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Properties of digitized shapes

digitization : any function that maps a subset X ⊂ Rd to a subset
of h · Zd , h is the sampling gridstep.

X ∂X GhX

h

Question: what are topological and geometric properties kept by
digitization ?

Specialized version of sampling problem
Almost nothing is “kept”, a better word is “can be infered”.

J.-O. Lachaud, B. Thibert Gauss digitized shapes and surface integration 3/30



Context and objectives Properties of Gauss digitized sets Manifoldness Injectiveness Integration

Properties of digitized shapes

digitization : any function that maps a subset X ⊂ Rd to a subset
of h · Zd , h is the sampling gridstep.

X ∂X GhX

h

Question: what are topological and geometric properties kept by
digitization ?
Specialized version of sampling problem

Almost nothing is “kept”, a better word is “can be infered”.

J.-O. Lachaud, B. Thibert Gauss digitized shapes and surface integration 3/30



Context and objectives Properties of Gauss digitized sets Manifoldness Injectiveness Integration

Properties of digitized shapes

digitization : any function that maps a subset X ⊂ Rd to a subset
of h · Zd , h is the sampling gridstep.

X ∂X GhX

h

Question: what are topological and geometric properties kept by
digitization ?
Specialized version of sampling problem
Almost nothing is “kept”, a better word is “can be infered”.

J.-O. Lachaud, B. Thibert Gauss digitized shapes and surface integration 3/30



Context and objectives Properties of Gauss digitized sets Manifoldness Injectiveness Integration

The role of the sampling gridstep

Generally, the smaller the gridstep h the more faithful is/looks the
digitization

. . .
Gh(X ) Gh/2(X ) Gh/4(X ) . . .

most topology preservation results are valid for specific subsets of
Rd , and for small enough gridstep.
digital geometric quantities approach their Euclidean counterpart as
the gridstep tend to zero, also for specific subsets of Rd .
⇒multigrid convergence [Pavlidis 1982, Serra 1982]
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Digitizations process

Definition (Gauss digitization)

For X ⊂ Rd , its Gauss digitization is Gh(X ) := X ∩ h · Zd .

X

∂X

Gh(X )

h

[Gh(X )]h

∂[Gh(X )]h

h

[Gh(X )]h := union of h-cubes centered on Gh(X )

∂hX := ∂[Gh(X )]h := boundary of previous set

Many other digitization schemes: inner Jordan J− and outer Jordan J+,
Hausdorff digitizations [Ronse, Tajine 2000, Tajine, Ronse 2002]
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Topology preservation of digitization

Question: when is ∂hX homeomorphic to ∂X ?
related to R-regularity or par(R)-regularity [Pavlidis 1982]

x

2D results for fine enough h [Stelldinger, Köthe 2005, Latecki et al. 1998]

But false starting from 3D !
Only homotopy preservation [Stelldinger, Köthe 2005]
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Distance and R-offset

distance dK to a compact set K , projection ξK onto K

it is Hausdorff stable whatever the dimension

reach of ∂X := infimum of distances to medial axis.

homotopy stability between R-offsets of X and K , if X has positive reach,
K is a dense enough sampling, suitable values of R
[Chazal, Lieutier 2008, Niyogi et al. 2008]
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Multigrid convergence of geometric estimators
Geometric estimator ε̂ multigrid convergent for a family of shapes X to a geom.
quantity ε, ∃h0, ∀0 < h < h0

∀X ∈ X, |ε̂(Gh(X ))− ε(X )| ≤ τ(h), with limh→0 τ(h) = 0.

volume of a convex set X by counting [Gauss, Dirichlet]. τ(h) = O(h).

even better bounds for C 3-smooth strictly convex X [Huxley 1990]

volume under monotonic functions by counting (see [Krätzle 1988, Krätzle,

Nowak 1991]). τ(h) = O(h).

2D and 3D moments of small order [Klette, Žunić 2000]

perimeter with MLP, ε-sausage or DSS segmentation [Klette, Žunić 2000]

[Kovalevsky, Fuchs92] [Sloboda, Zatko 1996] [Klette, Rosenfeld 2004], pattern and
polygonal approximation [Tajine, Baudrier, Mazo]

3D area estimation, i.e. H2: thickening [Stelldinger et al. 2007] (but see Weyl
formula [Weyl 1939]), use Cauchy-Crofton integral formula [Liu et al. 2010]

3D local area estimation by integration of normals
[Lenoir et al. 1996, Coeurjolly et al. 2003]
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even better bounds for C 3-smooth strictly convex X [Huxley 1990]

volume under monotonic functions by counting (see [Krätzle 1988, Krätzle,

Nowak 1991]). τ(h) = O(h).

Theorem

Let X be a compact domain of Rd such that the reach of ∂X is greater than ρ,
and h < ρ√

d
. Let D be any digitization such that J−h (X ) ⊂ Dh(X ) ⊂ J+h (X ).

Digital and continuous volumes follows∣∣∣Vol(X )− V̂ol(Dh(X ), h)
∣∣∣ ≤ 2d+1√dArea(∂X )h . (1)
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Multigrid convergence of local geometric estimators

slight difficulty to define it: must relate ∂X with ∂hX

2D tangent/normal estimation: MDSS
[de Vieilleville et al. 2007, Lachaud et al. 2007], polynomial fitting
[Provot, Gérard 2011], binomial convolution
[Esbelin, Malgouyres 2009, Esbelin et al. 2011]

2D and 3D normals, mean and principal curvatures with integral
invariants [Coeurjolly et al. 2013, Coeurjolly et al. 2014]

nD normals with Voronoi Covariance Measure [Cuel et al. 2014]

stability of curvature measures [Chazal,Cohen-Steiner,Lieutier,Mérigot,Thibert]
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Contributions

1. equivalence par-regularity and reach
2. Hausdorff distance between ∂X and ∂hX for sets with positive reach
3. in 3D, localization of non-manifold places of ∂hX
4. in nD, localization and quantification of non-injective places of ξ∂X

from ∂hX to ∂X
5. a multigrid convergent digital surface integration scheme in nD
⇒convergent local area estimator given convergent normal estimator
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1 Context and objectives

2 Properties of Gauss digitized sets

3 Manifoldness of digitized boundary

4 Injectiveness of projection

5 Digital surface integration

J.-O. Lachaud, B. Thibert Gauss digitized shapes and surface integration 11/30



Context and objectives Properties of Gauss digitized sets Manifoldness Injectiveness Integration

Par-regularity and positive reach

x

Lemma

Let X be a d-dimensional compact domain of Rd . Then

reach(∂X ) ≥ R ⇔ ∀R ′ < R, X is par(R ′)-regular.

If ∂X has positive reach greater than R, then, for R ′ < R and x ∈ ∂X ,
there are inside and outside osculating balls of radius R ′ at x .
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Hausdorff distance between continuous and digital boundary

Theorem

Let X be a compact domain of Rd such that the reach of ∂X is greater than
R. Then, for any digitization step 0 < h < 2R/

√
d , the Hausdorff distance

between sets ∂X and ∂hX is less than
√
dh/2. More precisely:

∀x ∈ ∂X , ∃y ∈ ∂hX , ‖x − y‖ ≤
√
d

2
h (with ξ∂X (y) = x), (2)

∀y ∈ ∂hX , ‖y − ξ∂X (y)‖ ≤
√
d

2
h. (3)

Remark that this bound is tight. The proof uses osculating balls and the fact
that ∂X is at least C 1.
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Non-manifold parts of digitized boundary

In 3D, there are smooth shapes which are not digitized as manifolds
whatever the gridstep. [Stelldinger et al. 2007]

Problem related to cross configurations (i.e. critical [Latecki et al.])
We locate and quantify non-manifold parts of digitized boundaries.
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Manifoldness local sufficient condition

Theorem (Manifoldness sufficient condition in R3)

Let X be some compact domain of R3, with reach(∂X ) greater than some
positive constant R and h < 0.198R. Let y be a point of ∂hX .

i) If y does not belong to some 1-cell of ∂hX that intersect ∂X , then ∂hX is
homeomorphic to a 2-disk around y .

ii) If y belongs to some 1-cell s of ∂hX such that ∂X ∩ s contains a point P
and if the angle αy between s and the normal to ∂X at P satisfies
αy ≥ 1.260h/R, then ∂hX is homeomorphic to a 2-disk around y .

Only places where the normal is close to some axis may be non-manifold.
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Main ingredients of the proof (I)
Non-manifold parts of ∂hX only at “crossed” configurations of GX (h):

non-manifold edge non-manifold vertex

no for h < R/2 and par(R)-regularity, Theorem 13 of
[Stelldinger et al. 2007]

Examine ∂X around each 4-tuple of Z3

1 ∂X∩ dual cell = ∅ 2,3∂X∩ dual cell 6= ∅

2 ∂X ∩ 1-cell = ∅ 3 ∂X ∩ 1-cell 6= ∅
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Main ingredients of the proof (II)

QPs̃0 s̃2

s0

s1

x

z

α0

α

QPs̃0

s̃1

s̃2

s̃3

x

y

β

2 ∂X intersects dual cell and ∂X ∩ 1-cell = ∅
0. equivalence reach / par-regularity implies inside/outside osculating

balls at P

1. angle α at P cannot be too small when h→ 0
2. residual radius of osculating ball is R/sinα
3. either s̃1 ∈ Gh(X ) or s̃2 6∈ Gh(X ) for h

sinα <
√

26
13 .

4. balance 1 and 3 to get h < 0.198R ⇒ non-crossed.

3 ∂X intersects dual cell and ∂X ∩ 1-cell 6= ∅
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Non-injective part of projection ξ∂X

projection ξ∂X defines a natural relation between ∂hX and ∂X .
this projection is not everywhere injective
we wish to know where and to quantify this part
we will thus be able to prove the convergence of digital surface
integration
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Size of non-injective part of ξ∂X

The set mult(∂X ) defines the part of ∂X where the projection is not injective.

mult(∂X ) := {x ∈ ∂X , s.t. ∃y1, y2 ∈ ∂hX , y1 6= y2, ξ(y1) = ξ(y2) = x}.

Theorem

If h ≤ R/
√
d , then one has

Area(mult(∂X )) ≤ K1(h) Area(∂X ) h,

where

K1(h) =
8d2

R
+ O(h) ≤ d2 4d+1

R
.
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Some elements of the proof (I)

x

y

n(x)

nh(y)

since h ≤ R/
√
d , former theorem implies dH(∂X , ∂hX ) <

√
dh/2, and

restriction of ξ to ∂hX is surjective

let mult(∂hX ) := ξ−1(mult(∂X ))

then ξ : ∂hX \mult(∂hX )→ ∂X \mult(∂X ) is one-to-one.

Difficulty: mult(∂X ) will be small but mult(∂hX ) is maybe not negligible.
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Some elements of the proof (II)

x

y

n(x)

nh(y)

1. Scalar product between normals of ∂hX and ∂X ≥ −
√

3d
R

h.
Use the fact that n are Lipschitz over ∂X (explicit [Federer59]).

2. Then mult(∂X ) ⊂ ξ(P(h)), with P(h) := {y ∈ ∂hX , n(ξ(y)) · nh(y) ≤ 0}
Observe the intersections of segment n(x) with faces of ∂hX .

3. The jacobian of ξ at y is ≈ |n(ξ(y)) · nh(y)|, hence the jacobian of its
restriction to P(h) is in O(h).
Use geometric measure theory on Dξ and ‖y − ξ(y)‖ <

√
dh/2, [Morvan08]

4. We conclude that Area(mult(∂X )) is in O(h).
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Use the fact that n are Lipschitz over ∂X (explicit [Federer59]).

2. Then mult(∂X ) ⊂ ξ(P(h)), with P(h) := {y ∈ ∂hX , n(ξ(y)) · nh(y) ≤ 0}
Observe the intersections of segment n(x) with faces of ∂hX .

3. The jacobian of ξ at y is ≈ |n(ξ(y)) · nh(y)|, hence the jacobian of its
restriction to P(h) is in O(h).
Use geometric measure theory on Dξ and ‖y − ξ(y)‖ <

√
dh/2, [Morvan08]

4. We conclude that Area(mult(∂X )) is in O(h).
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Properties of Gauss digitized shapes, digital surface integration

1 Context and objectives

2 Properties of Gauss digitized sets

3 Manifoldness of digitized boundary

4 Injectiveness of projection

5 Digital surface integration
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Digital surface integral
Definition

Let Z ⊂ (hZ)d be a digital set. Let f : Rd → R be an integrable function and n̂
be a digital normal estimator. We define the digital surface integral by

DIh(f ,Z , n̂) :=
∑

d−1-cellc∈∂[Z ]h

hd−1f (ċ)|n̂(ċ) · n(ċ)|,

where ċ is the centroid of the (d − 1)-cell c and n(ċ) is its trivial normal as a
point on the h-boundary ∂hX .

Theorem

Let X be a compact domain where ∂X has reach greater than R. For h ≤ R√
d
,

the digital integral is multigrid convergent toward the integral over ∂X .

∣∣∣∣∫
∂X

f (x)dx −DIh(f , Gh(X ), n̂)
∣∣∣∣ ≤ Area(∂X ) ‖f ‖BL

(
O(h) + O(‖n̂− n‖est)

)
.
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Steps of the proof

1. First
∫
∂X

f (x)dx =
∫
∂X\mult(∂X )

f (x)dx + K1(h)Area(∂X )‖f ‖∞h.

(size of non injective part).

2. Then,
∫
∂X\mult(∂X )

f (x)dx =
∫
∂hX\mult(∂hX )

f (ξ(y))ξ(y)dy .

(diffeomorphism of ξ + change of variable formula)

3.
∣∣∣∫∂hX\mult(∂hX )

f (ξ(y))ξ(y)dy −
∫
∂hX

f (ξ(y))ξ(y)dy
∣∣∣ ≤

Area(∂X ) µ ‖f ‖∞O(h)
(multiplicity ae bounded by µ := db

√
d + 1c and coarea formula)

4.
∫
∂hX

f (ξ(y))ξ(y)dy =∫
∂hX

f (ξ(y))|n(ξ(y)) · nh(y)|dy + ‖f ‖∞Area(∂X )O(h).

(Jacobian property and upper bound on ∂hX area)

5.
∣∣∣∫∂hX f (ξ(y))|n(ξ(y)) · nh(y)|dy −DIh(f , Gh(X ), n̂)

∣∣∣ ≤
Area(∂X )

(
Lip(f )O(h) + ‖f ‖∞O(‖n̂− n‖est)

)
.

(sum cell by cell plus error between n(ξ(y)) and n̂(c))
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Experimental evaluation

Area estimation error of the digital surface integral with several digital normal
estimators. The shape of interest is 3D ellipsoid of half-axes 10, 10 and 5, for
which the area has an analytical formula giving A ≈ 867.188270334505. The
abscissa is the gridstep h at which the ellipsoid is sampled by Gauss digitization.
For each normal estimator, the digital surface integral Â is computed with
f = 1, and the relative area estimation error |Â−A|

A
is displayed in logscale.
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