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Métamorphose de blocs de neige
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Représentation implicite de l’interface

~n
Γ

Level-Set

Γ(t) := {x ; ϕ(x , t) = 0}

avec ϕ(x , 0) = dist(x , Γ(0)).

Propriétés géométriques de la fonction
distance

d(x , t) := dist(x , Γ(t))

Si Γ(t) est de classe C2 :
~n(x , t) = ∇d(x , t) sur Γ(t),
K(x , t) = ∆d(x , t) sur Γ(t).

Dynamique de l’interface
∂

∂t
d(x , t) = −vn = C

ρv 0 − ρvs 0 (1 + δ0∆d(x , t))
ρice
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Interface diffuse - Phase-Field

~n
Γ ε

uε ≈ 1

uε ≈ 0
Champ de phase

uε(x , t) := q
(d(x , t)

ε

)
avec q(s) := 1

2

(
1− tanh

(
s
2

))
.

Interface

Γ(t) =
{

x ; uε(x , t) =
1
2

}
Profil et potentiel double-puits

min


+∞∫
−∞

[1
2

∣∣γ′(s)
∣∣2 + W (γ(s))

]
ds ; γ(−∞) = 0, γ(0) =

1
2
, γ(∞) = 1


avec W (s) := 1

2 s2(1− s)2.

q′ (s) = −
√

2W (q(s)), q′′ (s) = W ′ (q(s)).
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Dynamique de l’interface

Dérivation

uε(x , t) := q
(d(x , t)

ε

)
∂uε
∂t

(x , t) =
1
ε

q
′
(d
ε

)
∂d
∂t

(x , t)

∇uε(x , t) =
1
ε

q
′
(d
ε

)
∇d(x , t)

∆uε(x , t) =
1
ε2

q
′′
(d
ε

)
+

1
ε

q
′
(d
ε

)
∆d(x , t)

Équation d’évolution du champ de phase
∂uε
∂t

(x , t) = δ0C
ρvs 0
ρice

(
∆uε(x , t)−

1
ε2

W
′
(uε)
)

+ C
ρv 0 − ρvs 0

ρice

1
ε

√
2W (uε)

Équation d’évolution pour N grains

∂uε,i
∂t

(x , t) = δ0C
ρvs 0
ρice

(
∆uε,i (x , t)−

1
ε2

W
′
(uε,i )

)
+ C

ρv 0 − ρvs 0
ρice

1
ε

√
2W (uε,i ), i = 1, . . . ,N
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Équation d’Allen-Cahn

Simplification ρv 0 = ρvs0

∂ui
∂t

(x , t) = δ0C
ρvs 0
ρice

(
∆ui (x , t)−

1
ε2

W
′
(ui )
)
, i = 1, . . . ,N (1)

Propriétés attendues
1 Conservation du volume de chaque grain : Vi (t) :=

∫
Ω ui (x , t) dx ≡ V (0), ∀i = 1, . . .N,

2 Non-chevauchement des grains :
∑

i ui (x , t) = 1, ∀x ∈ Ω.

Multiplicateur de Lagrange
∂ui
∂t

(x , t) = ∆ui (x , t)−
1
ε2

W (ui (x , t)) + µi
√

2W (ui (x , t)) + λ(x) (2)

1 ∂
∂t

∫
Ω ui (x , t) dx = 0, ∀i ,

2
∑

i ui (x , t) = 1, ∀x ∈ Ω ⇐⇒ ∂
∂t
∑

i ui (x , t) = 0, si
∑

i ui (x , t0) = 1
=⇒ système linéaire sur µi à résoudre.
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Considérations numériques

Occupation mémoire
Pour un domaine 3D de 10003 points de discrétisation, chaque fonction champ de phase occupe
8Go de mémoire en double précision.

Idée
On considère ui négligeable loin du grain qu’il représente ( = {x ; ui (x) >= 0.5} ).
On ne stocke donc que les valeurs de ui supérieures à une tolérance τ ≥ 0 et on arrondit à 0
celles qui sont inférieures.

Problème

Résurgence des phase-field à chaque points de contact multiple ⇒ occupation mémoire
élevée.
Présence de valeurs négatives significatives à l’échelle du domaine ⇒ perte de volume si
troncature à τ ≥ 0.
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Nouveaux multiplicateurs de Lagrange (avec E. Bretin)

Formulation
Idée : on pondère le multiplicateur λ par la valeur du champ de phase, afin qu’il soit négligeable
loin du grain.

∂ui
∂t

(x , t) = ∆ui (x , t)−
1
ε2

W (ui (x , t)) + µi
√

2W (ui (x , t)) + ui (x , t)λ(x) (3)

Résultat

Sur un problème 2D de mouvement par courbure moyenne sur Ω = [0, 1]n sous contraintes
Vi = 1

N pour i = 1 . . .N, avec une résolution de 5122, N = 16, ε = 2, il y a en moyenne et en
chaque point du domaine, moins de 1.56 phases significatives pour τ = 10−8, 1.31 pour
τ = 10−4.
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Stockage efficace

LabelledMap (DGtal)
V[ 0 ] is the data of the first set label.
V[ 1 ] is the data of the second set label.
...

if less than 4 datas and N = 3
+------+------+------+------+------+
|labels| V[0] | V[1] | ... | 0 |
+------+------+------+------+------+

if only 4 datas and N = 3
+------+------+------+------+------+
|labels| V[0] | V[1] | V[2] | V[3] |
+------+------+------+------+------+

if more than 4 datas and N = 3, M = 4
+------+------+------+------+------+ +------+------+------+------+------+
|labels| V[0] | V[1] | V[2] | ptr --------> | V[3] | V[4] | V[5] | V[6] | ptr --------> ...
+------+------+------+------+------+ +------+------+------+------+------+
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Une application basique : estimation du coefficient de condensation

Coefficient de condensation
∂ui
∂t

(x , t) = δ0C
ρvs 0
ρice

(
∆ui (x , t)−

1
ε2

W
′
(ui )
)

(4)

avec

C = α

√
kT0
2πm

(5)

où on ne connaît qu’une approximation grossière du coefficient de condensation α :
10−3 ≤ α ≤ 10−1.

Adimensionnement

t̃ =
∆x2

δ0C ρvs 0
ρice

ε̃ =
ε

∆x
On connaît ui au temps t = 0 et t = 28h. On simule avec le temps adimensionnalisé et on cherche
à minimiser l’erreur L1 à l’observation. La relation ci-dessus nous donne alors une estimation de α.
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Estimation du coefficient de condensation(2)

Estimation

α ≈ 2.62× 10−2
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Autre application : pavage de R3 (problème de Kelvin).

On cherche un pavage de R3 par des cellules de volume identique et de surface minimale.
On peut s’en approcher en étudiant les partitions périodiques de [0, 1]3 par N cellules, avec N
grand.
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Fin

Merci de votre attention !
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