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Context and objectives

Properties of Gauss digitized shapes, digital surface integration

@ Context and objectives
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Properties of digitized shapes

e digitization : any function that maps a subset X C RY to a subset
of h-7Z9, his the sampling gridstep.
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e Question: what are topological and geometric properties kept by
digitization 7
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Properties of digitized shapes

e digitization : any function that maps a subset X C RY to a subset
of h-7Z9, his the sampling gridstep.
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e Question: what are topological and geometric properties kept by
digitization 7
e Specialized version of sampling problem

e Almost nothing is “kept”, a better word is “can be infered".
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The role of the sampling gridstep

o Generally, the smaller the gridstep h the more faithful is/looks the
digitization
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Injectiveness

The role of the sampling gridstep

o Generally, the smaller the gridstep h the more faithful is/looks the
digitization

Gh(X) Gp/2(X) Gp/a(X)

e most topology preservation results are valid for specific subsets of
R9, and for small enough gridstep.
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Context and objectives Properties of Gauss digitized sets Manifoldness Injectiveness Integration

The role of the sampling gridstep

o Generally, the smaller the gridstep h the more faithful is/looks the
digitization

Gh(X) Gp/2(X) Gp/a(X)
e most topology preservation results are valid for specific subsets of
R9, and for small enough gridstep.

e digital geometric quantities approach their Euclidean counterpart as
the gridstep tend to zero, also for specific subsets of RY.
=-multigrid convergence [Pavlidis 1982, Serra 1982]
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Context and objectives

Digitizations process

Definition (Gauss digitization)

For X C RY, its Gauss digitization is Gs(X) := X N h - Z¢.

h h
> >
- I ]
\\ X N | | I
./ 1
\ X — L T e (X
—IL —IL
\ Gn(X) o i Toln(X)s —
- =
( ) [
\\ | | _—I r_

® [Gh(X)]n := union of h-cubes centered on Gx(X)
® 0,X := O[Gn(X)]n := boundary of previous set

e Many other digitization schemes: inner Jordan J~ and outer Jordan J%,
Hausdorff digitizations [Ronse, Tajine 2000, Tajine, Ronse 2002]
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Context and objectives

Topology preservation of digitization

e Question: when is 95X homeomorphic to 9X ?

e related to R-regularity or par(R)-regularity [Paviidis 1982]

e 2D results for fine enough h [Stelldinger, Kéthe 2005, Latecki et al. 1998]
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Topology preservation of digitization

Question: when is 95X homeomorphic to 90X 7

related to R-regularity or par(R)-regularity [Paviidis 1982]

2D results for fine enough h [Stelldinger, Kéthe 2005, Latecki et al. 1998]

But false starting from 3D !
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Context and objectives

Topology preservation of digitization

Question: when is 95X homeomorphic to 90X 7

related to R-regularity or par(R)-regularity [Paviidis 1982]

2D results for fine enough h [Stelldinger, Kéthe 2005, Latecki et al. 1998]

But false starting from 3D !

Only homotopy preservation [Stelldinger, Ksthe 2005]
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Context and objectives

Distance and R-offset

e distance dk to a compact set K, projection £k onto K
e it is Hausdorff stable whatever the dimension
e reach of 0X := infimum of distances to medial axis.

e homotopy stability between R-offsets of X and K, if X has positive reach,
K is a dense enough sampling, suitable values of R
[Chazal, Lieutier 2008, Niyogi et al. 2008]
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Multigrid convergence of geometric estimators

Geometric estimator € multigrid convergent for a family of shapes X to a geom.
quantity €, Jho, VO < h < ho
VX € X, |é(Gn(X)) — e(X)| < 7(h), with limp—o7(h) = 0.

volume of a convex set X by counting [Gauss, Dirichlet]. 7(h) = O(h).
even better bounds for C3-smooth strictly convex X [Huxley 1990]

volume under monotonic functions by counting (see [Kritzle 1988, Kratzle,
Nowak 1991]). 7(h) = O(h).

2D and 3D moments of small order [Klette, Zuni¢ 2000]

perimeter with MLP, e-sausage or DSS segmentation [Klette, Zunié 2000]

[Kovalevsky, Fuchs92] [Sloboda, Zatko 1996] [Klette, Rosenfeld 2004], pattern and
polygonal approximation [Tajine, Baudrier, Mazo]

3D area estimation, i.e. H?: thickening [Stelldinger et al. 2007] (but see Weyl
formula [Weyl 1939]), use Cauchy-Crofton integral formula [Liu et al. 2010]

3D local area estimation by integration of normals
[Lenoir et al. 1996, Coeurjolly et al. 2003]
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Multigrid convergence of geometric estimators

Geometric estimator € multigrid convergent for a family of shapes X to a geom.
quantity €, Jho, VO < h < ho
VX € X, |é(Gn(X)) — e(X)| < 7(h), with limp—o 7(h) = 0.

e volume of a convex set X by counting [Gauss, Dirichlet]. 7(h) = O(h).
e even better bounds for C3-smooth strictly convex X [Huxley 1990]

e volume under monotonic functions by counting (see [Kritzle 1988, Kritzle,
Nowak 1991]). 7(h) = O(h).

Theorem

Let X be a compact domain of RY such that the reach of dX is greater than p,
and h < L. Let D be any digitization such that J, (X) C Ds(X) C JH(X).
Digital and continuous volumes follows

’Vol(X) — Vol(Dh(X), h)' < 271/ dArea(9X)h. (1)
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Context and objectives

Multigrid convergence of local geometric estimators
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e slight difficulty to define it: must relate 90X with 9,X

e 2D tangent/normal estimation: MDSS
[de Vieilleville et al. 2007, Lachaud et al. 2007], polynomial fitting
[Provot, Gérard 2011], binomial convolution
[Esbelin, Malgouyres 2009, Esbelin et al. 2011]

e 2D and 3D normals, mean and principal curvatures with integral
invariants [Coeurjolly et al. 2013, Coeurjolly et al. 2014]

e D normals with Voronoi Covariance Measure [Cuel et al. 2014]

[ stability of curvature measures [Chazal,Cohen-Steiner, Lieutier,Mérigot, Thibert]
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Contributions

equivalence par-regularity and reach
Hausdorff distance between 9X and 9,X for sets with positive reach

in 3D, localization of non-manifold places of 9,X

=

in nD, localization and quantification of non-injective places of {5x
from 9, X to OX

5. a multigrid convergent digital surface integration scheme in nD
=-convergent local area estimator given convergent normal estimator
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Properties of Gauss digitized shapes, digital surface integration

@ Properties of Gauss digitized sets
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Par-regularity and positive reach

Lemma

Let X be a d-dimensional compact domain of RY. Then

reach(0X) > R & VR <R, X is par(R')-regular.
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Par-regularity and positive reach

Lemma

Let X be a d-dimensional compact domain of RY. Then

reach(0X) > R & VR <R, X is par(R')-regular.

If X has positive reach greater than R, then, for R” < R and x € X,
there are inside and outside osculating balls of radius R’ at x. J
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Hausdorff distance between continuous and digital boundary
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Theorem

Let X be a compact domain of RY such that the reach of OX is greater than
R. Then, for any digitization step 0 < h < 2R/~\/d, the HausdorfF distance
between sets OX and O, X is less than \/Eh/ 2. More precisely:

Vx € 0X,3y € X, | x —y|| £ gh (with Eax(y) = x), 2

d
Vy € 0nX, |ly — Sox ()l < %’1 (3)

Remark that this bound is tight. The proof uses osculating balls and the fact
that 0X is at least C*.
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@ Manifoldness of digitized boundary
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Manifoldness

Non-manifold parts of digitized boundary

406

e In 3D, there are smooth shapes which are not digitized as manifolds
whatever the gridstep. [Stelldinger et al. 2007]

e Problem related to cross configurations (i.e. critical [Latecki et al])

e We locate and quantify non-manifold parts of digitized boundaries.

ud, B. Thibert Gauss digitized shapes and surface integration



Manifoldness

Manifoldness local sufficient condition

Theorem (Manifoldness sufficient condition in R3)

Let X be some compact domain of R3, with reach(9X) greater than some
positive constant R and h < 0.198R. Let y be a point of OpX.

i) If y does not belong to some 1-cell of 9,X that intersect OX, then OxX is
homeomorphic to a 2-disk around y.

ii) If y belongs to some I-cell s of 9,X such that X N's contains a point P
and if the angle a, between s and the normal to 0X at P satisfies
ay > 1.260h/R, then Oy X is homeomorphic to a 2-disk around y.

Only places where the normal is close to some axis may be non-manifold.
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Manifoldness
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Manifoldness

Main ingredients of the proof (I)

e Non-manifold parts of 9,X only at “crossed” configurations of Gx(h):

non-manifold edge i:g non-manifold vertex @W

® no @ for h < R/2 and par(R)-regularity, Theorem 13 of

[Stelldinger et al. 2007]

e Examine 0X around each 4-tuple of Z3
1 9XN dual cell =0 2,30XN dual cell #£ 0

20X N1l-cell =0 [ 39X N1-cell £ 0
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Manifoldness

Main ingredients of the proof (II)

e 2 0X intersects dual cell and X N 1-cell = 0

0. equivalence reach / par-regularity implies inside/outside osculating
balls at P
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Main ingredients of the proof (II)

e 2 0X intersects dual cell and X N 1-cell = 0

0. equivalence reach / par-regularity implies inside/outside osculating
balls at P
1. angle « at P cannot be too small when h — 0
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Manifoldness Injectiveness

Main ingredients of the proof (II)

S2

e 2 0X intersects dual cell and X N 1-cell = 0

0. equivalence reach / par-regularity implies inside/outside osculating
balls at P

1. angle « at P cannot be too small when h — 0
2. residual radius of osculating ball is R/sina
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Integration

Main ingredients of the proof (II)

S2

e 2 0X intersects dual cell and X N 1-cell = 0

0. equivalence reach / par-regularity implies inside/outside osculating
balls at P

1. angle « at P cannot be too small when h — 0

2. residual radius of osculating ball is R/sina

3. either 51 € Gp(X) or 5 & Gu(X) for < %.

sin
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Main ingredients of the proof (II)

S2

So

e 2 0X intersects dual cell and X N 1-cell = 0

0.

AW NN =

J.-O. Lachaud, B

equivalence reach / par-regularity implies inside/outside osculating
balls at P

. angle « at P cannot be too small when h — 0
. residual radius of osculating ball is R/sinc

. either & € Gy(X) or 5 ¢ Gu(X) for =1 < 26

sin 13

. balance 1 and 3 to get h < 0.198R = non-crossed.

Thibert igitized shapes and surface integration



Manifoldness

Main ingredients of the proof (II)

e 2 0X intersects dual cell and X N 1-cell = §
e 3 OX intersects dual cell and X N 1-cell # 0
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@ Injectiveness of projection
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Integration

Non-injective part of projection {gx

p==x

RS

I N\

|
~=

e projection £yx defines a natural relation between 9,X and 0X.
e this projection is not everywhere injective
e we wish to know where and to quantify this part

e we will thus be able to prove the convergence of digital surface
integration
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Size of non-injective part of £yx

The set mult(9X) defines the part of X where the projection is not injective.

mult(9X) := {x € 9X,s.t. y1,y2 € "X, y1 # y2, £(y1) = &(y2) = x}.

Theorem

If h < R/\/d, then one has
Area(mult(0X)) < Ki(h) Area(0X) h,

where

8d2 d2 4d+1
Ka(h) = =+ O(h) < o —.
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Size of non-injective part of £yx

RN W=
OHTIBSBR

The set mult(9X) ¢ ion is not injective.

) =£&(y2) = x}-

mult(9X) = {x

{
Theorem \

If h < R//d, the

where
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Some elements of the proof (I)
n(x)
|

/O\
X

—— np(y)

\

® since h < R/\/H former theorem implies dy(9X, 9pX) < \/gh/Q, and
restriction of £ to 9pX is surjective

o let mult(9,X) := &~ (mult(9X))
e then & : 9pX \ mult(9xX) — 90X \ mult(0X) is one-to-one.

J.-O. Lachaud, B. Thibert
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Some elements of the proof (I)
n(x)
|

/—'\_,.-/O\
X

—— np(y)

\

® since h < R/\/H former theorem implies dy(9X, 9pX) < \/gh/Q, and
restriction of £ to 9pX is surjective

o let mult(9,X) := &~ (mult(9X))
e then & : 9pX \ mult(9xX) — 90X \ mult(0X) is one-to-one.
e Difficulty: mult(0X) will be small but mult(9,X) is maybe not negligible.
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Some elements of the pro;\){(,(jl)

/—.\_,a-/o\
X

———— ni(y)

\

1. Scalar product between normals of 9,X and 90X > —@h.
Use the fact that n are Lipschitz over X (explicit [Federer59]).
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Some elements of the pro;\){(,(jl)

/—.\_,a-/o\
X

———— ni(y)

\

1. Scalar product between normals of 9,X and 90X > —@h.
Use the fact that n are Lipschitz over X (explicit [Federer59]).

2. Then mult(9X) C £(P(h)), with P(h) :={y € 9nX, n(&(y)) - nn(y) < 0}
Observe the intersections of segment n(x) with faces of 9,X.
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Some elements of the pro;\g{(,(jl)

/—.\_,a-/o\
X

———— ni(y)

\

1. Scalar product between normals of 9,X and 90X > —@h.
Use the fact that n are Lipschitz over X (explicit [Federer59]).

2. Then mult(9X) C £(P(h)), with P(h) :={y € 9nX, n(&(y)) - nn(y) < 0}
Observe the intersections of segment n(x) with faces of 9,X.

3. The jacobian of £ at y is & [n(&(y)) - na(y)|, hence the jacobian of its
restriction to P(h) is in O(h).
Use geometric measure theory on D¢ and |ly — &(y)|| < v/dh/2, [Morvanos]
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Integration

Some elements of the pro;\g{(,(jl)

/—.\_,a-/o\
X

———— ni(y)

\

1. Scalar product between normals of 9,X and 90X > —@h.
Use the fact that n are Lipschitz over X (explicit [Federer59]).

2. Then mult(9X) C £(P(h)), with P(h) :={y € 9nX, n(&(y)) - nn(y) < 0}
Observe the intersections of segment n(x) with faces of 9,X.

3. The jacobian of £ at y is & [n(&(y)) - na(y)|, hence the jacobian of its
restriction to P(h) is in O(h).
Use geometric measure theory on D¢ and ||y — £(y)|| < v/dh/2, [Morvanos]
4. We conclude that Area(mult(9X)) is in O(h).
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Integration

Properties of Gauss digitized shapes, digital surface integration

@ Digital surface integration
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Integration

Digital surface integral

Let Z C (hZ)? be a digital set. Let f : R? — R be an integrable function and #
be a digital normal estimator. We define the digital surface integral by

DIN(f,Z,f):= > h*HF(e)[A(e) - n(e),

d—1-cellced|Z]y

where ¢ is the centroid of the (d — 1)-cell ¢ and n(¢) is its trivial normal as a
point on the h-boundary 9,X.

J.-O. Lachaud, B. Thibert igitized shapes and surface integration



Digital surface integral

Let Z C (hZ)? be a digital set. Let f : R? — R be an integrable function and #
be a digital normal estimator. We define the digital surface integral by

DIy(f,Z,f) = > hITH(O)IR(E) - n(e),

d—1-cellced|Z]y

where ¢ is the centroid of the (d — 1)-cell ¢ and n(¢) is its trivial normal as a
point on the h-boundary 9,X.

Theorem

Let X be a compact domain where X has reach greater than R. For h < id,
the digital integral is multigrid convergent toward the integral over 0.X.

‘/@X f(x)dx — DI4(f, Ga(X), )

< Area(dX) [Iflne (O(h) + O(/IA = nllest))-

J.-O. Lachaud, B. Thibert igitized shapes and surface integration



Integration

Steps of the proof

1. First [, f(x)dx = fBX\mult(BX) f(x)dx + Ki(h)Area(0X)||f] o h.

(size of non injective part).

J.-O. Lachaud, B. Thibert Gauss digitized shapes and surface integration



Integration

Steps of the proof

1. First [, f(x)dx = fBX\mult(BX) f(x)dx + Ki(h)Area(0X)||f] o h.
(size of non injective part).

2. Then, fosimute(ox) F (V= o v muno,x) F(EX))E()dy-
(diffeomorphism of £ + change of variable formula)
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Steps of the proof

1. First [, f(x)dx = faX\mult(BX) f(x)dx + Ki(h)Area(0X)||f] o h.
(size of non injective part).

2. Then, fosimute(ox) F (V= o v muno,x) F(EX))E()dy-
(diffeomorphism of £ + change of variable formula)

3 | Fopermatntone) FEODEWdY = [ x FEDEW)dy| <
Area(9X) w ||f]lec O(h)
(multiplicity ae bounded by p := d|v/d + 1] and coarea formula)

Integration
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Integration

Steps of the proof

1. First [, f(x)dx = faX\mult(BX) f(x)dx + Ki(h)Area(0X)||f] o h.

(size of non injective part).

2. Then, fBX\mult(BX) Fx)dx = thX\mult(ahX FELNEW)dy-
(diffeomorphism of £ + change of variable formula)

3 | oo FEONEWIdY = [ FEONE)dy| <
Area(0X) p [|f]ls O(h)
(multiplicity ae bounded by p := d|v/d + 1] and coarea formula)
4 [oxf £(y))£(y)dy =
Joux FEWDINE(Y)) - na(y)ldy + [[f]lec Area(0X) O(h).
(Jacoblan property and upper bound on 9,X area)
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Integration

Steps of the proof

1.

First [ F(x)dX = [ox mute(ox) F(X)dx + Ki(h)Area(0X)||f || h.

(size of non injective part).

Then, f@X\mult(BX) f(x)dx = thX\mult(ahX f(E(x))E(y)dy.
(diffeomorphism of £ + change of variable formula)

[ opxvmaeion) FEWNEWY = [, FEWEW)dY| <
Area(0X) pu [|f]lo O(h)
(multiplicity ae bounded by p := d|v/d + 1] and coarea formula)

o f f(y))ﬁ(y)dy—

Jox FEWNINEY)) - nn(y)ldy + [[f[|oc Area(0X) O(h).
(Jacoblan property and upper bound on 9,X area)

[ o, FELDINE)) - mo(y)dy — DL(F,Ga(X). &
Area(@X) (Lip(1)O(h) + |l O((1A — nllex)-
(sum cell by cell plus error between n(£(y)) and fi(c))
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Experimental evaluation

1 T

e
01
0.01 F etk K X T
o
0.001 T
0.0001
1e-05 ¢ e naive digital area ——
L integration with trivial normal t=2 -
- integration with trivial normal t=5 -
1e-06 | mlegrat\on with VCM R=5, r=3, alpha=0.5 1
F integration with li r= 3, alpha=0.5 -
integration with true normal -
o(h"2) -~
1e-07 .
0.01 0.1 1

Area estimation error of the digital surface integral with several digital normal
estimators. The shape of interest is 3D ellipsoid of half-axes 10, 10 and 5, for
which the area has an analytical formula giving A ~ 867.188270334505. The
abscissa is the gridstep h at which the ellipsoid is sampled by Gauss digitization.
For each normal estimator, the digital surface integral A is computed with

f =1, and the relative area estimation error % is displayed in logscale.
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