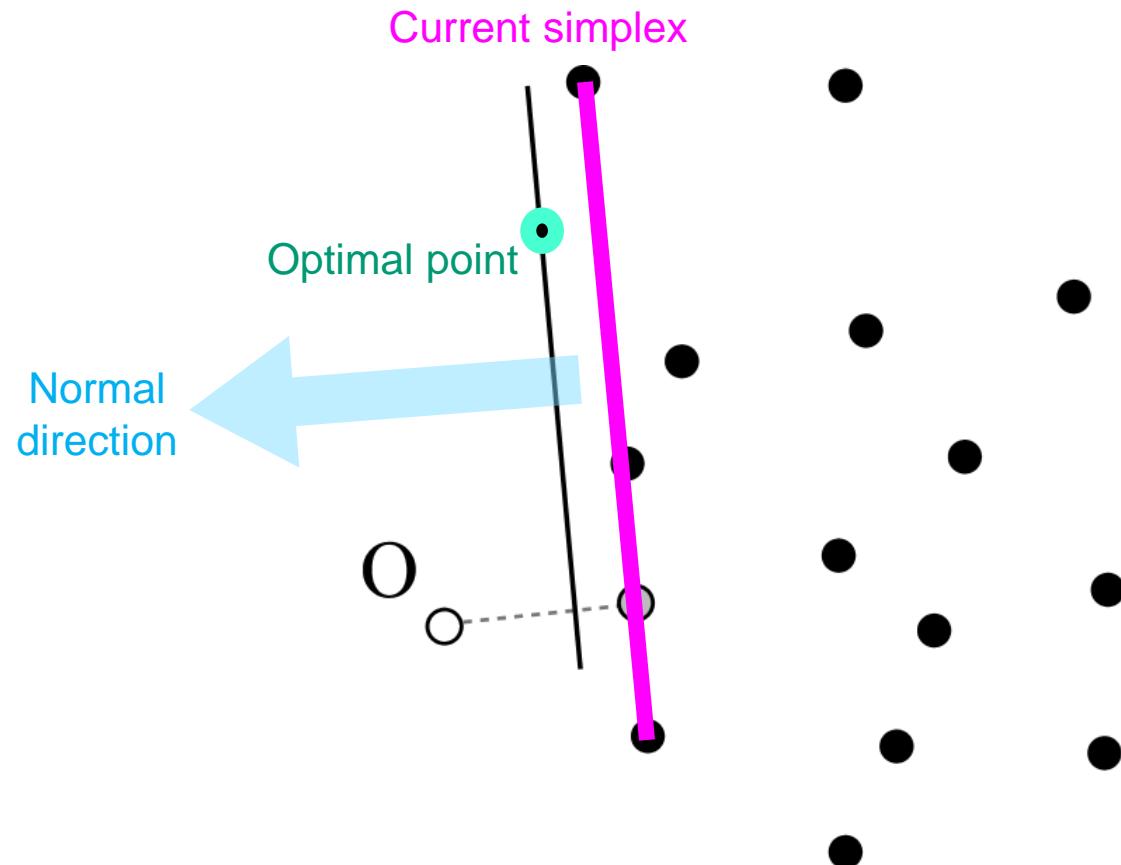
Principle of GJK algorithm :
compute the distance between the origin O and $B-A$.



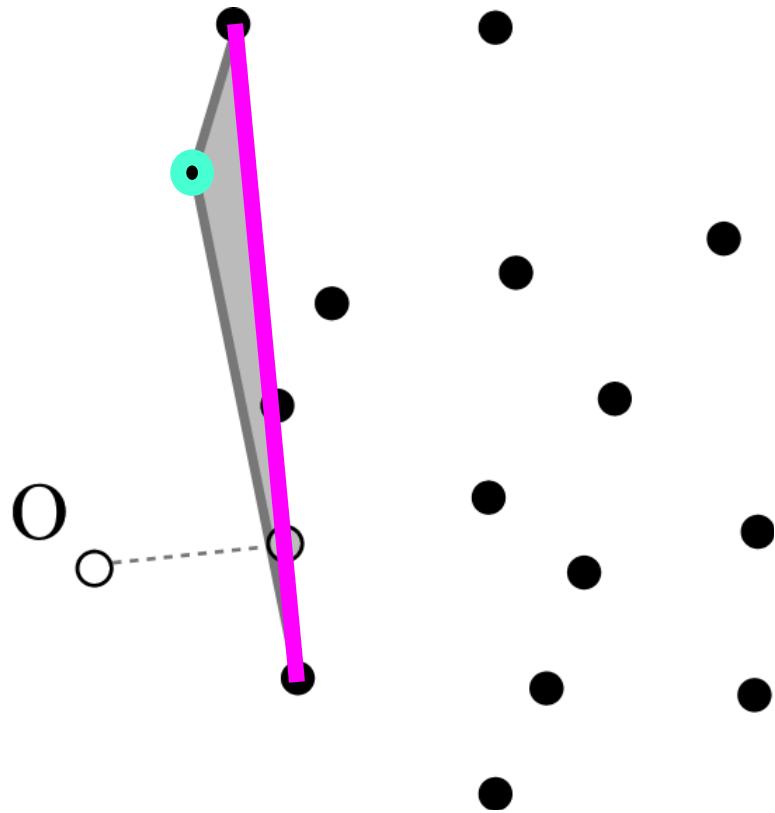
Principle of GJK algorithm :
compute the distance between the origin O and $B-A$.



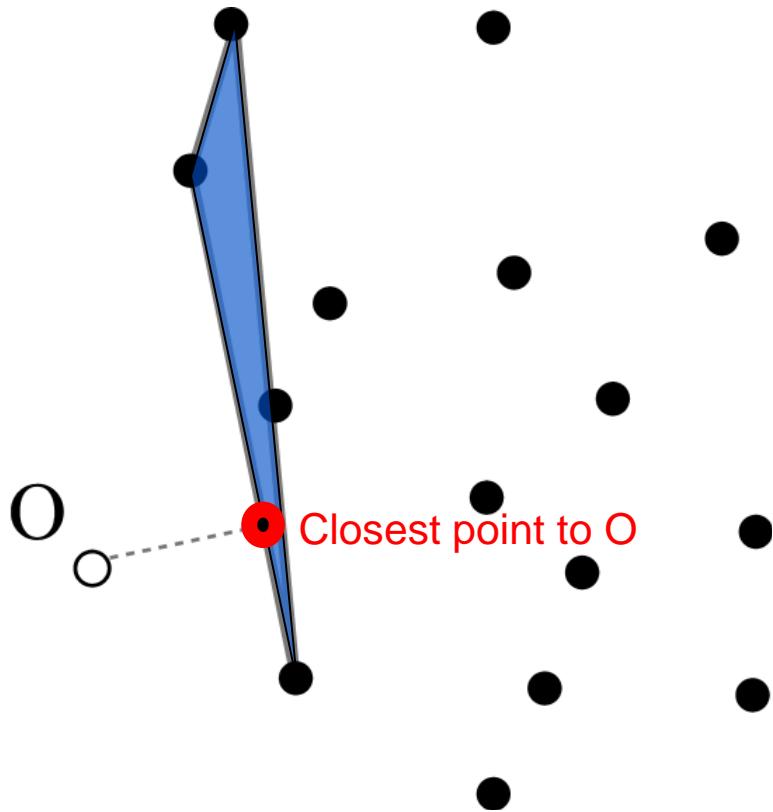
Principle of GJK algorithm :
compute the distance between the origin O and $B-A$.



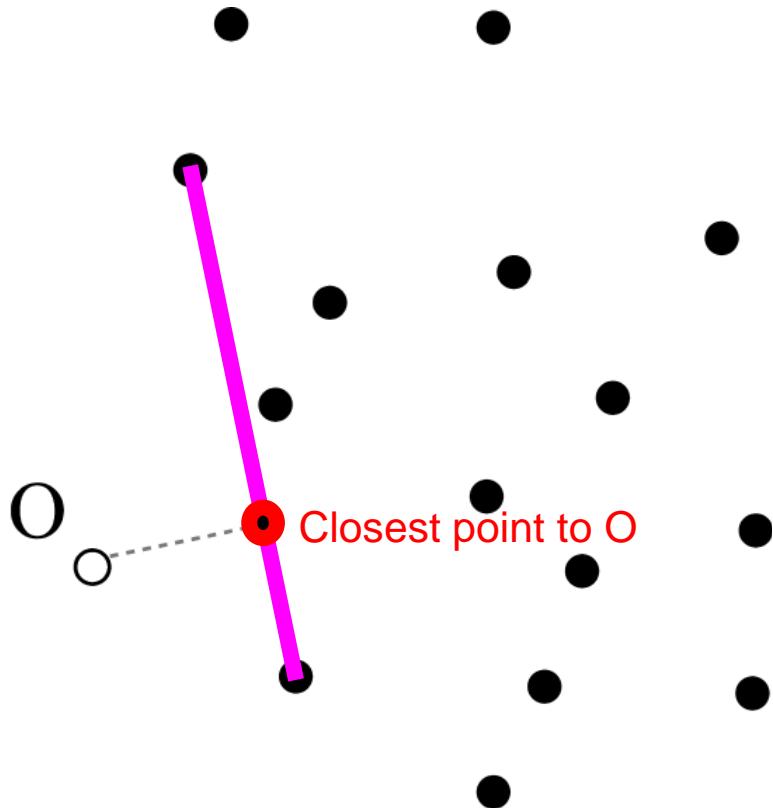
Principle of GJK algorithm :
compute the distance between the origin O and $B-A$.



Principle of GJK algorithm :
compute the distance between the origin O and $B-A$.



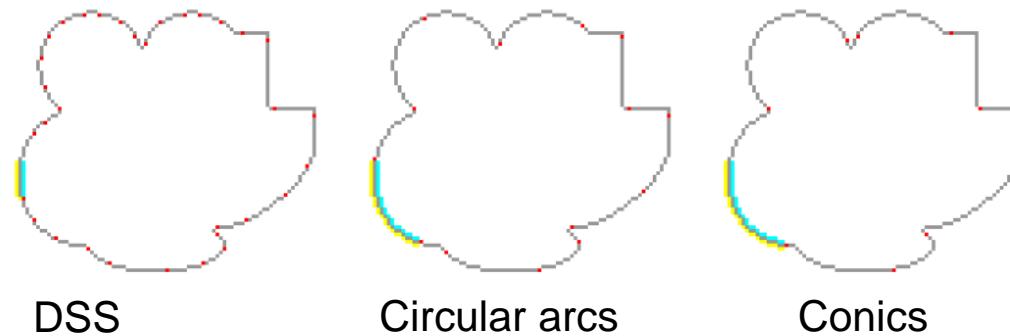
Principle of GJK algorithm :
compute the distance between the origin O and $B-A$.



Principle of GJK algorithm :

compute the distance between the origin O and $B-A$.

Conclusion

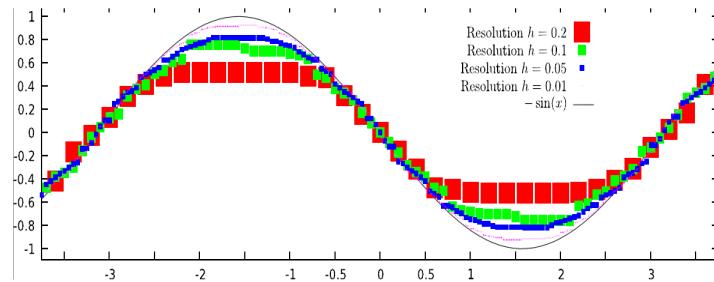


DLL provide a nice extension of the decomposition of a curve in DSS with a **single algorithm** and the choice of the primitive used:

- DSS (kernel functions are x and y)
- Circular arcs (kernel function are x^2+y^2 , x and y)
- Conics (kernel function are x^2 , y^2 , xy , x and y)

Do we have Multigrid Convergence properties in this framework of digital contours and shapes, as for DSS ?

Further works



It's time consuming to compute the derivatives all along a curve :

Provide an [enhanced version](#)
with point deletion and insertion...



DLL works also in 3D and more:

Provide also [multigrid convergence results...](#)