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@ Modélisation phase-field de la croissance cristalline
@ Simulation de la métamorphose de la neige
© Implantation

0 Applications
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Métamorphose de blocs de neige
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Représentation implicite de |'interface

3!

F(t) :=={x; ¢(x,t) =0}
avec ¢(x, 0) = dist(x, [(0)).
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Représentation implicite de |'interface

3!

F(t) :=={x; ¢(x,t) =0}
avec ¢(x, 0) = dist(x, [(0)).

Propriétés géométriques de la fonction

distance

d(x, t) := dist(x, [(t))
Si I'(t) est de classe C? :
o 7i(x,t) = Vd(x,t) sur [(t),
o K(x,t) = Ad(x,t) sur (t).
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Représentation implicite de |'interface

3!

F(t) :=={x; ¢(x,t) =0}
avec ¢(x, 0) = dist(x, [(0)).

Propriétés géométriques de la fonction

distance

d(x, t) := dist(x, [(t))
Si I'(t) est de classe C? :
o 7i(x,t) = Vd(x,t) sur [(t),
o K(x,t) = Ad(x,t) sur (t).

Dynamique de I'interface

0 _ Pvo — Puso (1 + doAd(x, t))

ot Pice
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Interface diffuse - Phase-Field

Champ de phase

d(x, t))

&

us(x,t) :=gq (

avec q(s) := % (1 — tanh (%))

r(t) = {x poue(x, t) = %}
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Interface diffuse - Phase-Field

u: ~0

Champ de phase

d(x, t))

&

us(x,t) :=gq (

avec q(s) := % (1 — tanh (g))

Profil et potentiel double-puits

+oo
Sl / 2@ + W] dss 2= =0, 1) = 1, 00 =1
avec W(s) := %52(1 —5)2.
0 q'(s)=—/2W(q(s)), q"(s)=W (q(s)).

R. DENIS (Université Savoie Mont Blanc) DigitalSnow 08/07/2015



Dynamique de I'interface

Dérivation

(
ot (1) = %q,(
2 (
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Dynamique de I'interface

Dérivation

u oz 1 v = Pvam 1L
 (x,t) = doC 220 (Aug(x, - ZW (ug)) o= Pro 2 W (ue)

ot Pice Pice €
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Dynamique de I'interface

Dérivation

1 — 1
%us (x,t) = 50(_'”750 (Aug(x, t) — —2W/(u€)) 4+ cPvo = Prso 2 /2W(u:)
t Pice £ Pice €

ou i Ve 1 / vo — Puvsg 1 .
T (x, 1) = o0 (Aus,,-(x, - SwW (uE’,-)) y BP0 HW(ue,), i=1,...,N

ot Pice Pice €
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Equation d’'Allen-Cahn

Simplification pyg = pusg

%(x, £) = 50c% (Au,-(x, £ — éw’(.;,-)) L i=1,...,N 1)
1ce
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Equation d’'Allen-Cahn

Simplification p,y = pvsg < Allen-Cahn
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Equation d’'Allen-Cahn

Simplification p,y = pvsg < Allen-Cahn

Ou;j
ot

v
Propriétés attendues

@ Conservation du volume de chaque grain : Vj(t) := fQ ui(x,t)dx = V(0), Vi=1,...N,

(x,t) = Auj(x, t) — 6izw’(u,-), i=1,...,N (1)

@ Non-chevauchement des grains : Zi ui(x,t) =1, VxeQ.
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Equation d’'Allen-Cahn

Simplification p,y = pvsg < Allen-Cahn

Ou;j

1 _
ot (x,t) = Aui(x, t) — 6—2W (ui), i=1,...,N (1)

v

Propriétés attendues

@ Conservation du volume de chaque grain : Vj(t) := fQ ui(x,t)dx = V(0), Vi=1,...N,

@ Non-chevauchement des grains : Zi ui(x,t) =1, VxeQ.

v

Multiplicateur de Lagrange

%(x, t) = Aui(x, t) — E%W(u,-(x, t)) + pin/2W (ui(x, t)) + A(x) (2)
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Equation d’'Allen-Cahn

Simplification p,y = pvsg < Allen-Cahn

Ou;j

1 _
ot (x,t) = Aui(x, t) — 6—2W (ui), i=1,...,N (1)

v

Propriétés attendues

@ Conservation du volume de chaque grain : Vj(t) := fQ ui(x,t)dx = V(0), Vi=1,...N,

@ Non-chevauchement des grains : Zi ui(x,t) =1, VxeQ.

v

Multiplicateur de Lagrange

%(x, t) = Aui(x, t) — E%W(u,-(x, t)) + pin/2W (ui(x, t)) + A(x) (2)

(1) %fﬂ ui(x,t)dx =0, Vi,
Q) .u(x,t)=1, VxeQ
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Equation d’'Allen-Cahn

Simplification p,y = pvsg < Allen-Cahn

Ou;j

1 _
ot (x,t) = Aui(x, t) — 6—2W (ui), i=1,...,N (1)

v

Propriétés attendues

@ Conservation du volume de chaque grain : Vj(t) := fQ ui(x,t)dx = V(0), Vi=1,...N,

@ Non-chevauchement des grains : Zi ui(x,t) =1, VxeQ.

v

Multiplicateur de Lagrange

%(x, t) = Aui(x, t) — E%W(u,-(x, t)) + pin/2W (ui(x, t)) + A(x) (2)

(1) % fQ ui(x,t)dx =0, Vi,
Q Zi ui(x,t) =1, Vx€Q <+— % Zi ui(x,t) =0, si Zl. ui(x,t0) =1
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Equation d’'Allen-Cahn

Simplification p,y = pvsg < Allen-Cahn

Ou;j

1 _
ot (x,t) = Aui(x, t) — 6—2W (ui), i=1,...,N (1)

v

Propriétés attendues

@ Conservation du volume de chaque grain : Vj(t) := fQ ui(x,t)dx = V(0), Vi=1,...N,

@ Non-chevauchement des grains : Zi ui(x,t) =1, VxeQ.

Multiplicateur de Lagrange

U, £) = B, ) — S5 Wi, ) + s/ 2Wai(x, ) + M) 5

(1) %fﬂ ui(x,t)dx =0, Vi,

Q Zi ui(x,t) =1, Vx€Q <+— % Zi ui(x,t) =0, si Zl. ui(x,t0) =1
—> systéme linéaire sur p; a résoudre.
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Considérations numériques

Occupation mémoire

Pour un domaine 3D de 10003 points de discrétisation, chaque fonction champ de phase occupe
8Go de mémoire en double précision.
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Considérations numériques

Occupation mémoire

Pour un domaine 3D de 10003 points de discrétisation, chaque fonction champ de phase occupe
8Go de mémoire en double précision.

Idée

On considére uj négligeable loin du grain qu'il représente ( = {x ; u;j(x) >= 0.5} ).
On ne stocke donc que les valeurs de u; supérieures a une tolérance 7 > 0 et on arrondit a 0
celles qui sont inférieures.
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Considérations numériques

Occupation mémoire

Pour un domaine 3D de 10003 points de discrétisation, chaque fonction champ de phase occupe
8Go de mémoire en double précision.

Idée

On considére uj négligeable loin du grain qu'il représente ( = {x ; u;j(x) >= 0.5} ).
On ne stocke donc que les valeurs de u; supérieures a une tolérance 7 > 0 et on arrondit a 0
celles qui sont inférieures.

Probleme

20 a0 60 20 0 60 80 00 120

o Résurgence des phase-field a chaque points de contact multiple = occupation mémoire
élevée.

@ Présence de valeurs négatives significatives a I'échelle du domaine = perte de volume si
troncature a 7 > 0.
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Nouveaux multiplicateurs de Lagrange (avec E. Bretin)

Idée : on pondére le multiplicateur X\ par la valeur du champ de phase, afin qu'il soit négligeable
loin du grain.

%(x, t) = Auj(x,t) — EizW(u,-(X, t)) + pin/2W (ui(x, t)) + ui(x, t)A(x) 3)
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Nouveaux multiplicateurs de Lagrange (avec E. Bretin)

Formulation

Idée : on pondére le multiplicateur X\ par la valeur du champ de phase, afin qu'il soit négligeable
loin du grain.

%(x7 t) = Auj(x,t) — EizW(u,-(X, t)) + pin/2W (ui(x, t)) + ui(x, t)A(x) 3)

v

Résultat

80 00 120 80 00 120

Sur un probléme 2D de mouvement par courbure moyenne sur Q = [0, 1]” sous contraintes

Vi = % pour i =1... N, avec une résolution de 5122 N =16, e = 2, il y a en moyenne et en
chaque point du domaine, moins de 1.56 phases significatives pour 7 = 10~8, 1.31 pour
T=10"*

”
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Stockage efficace

LabelledMap (DGtal)

VL 0 ] is the data of the first set label.
VL 1 ] is the data of the second set label

if less than 4 datas and N = 3

|labels| V[0l | V[11 | ... | O |

if only 4 datas and N = 3

|labels| V[0] | V[11 | v[2] | V[3] |

if more than 4 datas and N = 3, M = 4

|labels| V[0] | V[1] | V[2] | ptr --------

| v[4]

+ — 4

v[5]

+ — 4

v[e]

+ — 4
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http://dgtal.org/doc/nightly/classDGtal_1_1LabelledMap.html

Une application basique : estimation du coefficient de condensation

Coefficient de condensation

|

1o}
2 (x, t) = 60 (Au,(x -5 W (u,)) (4)
ot Pice
avec
kT
C=ay/—2 (5)
2mm
ol on ne connait qu'une approximation grossiére du coefficient de condensation « :
103 <a<107L

|
' [
| A\

Adimensionnement

Ax?
50 C Lvso S Pvso

Pice
. £
T Ax
On connait u; au temps t = 0 et t = 28h. On simule avec le temps adimensionnalisé et on cherche

a minimiser 'erreur L1 a I'observation. La relation ci-dessus nous donne alors une estimation de «.
v

=

Université Savoie Mont Blanc) DigitalSnow



Estimation du coefficient de condensation(2)
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Autre application : pavage de R* (probléme de Kelvin).

On cherche un pavage de R3 par des cellules de volume identique et de surface minimale.
On peut s'en approcher en étudiant les partitions périodiques de [0,1]3 par N cellules, avec N
grand.

R. DEnis (Université Savoie Mont Blanc) DigitalSnow 08/07/2015 13 / 14



Fin

Merci de votre attention!
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