

Properties of Gauss digitized shapes and digital surface integration

Jacques-Olivier Lachaud

Laboratory of Mathematics

CNRS / University Savoie Mt Blanc

Boris Thibert

Laboratory Jean Kuntzman

CNRS / University J. Fourier

July 8th, 2015
Autrans, DigitalSnow

LAMA
Laboratoire de Mathématiques
Université de Savoie

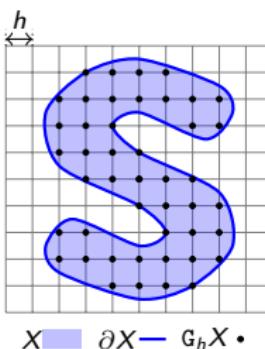
UMR 5127

Properties of Gauss digitized shapes, digital surface integration

- 1 Context and objectives
- 2 Properties of Gauss digitized sets
- 3 Manifoldness of digitized boundary
- 4 Injectiveness of projection
- 5 Digital surface integration

Properties of digitized shapes

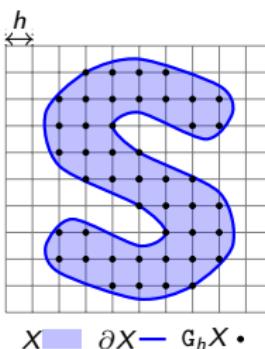
- **digitization** : any function that maps a subset $X \subset \mathbb{R}^d$ to a subset of $h \cdot \mathbb{Z}^d$, h is the sampling gridstep.



- **Question:** what are topological and geometric properties kept by digitization ?

Properties of digitized shapes

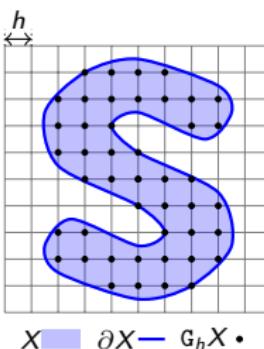
- **digitization** : any function that maps a subset $X \subset \mathbb{R}^d$ to a subset of $h \cdot \mathbb{Z}^d$, h is the sampling gridstep.



- **Question:** what are topological and geometric properties kept by digitization ?
- Specialized version of sampling problem

Properties of digitized shapes

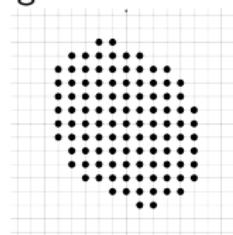
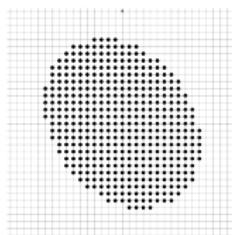
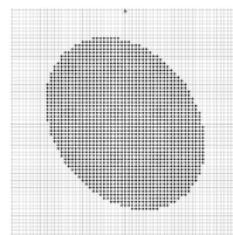
- **digitization** : any function that maps a subset $X \subset \mathbb{R}^d$ to a subset of $h \cdot \mathbb{Z}^d$, h is the sampling gridstep.



- **Question:** what are topological and geometric properties kept by digitization ?
- Specialized version of sampling problem
- Almost nothing is “**kept**”, a better word is “**can be inferred**”.

The role of the sampling gridstep

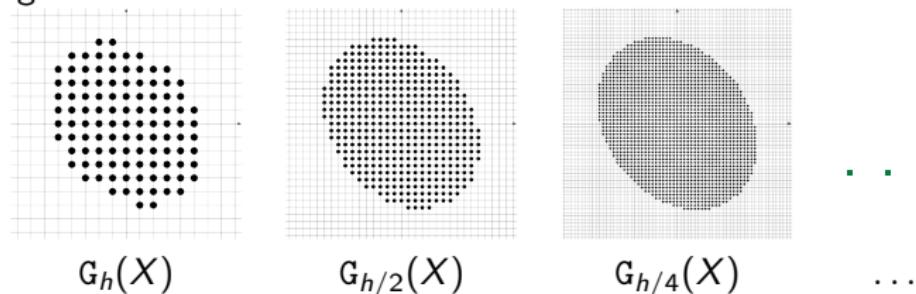
- Generally, the smaller the gridstep h the more faithful is/looks the digitization

 $G_h(X)$  $G_{h/2}(X)$  $G_{h/4}(X)$

...

The role of the sampling gridstep

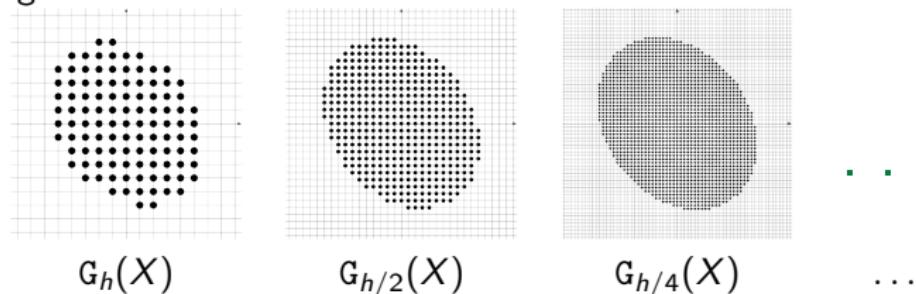
- Generally, the smaller the gridstep h the more faithful is/looks the digitization



- most topology preservation results are valid for **specific** subsets of \mathbb{R}^d , and for **small enough gridstep**.

The role of the sampling gridstep

- Generally, the smaller the gridstep h the more faithful is/looks the digitization

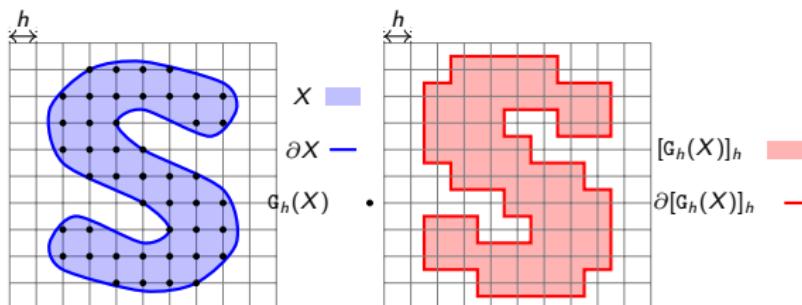


- most topology preservation results are valid for **specific** subsets of \mathbb{R}^d , and for **small enough gridstep**.
- digital geometric quantities **approach** their Euclidean counterpart as the gridstep **tend to zero**, also for **specific** subsets of \mathbb{R}^d .
⇒ multigrid convergence [Pavlidis 1982, Serra 1982]

Digitizations process

Definition (Gauss digitization)

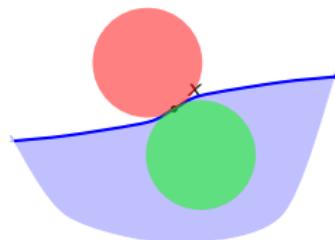
For $X \subset \mathbb{R}^d$, its Gauss digitization is $G_h(X) := X \cap h \cdot \mathbb{Z}^d$.



- $[G_h(X)]_h :=$ union of h -cubes centered on $G_h(X)$
- $\partial_h X := \partial[G_h(X)]_h :=$ boundary of previous set
- Many other digitization schemes: inner Jordan J^- and outer Jordan J^+ , Hausdorff digitizations [Ronse, Tajine 2000, Tajine, Ronse 2002]

Topology preservation of digitization

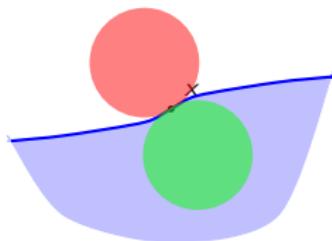
- **Question:** when is $\partial_h X$ homeomorphic to ∂X ?
- related to R -regularity or $\text{par}(R)$ -regularity [Pavlidis 1982]



- 2D results for fine enough h [Stelldinger, Köthe 2005, Latecki et al. 1998]

Topology preservation of digitization

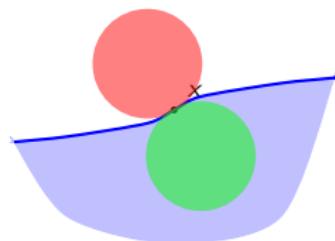
- **Question:** when is $\partial_h X$ homeomorphic to ∂X ?
- related to R -regularity or $\text{par}(R)$ -regularity [Pavlidis 1982]



- 2D results for fine enough h [Stelldinger, Köthe 2005, Latecki et al. 1998]
- But **false** starting from 3D !

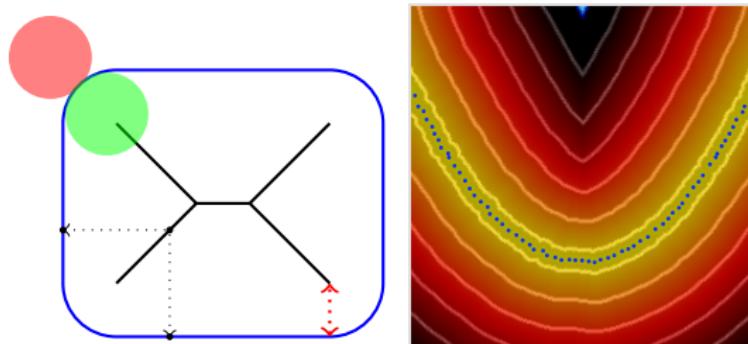
Topology preservation of digitization

- **Question:** when is $\partial_h X$ homeomorphic to ∂X ?
- related to R -regularity or $\text{par}(R)$ -regularity [Pavlidis 1982]



- 2D results for fine enough h [Stelldinger, Köthe 2005, Latecki et al. 1998]
- But **false** starting from 3D !
- Only homotopy preservation [Stelldinger, Köthe 2005]

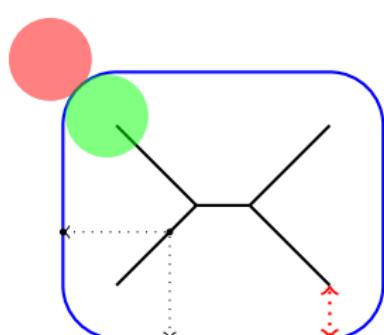
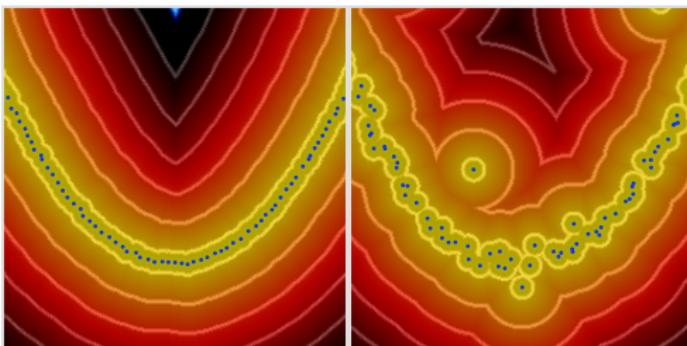
Distance and R -offset



- distance d_K to a compact set K , projection ξ_K onto K
- it is **Hausdorff stable** whatever the dimension
- **reach** of ∂X := infimum of distances to medial axis.
- homotopy stability between R -offsets of X and K , if X has positive reach, K is a dense enough sampling, suitable values of R

[Chazal, Lieutier 2008, Niyogi et al. 2008]

Distance and R -offset



- distance d_K to a compact set K , projection ξ_K onto K
- it is **Hausdorff stable** whatever the dimension
- **reach** of ∂X := infimum of distances to medial axis.
- homotopy stability between R -offsets of X and K , if X has positive reach, K is a dense enough sampling, suitable values of R

[Chazal, Lieutier 2008, Niyogi et al. 2008]

Multigrid convergence of geometric estimators

Geometric estimator $\hat{\epsilon}$ **multigrid convergent** for a family of shapes \mathbb{X} to a geom. quantity ϵ , $\exists h_0$, $\forall 0 < h < h_0$
 $\forall X \in \mathbb{X}, |\hat{\epsilon}(G_h(X)) - \epsilon(X)| \leq \tau(h)$, with $\lim_{h \rightarrow 0} \tau(h) = 0$.

- volume of a convex set X by counting [Gauss, Dirichlet]. $\tau(h) = O(h)$.
- even better bounds for C^3 -smooth strictly convex X [Huxley 1990]
- volume under monotonic functions by counting (see [Krärtle 1988, Krärtle, Nowak 1991]). $\tau(h) = O(h)$.
- 2D and 3D moments of small order [Klette, Žunić 2000]
- perimeter with MLP, ϵ -sausage or DSS segmentation [Klette, Žunić 2000] [Kovalevsky, Fuchs92] [Sloboda, Zatko 1996] [Klette, Rosenfeld 2004], pattern and polygonal approximation [Tajine, Baudrier, Mazo]
- 3D area estimation, i.e. H^2 : thickening [Stelldinger et al. 2007] (but see Weyl formula [Weyl 1939]), use Cauchy-Crofton integral formula [Liu et al. 2010]
- 3D local area estimation by integration of normals [Lenoir et al. 1996, Coeurjolly et al. 2003]

Multigrid convergence of geometric estimators

Geometric estimator $\hat{\epsilon}$ **multigrid convergent** for a family of shapes \mathbb{X} to a geom. quantity ϵ , $\exists h_0$, $\forall 0 < h < h_0$
 $\forall X \in \mathbb{X}$, $|\hat{\epsilon}(G_h(X)) - \epsilon(X)| \leq \tau(h)$, with $\lim_{h \rightarrow 0} \tau(h) = 0$.

- volume of a convex set X by counting [Gauss, Dirichlet]. $\tau(h) = O(h)$.
- even better bounds for C^3 -smooth strictly convex X [Huxley 1990]
- volume under monotonic functions by counting (see [Krärtle 1988, Krärtle, Nowak 1991]). $\tau(h) = O(h)$.

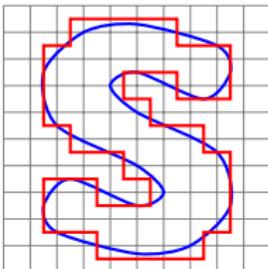
Theorem

Let X be a compact domain of \mathbb{R}^d such that the reach of ∂X is greater than ρ , and $h < \frac{\rho}{\sqrt{d}}$. Let D be any digitization such that $J_h^-(X) \subset D_h(X) \subset J_h^+(X)$.

Digital and continuous volumes follows

$$\left| \text{Vol}(X) - \widehat{\text{Vol}}(D_h(X), h) \right| \leq 2^{d+1} \sqrt{d} \text{Area}(\partial X) h. \quad (1)$$

Multigrid convergence of local geometric estimators



- slight difficulty to define it: must relate ∂X with $\partial_h X$
- 2D tangent/normal estimation: MDSS
[de Vieilleville et al. 2007, Lachaud et al. 2007], polynomial fitting
[Provot, Gérard 2011], binomial convolution
[Esbelin, Malgouyres 2009, Esbelin et al. 2011]
- 2D and 3D normals, mean and principal curvatures with integral invariants [Cœurjolly et al. 2013, Cœurjolly et al. 2014]
- n D normals with Voronoi Covariance Measure [Cuel et al. 2014]
- stability of curvature measures [Chazal, Cohen-Steiner, Lieutier, Mérigot, Thibert]

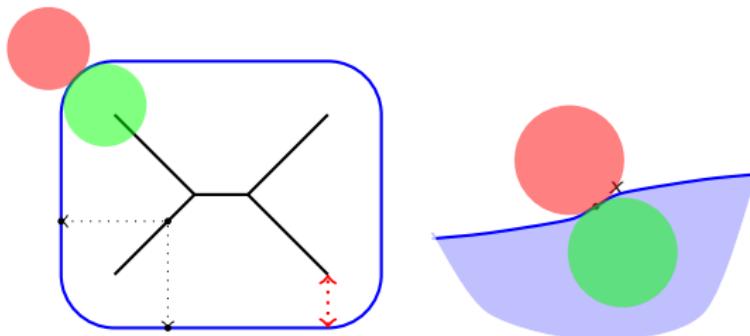
Contributions

1. equivalence par-regularity and reach
2. Hausdorff distance between ∂X and $\partial_h X$ for sets with positive reach
3. in 3D, localization of non-manifold places of $\partial_h X$
4. in n D, localization and quantification of non-injective places of $\xi_{\partial X}$ from $\partial_h X$ to ∂X
5. a multigrid convergent digital surface integration scheme in n D
⇒convergent local area estimator given convergent normal estimator

Properties of Gauss digitized shapes, digital surface integration

- 1 Context and objectives
- 2 Properties of Gauss digitized sets
- 3 Manifoldness of digitized boundary
- 4 Injectiveness of projection
- 5 Digital surface integration

Par-regularity and positive reach

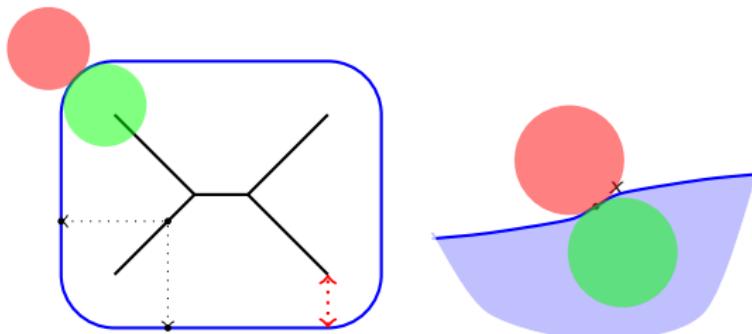


Lemma

Let X be a d -dimensional compact domain of \mathbb{R}^d . Then

$$\text{reach}(\partial X) \geq R \Leftrightarrow \forall R' < R, X \text{ is par}(R')\text{-regular.}$$

Par-regularity and positive reach



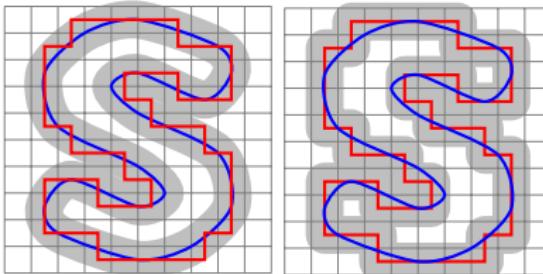
Lemma

Let X be a d -dimensional compact domain of \mathbb{R}^d . Then

$$\text{reach}(\partial X) \geq R \Leftrightarrow \forall R' < R, X \text{ is par}(R')\text{-regular.}$$

If ∂X has positive reach greater than R , then, for $R' < R$ and $x \in \partial X$, there are inside and outside osculating balls of radius R' at x .

Hausdorff distance between continuous and digital boundary



Theorem

Let X be a compact domain of \mathbb{R}^d such that the reach of ∂X is greater than R . Then, for any digitization step $0 < h < 2R/\sqrt{d}$, the Hausdorff distance between sets ∂X and $\partial_h X$ is less than $\sqrt{d}h/2$. More precisely:

$$\forall x \in \partial X, \exists y \in \partial_h X, \|x - y\| \leq \frac{\sqrt{d}}{2}h \quad (\text{with } \xi_{\partial X}(y) = x), \quad (2)$$

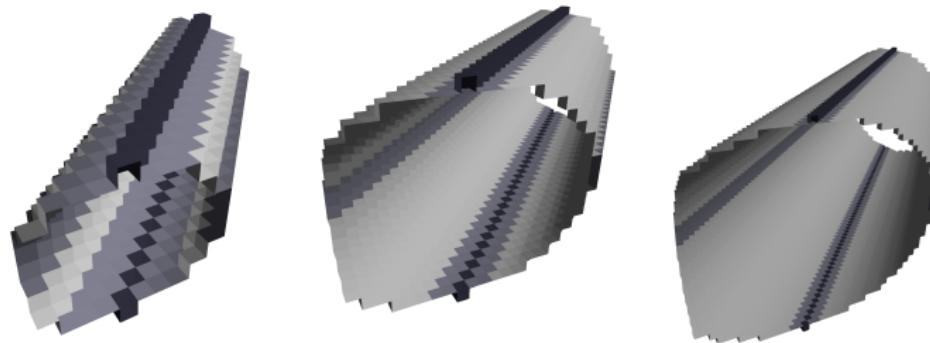
$$\forall y \in \partial_h X, \|y - \xi_{\partial X}(y)\| \leq \frac{\sqrt{d}}{2}h. \quad (3)$$

Remark that this bound is tight. The proof uses osculating balls and the fact that ∂X is at least C^1 .

Properties of Gauss digitized shapes, digital surface integration

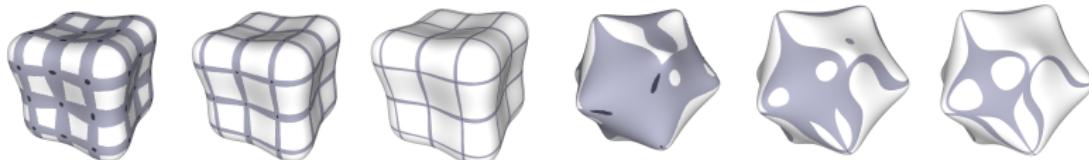
- 1 Context and objectives
- 2 Properties of Gauss digitized sets
- 3 Manifoldness of digitized boundary
- 4 Injectiveness of projection
- 5 Digital surface integration

Non-manifold parts of digitized boundary



- In 3D, there are smooth shapes which are not digitized as manifolds whatever the gridstep. [\[Stelldinger et al. 2007\]](#)
- Problem related to cross configurations (i.e. critical [\[Latecki et al.\]](#))
- We locate and quantify non-manifold parts of digitized boundaries.

Manifoldness local sufficient condition



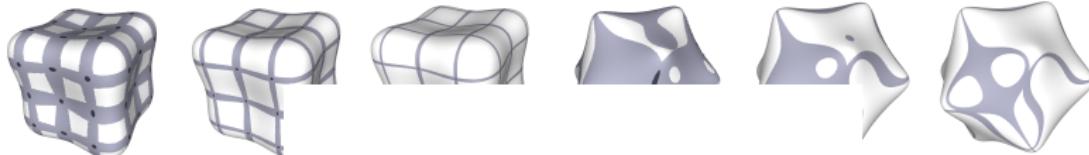
Theorem (Manifoldness sufficient condition in \mathbb{R}^3)

Let X be some compact domain of \mathbb{R}^3 , with $\text{reach}(\partial X)$ greater than some positive constant R and $h < 0.198R$. Let y be a point of $\partial_h X$.

- i) If y does not belong to some 1-cell of $\partial_h X$ that intersect ∂X , then $\partial_h X$ is homeomorphic to a 2-disk around y .
- ii) If y belongs to some 1-cell s of $\partial_h X$ such that $\partial X \cap s$ contains a point P and if the angle α_y between s and the normal to ∂X at P satisfies $\alpha_y \geq 1.260h/R$, then $\partial_h X$ is homeomorphic to a 2-disk around y .

Only places where the normal is close to some axis may be non-manifold.

Manifoldness local sufficient condition



Theorem (Manifoldness)

Let X be some compact set in \mathbb{R}^3 and let h be some positive constant R

- i) If y does not belong to X and if $\partial_h X$ is homeomorphic to ∂X , then $\partial_h X$ is a manifold.
- ii) If y belongs to X and if the angle α_y between the two normal vectors to $\partial_h X$ at y is such that $\alpha_y \geq 1.260h/F$, then $\partial_h X$ is a manifold.

Only places where the angle α_y is less than $1.260h/F$ are non-manifold.

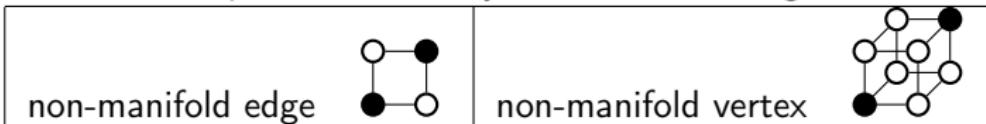
Let X be some compact set in \mathbb{R}^3 and let h be some positive constant R .

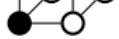
If y belongs to X and if the angle α_y between the two normal vectors to $\partial_h X$ at y is such that $\alpha_y \geq 1.260h/F$, then $\partial_h X$ is a manifold.

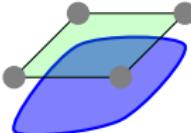
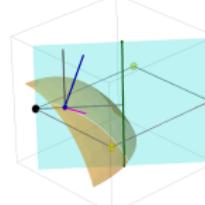
Only places where the angle α_y is less than $1.260h/F$ are non-manifold.

Main ingredients of the proof (I)

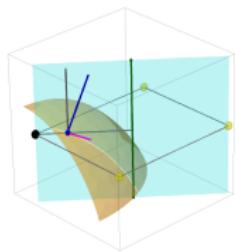
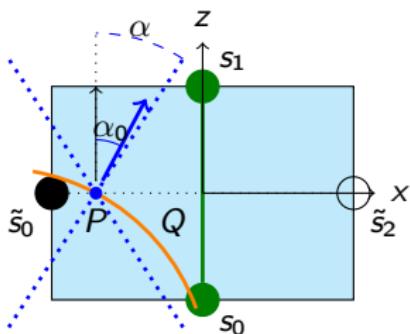
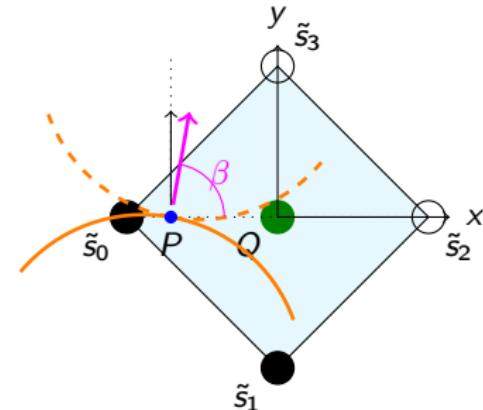
- Non-manifold parts of $\partial_h X$ only at “crossed” configurations of $G_X(h)$:



- no  for $h < R/2$ and $\text{par}(R)$ -regularity, Theorem 13 of [Stelldinger et al. 2007]
- Examine ∂X around each 4-tuple of \mathbb{Z}^3

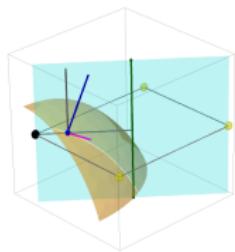
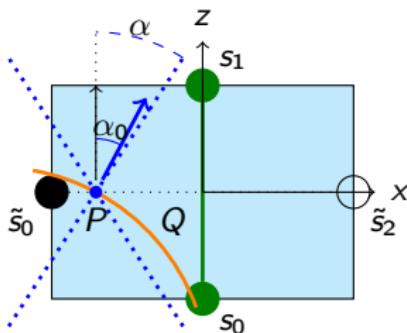
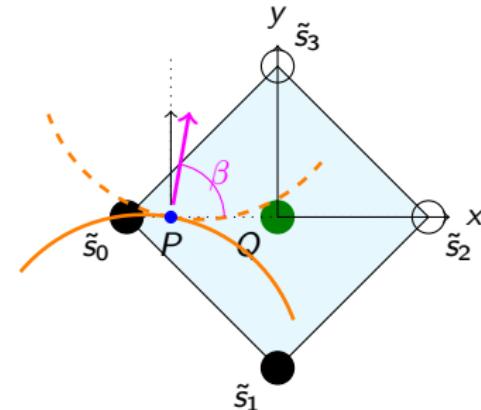
$1 \partial X \cap \text{dual cell} = \emptyset$	$2, 3 \partial X \cap \text{dual cell} \neq \emptyset$
	
$2 \partial X \cap 1\text{-cell} = \emptyset$	$3 \partial X \cap 1\text{-cell} \neq \emptyset$

Main ingredients of the proof (II)



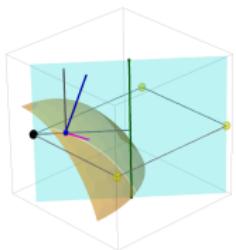
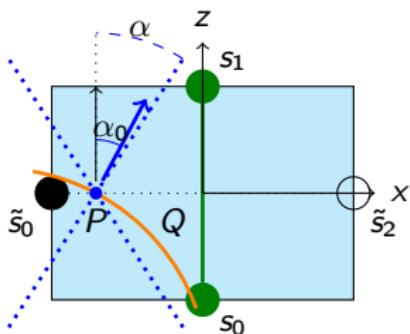
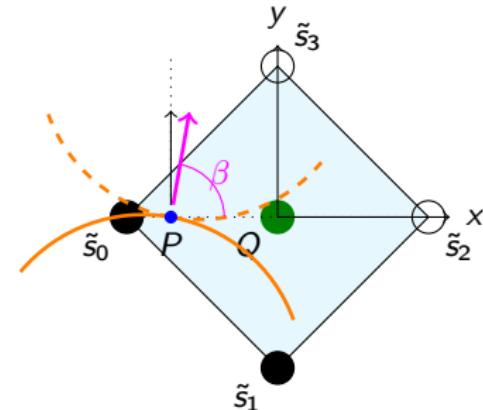
- 2 ∂X intersects dual cell and $\partial X \cap 1\text{-cell} = \emptyset$
 0. equivalence reach / par-regularity implies inside/outside osculating balls at P

Main ingredients of the proof (II)



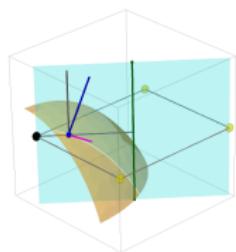
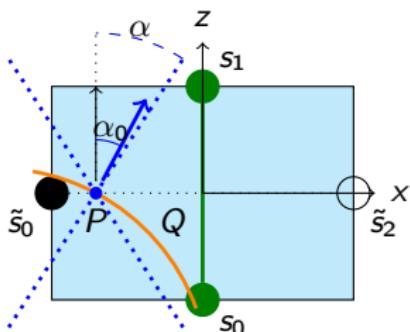
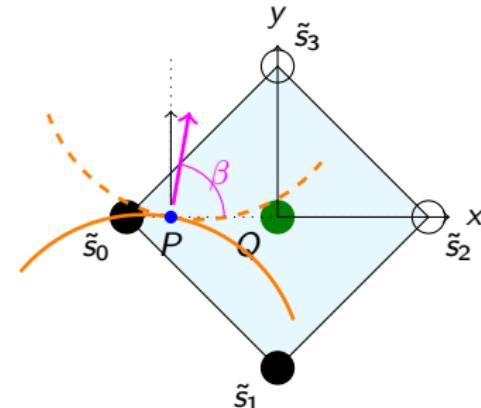
- 2 ∂X intersects dual cell and $\partial X \cap 1\text{-cell} = \emptyset$
 0. equivalence reach / par-regularity implies inside/outside osculating balls at P
 1. angle α at P cannot be too small when $h \rightarrow 0$

Main ingredients of the proof (II)



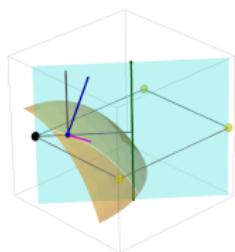
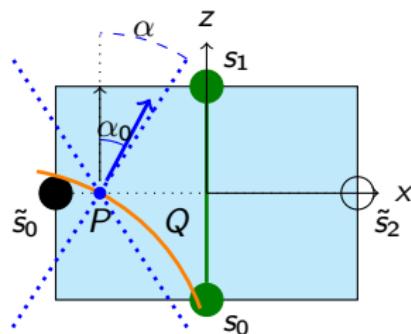
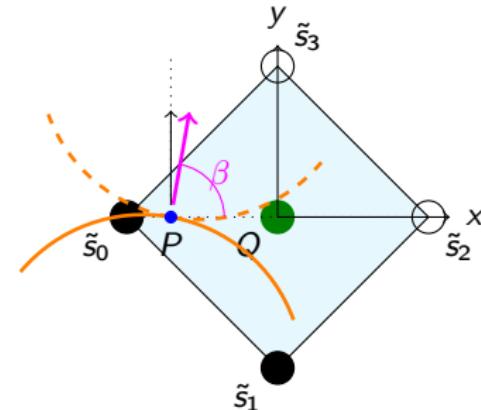
- 2 ∂X intersects dual cell and $\partial X \cap 1\text{-cell} = \emptyset$
 0. equivalence reach / par-regularity implies inside/outside osculating balls at P
 1. angle α at P cannot be too small when $h \rightarrow 0$
 2. residual radius of osculating ball is $R/\sin\alpha$

Main ingredients of the proof (II)



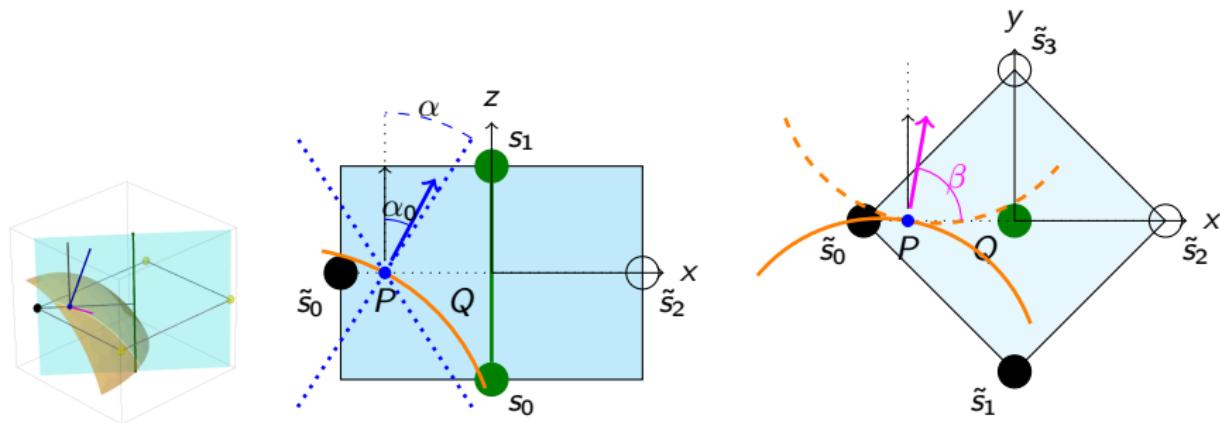
- 2 ∂X intersects dual cell and $\partial X \cap 1\text{-cell} = \emptyset$
 0. equivalence reach / par-regularity implies inside/outside osculating balls at P
 1. angle α at P cannot be too small when $h \rightarrow 0$
 2. residual radius of osculating ball is $R/\sin\alpha$
 3. either $\tilde{s}_1 \in G_h(X)$ or $\tilde{s}_2 \notin G_h(X)$ for $\frac{h}{\sin\alpha} < \frac{\sqrt{26}}{13}$.

Main ingredients of the proof (II)



- 2 ∂X intersects dual cell and $\partial X \cap 1\text{-cell} = \emptyset$
 0. equivalence reach / par-regularity implies inside/outside osculating balls at P
 1. angle α at P cannot be too small when $h \rightarrow 0$
 2. residual radius of osculating ball is $R/\sin\alpha$
 3. either $\tilde{s}_1 \in G_h(X)$ or $\tilde{s}_2 \notin G_h(X)$ for $\frac{h}{\sin\alpha} < \frac{\sqrt{26}}{13}$.
 4. balance 1 and 3 to get $h < 0.198R \Rightarrow$ non-crossed.

Main ingredients of the proof (II)

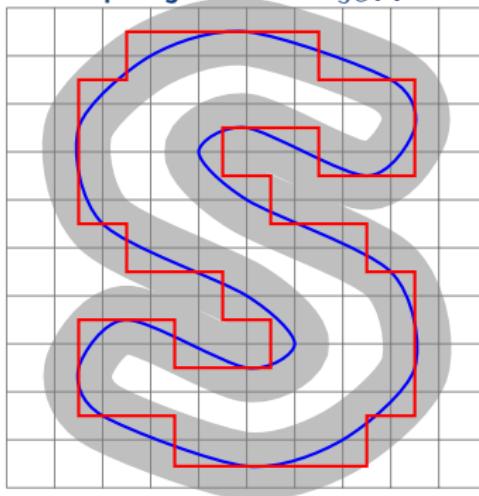


- 2 ∂X intersects dual cell and $\partial X \cap 1\text{-cell} = \emptyset$
- 3 ∂X intersects dual cell and $\partial X \cap 1\text{-cell} \neq \emptyset$

Properties of Gauss digitized shapes, digital surface integration

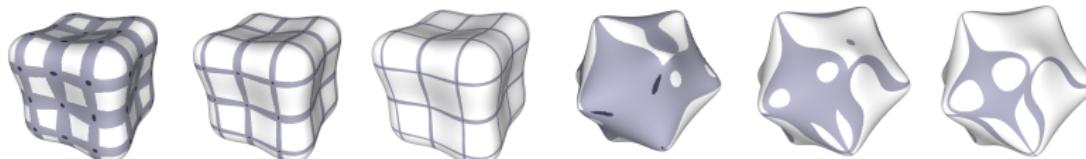
- 1 Context and objectives
- 2 Properties of Gauss digitized sets
- 3 Manifoldness of digitized boundary
- 4 Injectiveness of projection
- 5 Digital surface integration

Non-injective part of projection $\xi_{\partial X}$



- projection $\xi_{\partial X}$ defines a natural relation between $\partial_h X$ and ∂X .
- this projection is not everywhere injective
- we wish to know where and to quantify this part
- we will thus be able to prove the convergence of digital surface integration

Size of non-injective part of $\xi_{\partial X}$



The set $\text{mult}(\partial X)$ defines the part of ∂X where the projection is not injective.

$$\text{mult}(\partial X) := \{x \in \partial X, \text{s.t. } \exists y_1, y_2 \in \partial_h X, y_1 \neq y_2, \xi(y_1) = \xi(y_2) = x\}.$$

Theorem

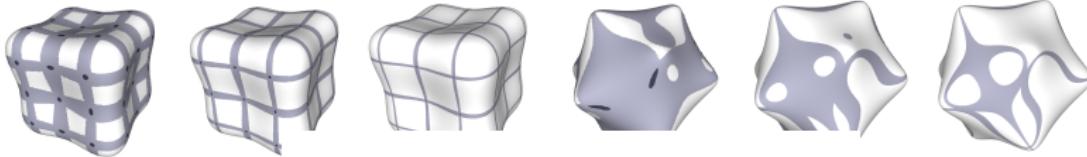
If $h \leq R/\sqrt{d}$, then one has

$$\text{Area}(\text{mult}(\partial X)) \leq K_1(h) \text{ Area}(\partial X) h,$$

where

$$K_1(h) = \frac{8d^2}{R} + O(h) \leq \frac{d^2 4^{d+1}}{R}.$$

Size of non-injective part of $\xi_{\partial X}$



The set $\text{mult}(\partial X) \subset$

$$\text{mult}(\partial X) := \{x \in$$

ion is not injective.

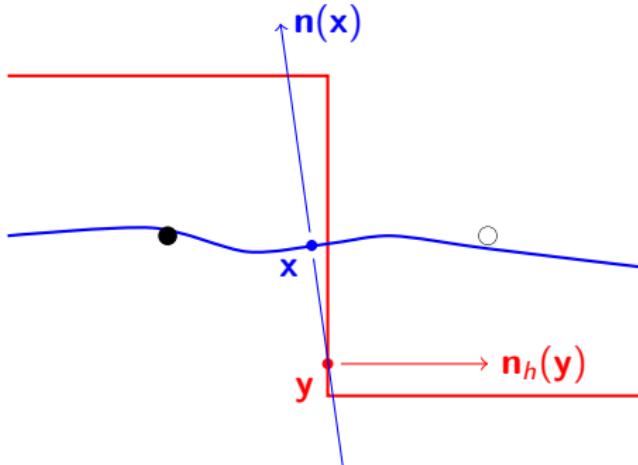
$$) = \xi(y_2) = x\}.$$

Theorem

If $h \leq R/\sqrt{d}$, then

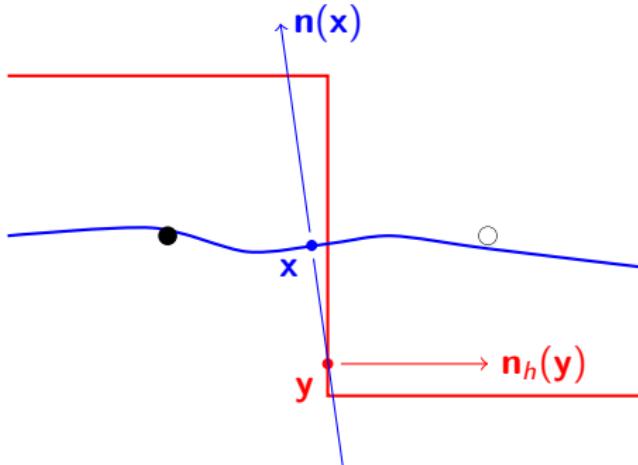
where

Some elements of the proof (I)



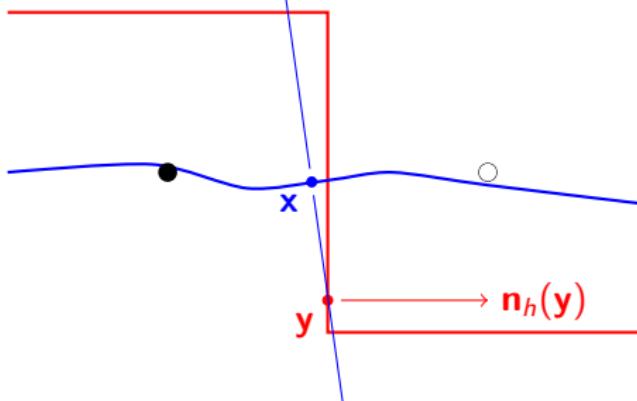
- since $h \leq R/\sqrt{d}$, former theorem implies $d_H(\partial X, \partial_h X) < \sqrt{d}h/2$, and restriction of ξ to $\partial_h X$ is surjective
- let $\text{mult}(\partial_h X) := \xi^{-1}(\text{mult}(\partial X))$
- then $\xi : \partial_h X \setminus \text{mult}(\partial_h X) \rightarrow \partial X \setminus \text{mult}(\partial X)$ is one-to-one.

Some elements of the proof (I)



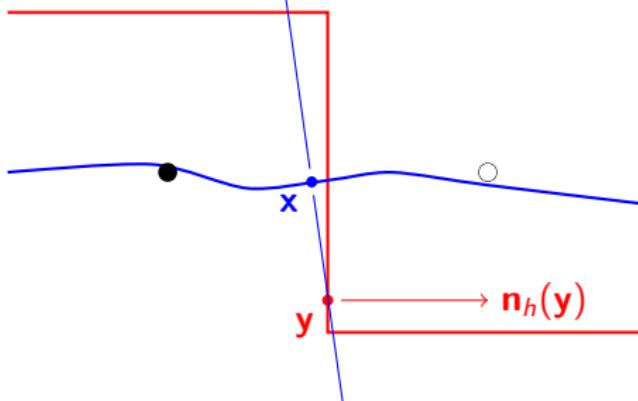
- since $h \leq R/\sqrt{d}$, former theorem implies $d_H(\partial X, \partial_h X) < \sqrt{d}h/2$, and restriction of ξ to $\partial_h X$ is surjective
- let $\text{mult}(\partial_h X) := \xi^{-1}(\text{mult}(\partial X))$
- then $\xi : \partial_h X \setminus \text{mult}(\partial_h X) \rightarrow \partial X \setminus \text{mult}(\partial X)$ is one-to-one.
- Difficulty: $\text{mult}(\partial X)$ will be small but $\text{mult}(\partial_h X)$ is maybe not negligible.

Some elements of the proof (II)



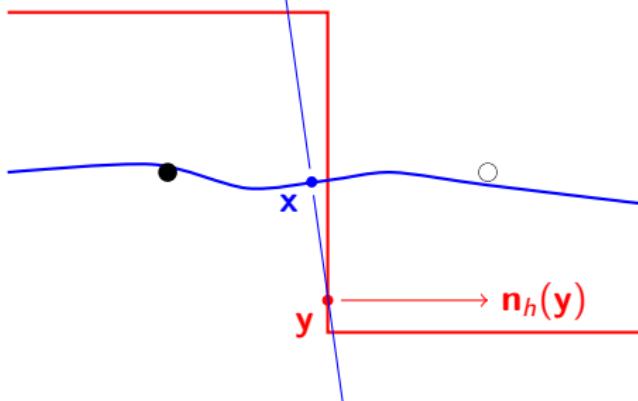
1. Scalar product between normals of $\partial_h X$ and $\partial X \geq -\frac{\sqrt{3d}}{R} h$.
Use the fact that n are Lipschitz over ∂X (explicit [Federer59]).

Some elements of the proof (II)



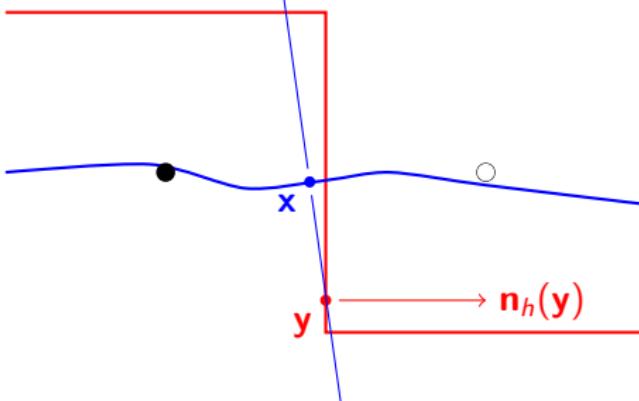
1. Scalar product between normals of $\partial_h X$ and $\partial X \geq -\frac{\sqrt{3d}}{R} h$.
Use the fact that n are Lipschitz over ∂X (explicit [Federer59]).
2. Then $\text{mult}(\partial X) \subset \xi(P(h))$, with $P(h) := \{y \in \partial_h X, n(\xi(y)) \cdot n_h(y) \leq 0\}$
Observe the intersections of segment $n(x)$ with faces of $\partial_h X$.

Some elements of the proof (II)



1. Scalar product between normals of $\partial_h X$ and $\partial X \geq -\frac{\sqrt{3d}}{R} h$.
Use the fact that n are Lipschitz over ∂X (explicit [Federer59]).
2. Then $\text{mult}(\partial X) \subset \xi(P(h))$, with $P(h) := \{y \in \partial_h X, n(\xi(y)) \cdot n_h(y) \leq 0\}$
Observe the intersections of segment $n(x)$ with faces of $\partial_h X$.
3. The jacobian of ξ at y is $\approx |n(\xi(y)) \cdot n_h(y)|$, hence the jacobian of its restriction to $P(h)$ is in $O(h)$.
Use geometric measure theory on $D\xi$ and $\|y - \xi(y)\| < \sqrt{d}h/2$, [Morvan08]

Some elements of the proof (II)



1. Scalar product between normals of $\partial_h X$ and $\partial X \geq -\frac{\sqrt{3d}}{R} h$.
Use the fact that n are Lipschitz over ∂X (explicit [Federer59]).
2. Then $\text{mult}(\partial X) \subset \xi(P(h))$, with $P(h) := \{y \in \partial_h X, n(\xi(y)) \cdot n_h(y) \leq 0\}$
Observe the intersections of segment $n(x)$ with faces of $\partial_h X$.
3. The jacobian of ξ at y is $\approx |n(\xi(y)) \cdot n_h(y)|$, hence the jacobian of its restriction to $P(h)$ is in $O(h)$.
Use geometric measure theory on $D\xi$ and $\|y - \xi(y)\| < \sqrt{d}h/2$, [Morvan08]
4. We conclude that $\text{Area}(\text{mult}(\partial X))$ is in $O(h)$.

Properties of Gauss digitized shapes, digital surface integration

- 1 Context and objectives
- 2 Properties of Gauss digitized sets
- 3 Manifoldness of digitized boundary
- 4 Injectiveness of projection
- 5 Digital surface integration

Digital surface integral

Definition

Let $Z \subset (h\mathbb{Z})^d$ be a digital set. Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be an integrable function and $\hat{\mathbf{n}}$ be a digital normal estimator. We define the *digital surface integral* by

$$\text{DI}_h(f, Z, \hat{\mathbf{n}}) := \sum_{d-1\text{-cell } c \in \partial[Z]_h} h^{d-1} f(\dot{c}) |\hat{\mathbf{n}}(\dot{c}) \cdot \mathbf{n}(\dot{c})|,$$

where \dot{c} is the centroid of the $(d-1)$ -cell c and $\mathbf{n}(\dot{c})$ is its trivial normal as a point on the h -boundary $\partial_h X$.

Digital surface integral

Definition

Let $Z \subset (h\mathbb{Z})^d$ be a digital set. Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be an integrable function and $\hat{\mathbf{n}}$ be a digital normal estimator. We define the *digital surface integral* by

$$\text{DI}_h(f, Z, \hat{\mathbf{n}}) := \sum_{d-1\text{-cell } c \in \partial[Z]_h} h^{d-1} f(\dot{c}) |\hat{\mathbf{n}}(\dot{c}) \cdot \mathbf{n}(\dot{c})|,$$

where \dot{c} is the centroid of the $(d-1)$ -cell c and $\mathbf{n}(\dot{c})$ is its trivial normal as a point on the h -boundary $\partial_h X$.

Theorem

Let X be a compact domain where ∂X has reach greater than R . For $h \leq \frac{R}{\sqrt{d}}$, the digital integral is multigrid convergent toward the integral over ∂X .

$$\left| \int_{\partial X} f(x) dx - \text{DI}_h(f, G_h(X), \hat{\mathbf{n}}) \right| \leq \text{Area}(\partial X) \|f\|_{\text{BL}} \left(O(h) + O(\|\hat{\mathbf{n}} - \mathbf{n}\|_{\text{est}}) \right).$$

Steps of the proof

1. First $\int_{\partial X} f(x)dx = \int_{\partial X \setminus \text{mult}(\partial X)} f(x)dx + K_1(h)\text{Area}(\partial X)\|f\|_\infty h$.
(size of non injective part).

Steps of the proof

1. First $\int_{\partial X} f(x)dx = \int_{\partial X \setminus \text{mult}(\partial X)} f(x)dx + K_1(h) \text{Area}(\partial X) \|f\|_\infty h$.
(size of non injective part).
2. Then, $\int_{\partial X \setminus \text{mult}(\partial X)} f(x)dx = \int_{\partial_h X \setminus \text{mult}(\partial_h X)} f(\xi(y))\xi(y)dy$.
(diffeomorphism of ξ + change of variable formula)

Steps of the proof

1. First $\int_{\partial X} f(x)dx = \int_{\partial X \setminus \text{mult}(\partial X)} f(x)dx + K_1(h)\text{Area}(\partial X)\|f\|_\infty h$.
(size of non injective part).
2. Then, $\int_{\partial X \setminus \text{mult}(\partial X)} f(x)dx = \int_{\partial_h X \setminus \text{mult}(\partial_h X)} f(\xi(y))\xi(y)dy$.
(diffeomorphism of ξ + change of variable formula)
3. $\left| \int_{\partial_h X \setminus \text{mult}(\partial_h X)} f(\xi(y))\xi(y)dy - \int_{\partial_h X} f(\xi(y))\xi(y)dy \right| \leq \text{Area}(\partial X) \mu \|f\|_\infty O(h)$
(multiplicity ae bounded by $\mu := d \lfloor \sqrt{d} + 1 \rfloor$ and coarea formula)

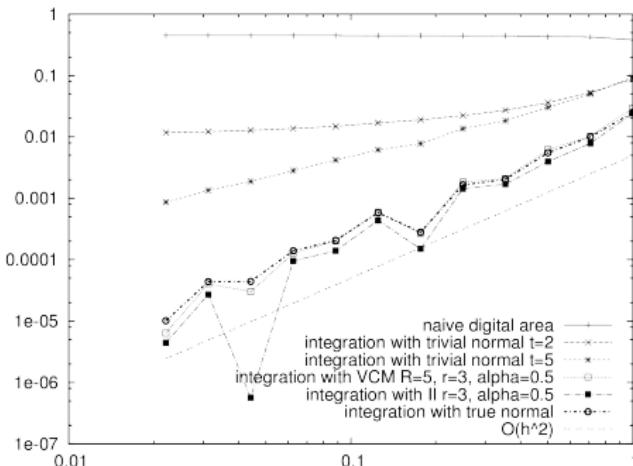
Steps of the proof

1. First $\int_{\partial X} f(x)dx = \int_{\partial X \setminus \text{mult}(\partial X)} f(x)dx + K_1(h)\text{Area}(\partial X)\|f\|_\infty h$.
(size of non injective part).
2. Then, $\int_{\partial X \setminus \text{mult}(\partial X)} f(x)dx = \int_{\partial_h X \setminus \text{mult}(\partial_h X)} f(\xi(y))\xi(y)dy$.
(diffeomorphism of ξ + change of variable formula)
3. $\left| \int_{\partial_h X \setminus \text{mult}(\partial_h X)} f(\xi(y))\xi(y)dy - \int_{\partial_h X} f(\xi(y))\xi(y)dy \right| \leq \text{Area}(\partial X) \mu \|f\|_\infty O(h)$
(multiplicity ae bounded by $\mu := d \lfloor \sqrt{d} + 1 \rfloor$ and coarea formula)
4. $\int_{\partial_h X} f(\xi(y))\xi(y)dy = \int_{\partial_h X} f(\xi(y))|\mathbf{n}(\xi(y)) \cdot \mathbf{n}_h(y)|dy + \|f\|_\infty \text{Area}(\partial X)O(h)$.
(Jacobian property and upper bound on $\partial_h X$ area)

Steps of the proof

1. First $\int_{\partial X} f(x)dx = \int_{\partial X \setminus \text{mult}(\partial X)} f(x)dx + K_1(h)\text{Area}(\partial X)\|f\|_\infty h$.
(size of non injective part).
2. Then, $\int_{\partial X \setminus \text{mult}(\partial X)} f(x)dx = \int_{\partial_h X \setminus \text{mult}(\partial_h X)} f(\xi(y))\xi(y)dy$.
(diffeomorphism of ξ + change of variable formula)
3. $\left| \int_{\partial_h X \setminus \text{mult}(\partial_h X)} f(\xi(y))\xi(y)dy - \int_{\partial_h X} f(\xi(y))\xi(y)dy \right| \leq \text{Area}(\partial X) \mu \|f\|_\infty O(h)$
(multiplicity ae bounded by $\mu := d \lfloor \sqrt{d} + 1 \rfloor$ and coarea formula)
4. $\int_{\partial_h X} f(\xi(y))\xi(y)dy = \int_{\partial_h X} f(\xi(y))|\mathbf{n}(\xi(y)) \cdot \mathbf{n}_h(y)|dy + \|f\|_\infty \text{Area}(\partial X)O(h)$.
(Jacobian property and upper bound on $\partial_h X$ area)
5. $\left| \int_{\partial_h X} f(\xi(y))|\mathbf{n}(\xi(y)) \cdot \mathbf{n}_h(y)|dy - \text{DI}_h(f, \mathcal{G}_h(X), \hat{\mathbf{n}}) \right| \leq \text{Area}(\partial X) \left(\text{Lip}(f)O(h) + \|f\|_\infty O(\|\hat{\mathbf{n}} - \mathbf{n}\|_{\text{est}}) \right)$.
(sum cell by cell plus error between $\mathbf{n}(\xi(y))$ and $\hat{\mathbf{n}}(c)$)

Experimental evaluation



Area estimation error of the digital surface integral with several digital normal estimators. The shape of interest is 3D ellipsoid of half-axes 10, 10 and 5, for which the area has an analytical formula giving $A \approx 867.188270334505$. The abscissa is the gridstep h at which the ellipsoid is sampled by Gauss digitization. For each normal estimator, the digital surface integral \hat{A} is computed with $f = 1$, and the relative area estimation error $\frac{|\hat{A} - A|}{A}$ is displayed in logscale.

F. Chazal and A. Lieutier.

Smooth manifold reconstruction from noisy and non-uniform approximation with guarantees.
Computational Geometry, 40(2):156–170, 2008.

D. Coeurjolly, F. Flin, O. Teytaud, and

L. Tougne.

Multigrid convergence and surface area estimation.

In *Geometry, morphology, and computational imaging*, pages 101–119. Springer, 2003.

D. Coeurjolly, J.-O. Lachaud, and J. Levraud.

Integral based curvature estimators in digital geometry.

In *Discrete Geometry for Computer Imagery*, number 7749 in *LNCS*, pages 215–227. Springer, 2013.

D. Coeurjolly, J.-O. Lachaud, and J. Levraud.

Multigrid convergent principal curvature estimators in digital geometry.

Computer Vision and Image Understanding, (0):–, 2014.

In Press, Corrected Proof, Available online 9 May 2014.

L. Cuel, J.-O. Lachaud, and B. Thibert.

Voronoi-based geometry estimator for 3d digital surfaces.

In *Proc. Discrete Geometry for Computer Imagery (DGCI'2014)*, Sienna, Italy, Lecture Notes in Computer Science. Springer, 2014.

F. de Vieilleville, J.-O. Lachaud, and

F. Feschet.

Maximal digital straight segments and convergence of discrete geometric estimators.
Journal of Mathematical Image and Vision, 27(2):471–502, February 2007.

H.-A. Esbelin and R. Malgouyres.

Convergence of binomial-based derivative estimation for c^2 -noisy discretized curves.
In Proc. 15th DGCI, volume 5810 of *LNCS*, pages 57–66. 2009.

H.-A. Esbelin, R. Malgouyres, and C. Cartade.

Convergence of binomial-based derivative estimation for c^2 noisy discretized curves.

Theoretical Computer Science, 412(36):4805–4813, 2011.

H. Federer.

Curvature measures.

Trans. Amer. Math. Soc., 93(3):418–491, 1959.

H. Federer

Geometric measure theory.

Springer, 1969.

M. N. Huxley.

Exponential sums and lattice points.

Proc. London Math. Soc., 60:471–502, 1990.

R. Klette and A. Rosenfeld.

Digital Geometry: Geometric Methods for Digital Picture Analysis.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

- **R. Klette and J. Žunić.**
Multigrid convergence of calculated features in image analysis.
Journal of Mathematical Imaging and Vision, 13(3):173–191, 2000.
- **J.-O. Lachaud, A. Vialard, and F. de Vieilleville.**
Fast, accurate and convergent tangent estimation on digital contours.
Image and Vision Computing, 25(10):1572 – 1587, 2007.
- **L. J. Latecki.**
3D well-composed pictures.
Graphical Models and Image Processing, 59(3):164–172, May 1997.
- **L. J. Latecki, C. Conrad, and A. Gross.**
Preserving topology by a digitization process.
Journal of Mathematical Imaging and Vision, 8(2):131–159, mar 1998.
- **A. Lenoir, R. Malgouyres, and M. Revenu.**
Fast computation of the normal vector field of the surface of a 3-d discrete object.
In Discrete Geometry for Computer Imagery, pages 101–112. Springer, 1996.
- **Y.-S. Liu, J. Yi, H. Zhang, G.-Q. Zheng, and J.-C. Paul.**
Surface area estimation of digitized 3d objects using quasi-monte carlo methods.
Pattern Recognition, 43(11):3900 – 3909, 2010.
- **P. Niyogi, S. Smale, and S. Weinberger.**
Finding the homology of submanifolds with high confidence from random samples.
Discrete & Computational Geometry, 39(1-3):419–441, 2008.
- **T. Pavlidis.**
Algorithms for graphics and image processing.
Computer science press, 1982.
- **L. Provot and Y. Gérard.**
Estimation of the derivatives of a digital function with a convergent bounded error.
In Discrete Geometry for Computer Imagery, pages 284–295. Springer, 2011.
- **C. Ronse and M. Tajine.**
Discretization in hausdorff space.
Journal of Mathematical Imaging and Vision, 12(3):219–242, 2000.
- **J. Serra.**
Image analysis and mathematical morphology.
Academic Press, 1982.
- **P. Stelldinger and U. Köthe.**
Towards a general sampling theory for shape preservation.
Image and Vision Computing, 23(2):237–248, 2005.

P. Stelldinger, L. J. Latecki, and M. Siqueira.

Topological equivalence between a 3d object
and the reconstruction of its digital image.
*IEEE Transactions on Pattern Analysis and
Machine Intelligence*, 29(1):126–140, 2007.

M. Tajine and C. Ronse.

Topological properties of hausdorff
discretization, and comparison to other
discretization schemes.
Theoretical Computer Science, 283(1):243–268,
2002.

H. Weyl.

On the volume of tubes,
American Journal of Mathematics,
61(2):461–472, 1939.