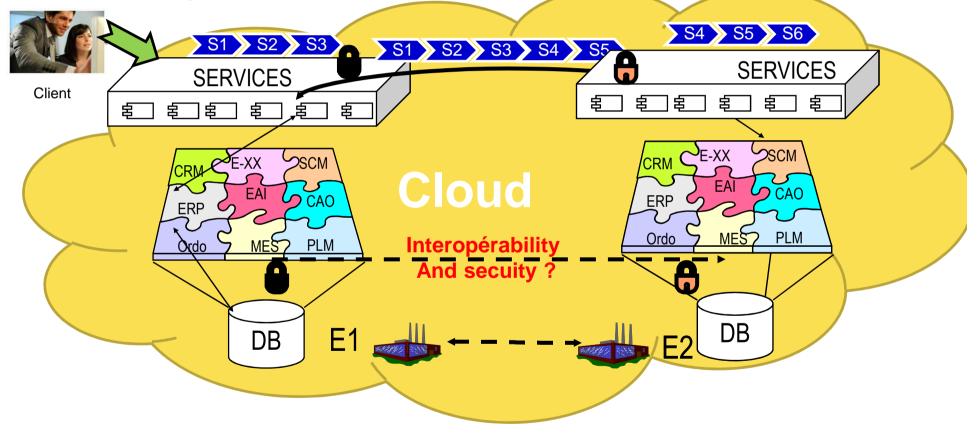
Workshop Security

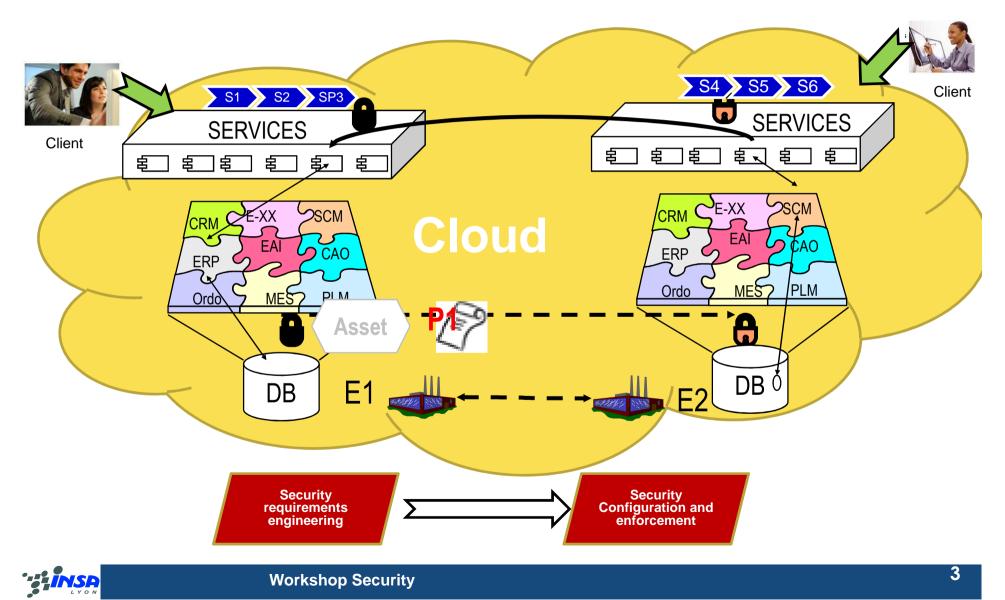
Integration of DRM in Service Systems

Authors: Ziyi Su, W. Francis Ouédraogo & Frederique Biennier

Université de Lyon, CNRS INSA-Lyon. LIRIS. UMR5205. F-69621. France North East Normal University - China



Problematic


Collaborative business process relies mostly on software services spanning multiple organizations

Problematic

Requirements

Intra-organizational security factors

(1)Basic criteria("instant" protection): Confidentiality, integrity, availability

(2) 'Best practice': ISO/IEC 17799, ISO/IEC27002; OCTAVE; EBIOS and SNA

(3) Security Layer:
Physical (hardware) security,
system (OS and platforme related software) security,
Application & data security,
communication (network) security and
human aspect (organizational factors).

Requirements

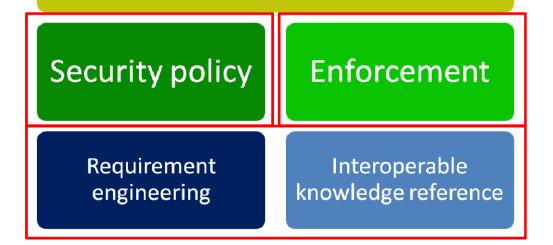
- Inter-organizational security
 - (1) Trust assessment

Direct-trust, Reputation

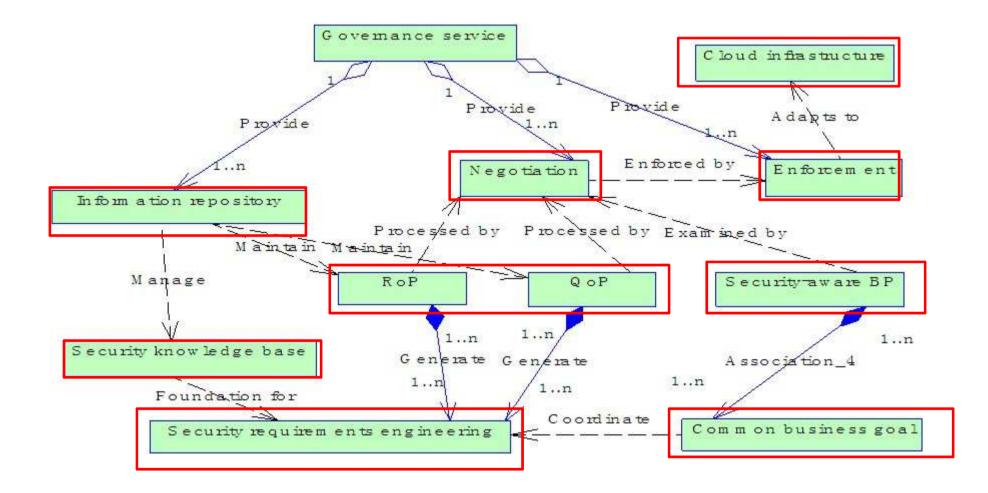
(2) Refined trust

Access control: Identify-based (MAC,DAC), Role-based (RBAC), Attribute-based (XACML) DRM: continuous usage session, usage & management actions

(3) Monitoring


message intercepting, agent: prohibition, modification, observation

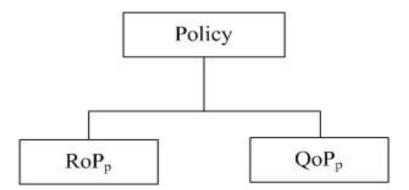
Framework Overview


Security governance service

Framework in-depth view

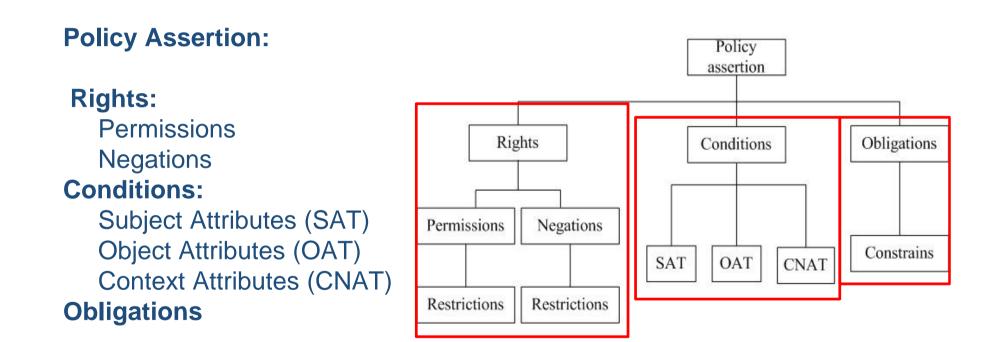
Security requirements engineering

Risk analysis methods	Requirements analysis	Design	Implementation
EBIOS	Text risk and objectives identifications	Protection pattern	
OCTAVE	Structured information access identification	Objectives prioritization Best practices	Audit and implementation project management
SNA	Process and resources workflow identification	"Survival process" design	CERT attacks information and knowledge base
MEHARI	Shortened risk analysis	Best practices	Implementation project management


•Security goal	•Questions	•Answers		
	IS & assets questions			
•-	•Which functionalities & assets?	•List of information assets and functionalities		
•CIAN	Which security goal on these functionalities & assets?	•CIAN		
•CIAN	 Which security/assurance mechanisms on these functionalities & assets? 	 Hardware/OS/platform/net- work/application/human level mechanisms 		
	Openness & assets sharing questions			
•CIAN	Which functionalities & assets are shared?	•List of information assets and functionalities		
•N	Shared with which partners?	•'pre-difined'/ random		
	Risks & compensation questions			
•CIAN	 Which security/assurance mechanisms negatively affected by the openness? 	•List of mechanisms		
•CIAN	•Which level the negative effects have achieve?	•Neutralize/damage/ineffect at times		
•CIAN	Which level of compensentation you want to have?	 Total restore/partial restore 		
•CIAN	 Which security level should be achieved after the compensentation? 	•C/I/A/N		
•CIAN	 Should these security level be maintained by partners or collaboration system? 	•Partner/system		
•-	Any other requirements on partners?	•-		
•-	Any other requirements for the collaboration system?	•-		
•Legend:	•C (Confidentiality), I (integrity), A (Availability), N (Non repudiation)			

Policy Model

Requirements of Protection (RoP)
 & Quality of Protection (QoP)


Asset Provider (AP) uses RoP to specify its requirements Asset Consumer(AC) uses QoP to declare its qualification for access rights.

A Participant (service provider or consumer) may have both RoP and QoP.

Security Policy Model

Policy Assertion: Refined Access control

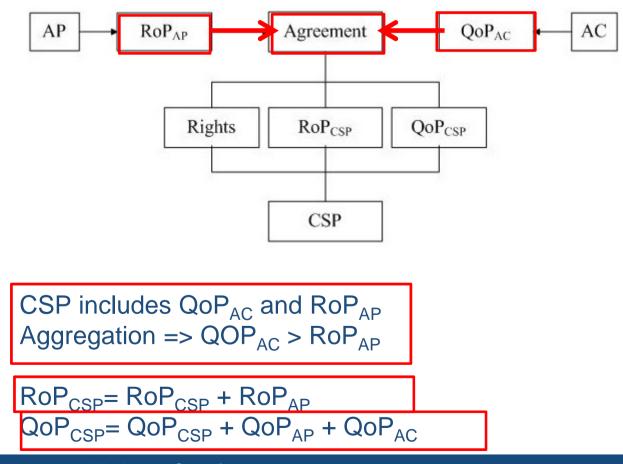
Sample policy

Rt(read(O, S)) $\land Ob(delete(O, S, with(30days)))$

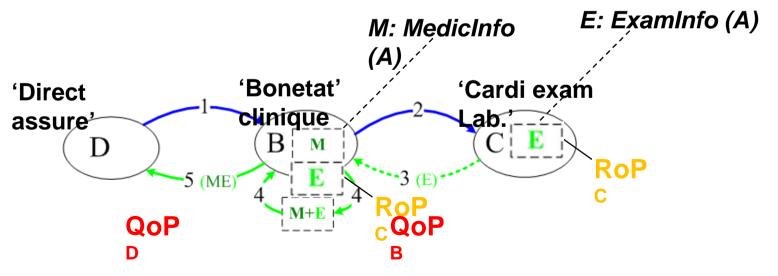
-

Sh(x = 100)

 $\wedge OAT(ID = M)$


 $\wedge SAT(certify(S, A) \wedge contract(S, B)) \\ \wedge CNAT(deliveryChannel = "SSL")$

Policy Model


Collaboration Security Policy (CSP) management

- Challenge: From stand alone requirements to contextual ones
 - How can we compute if a right can be granted depending on the service workflow?
 - Let policies to be associated to assets,
 - When an asset is disseminated, its policy must follow
 - In the following sample use case, RoPc follows 'E' to examine QoPB and QoPD
 - How can we use the service composition to define the policy composition?

Integration of DRM in Service Systems Service call graph model

- Service Call Graph(SCG)
 - Control dependency
 - Service calls
 - Data dependency
 - Data exchange
- 'Service call tuple' list
 - Represents SCG
 - Can be scaned, to analyze as
- This list can be scanned
 - To track assets derivations, whick

Woi

Context 'slicing'

$$D = \begin{bmatrix} 1 & 2 & C \\ B & 1 & 2 & C \\ 5 & (ME) & 3 & (E) & 3 & (E) \\ 4 & (M+ & 4 & E) & 3 & (E) \end{bmatrix}$$

LIRIS

$$as < step_1, D \xrightarrow{c} B >$$

$$\langle step_2, B \longrightarrow C \rangle$$

$$< step_3, B \xleftarrow{d} C, 'E' >$$

$$< step_4, B \xleftarrow{d} B, 'E', 'ME' >$$

 $< step_5, D \xleftarrow{d} B, 'ME' >$

- 'Asset based' slicing
 - Step 3: first asset 'E', first s used to evaluate 'QoPB'

$$< step_1, D \xrightarrow{c} B >$$

 $< step_2, B \xrightarrow{c} C >$

$$< step_3, B \xleftarrow{d} C,' E' >$$

$$\langle step_4, B \xleftarrow{d} B, 'E', 'ME' \rangle$$

$$< step_5, D \xleftarrow{a} B, 'ME' >$$

 $\begin{array}{ll} \text{`Asset based' slicing} &< step_1, D \stackrel{c}{\longrightarrow} B > \\ \text{- Step 4: `M' merged with `E'} &< step_2, B \stackrel{c}{\longrightarrow} C > \\ \text{version `2', two policies `R(< step_2, B \stackrel{c}{\longrightarrow} C > \\ \text{aggregated} &< step_3, B \stackrel{d}{\longleftarrow} C, 'E' > \\ &< step_4, B \stackrel{d}{\longleftrightarrow} B, 'E', 'ME' > \\ &< step_5, D \stackrel{d}{\longleftarrow} B, 'ME' > \end{array}$

<'Rc',1, (Φ), (E), (RoPc), step_3>

<'RC', 2, ('RC.1'), (E,M) (RoPc, RoPb), step_4>

- 'Asset based' slicing
 Step 5: Assets & policies re
 - aggregated 'RoPC,RoPB' €
 QoPD.

$$< step_1, D \xrightarrow{c} B > \\ < step_2, B \xrightarrow{c} C > \\ < step_3, B \xleftarrow{d} C, 'E' > \\ < step_4, B \xleftarrow{d} B, 'E', 'ME' > \\ < step_5, D \xleftarrow{d} B, 'ME' >$$

<'Rc',1, (Φ), (Ε), (RoPc), step_3>

<'RC', 2, ('RC.1'),(E,M) (RoPc, RoPв),step_4> , <'Rc', 3, ('Rc.2'), (E,M), (RoPc, RoPв), step_5> QoPD

Problem $< step_1, D \xrightarrow{c} B >$ - Untill 'step 3', we can not s $< step_2, B \xrightarrow{c} C >$ - If there is conflict, step 1 ar $< step_3, B \xleftarrow{d} C, 'E' >$ and B. $< step_4, B \xleftarrow{d} B, 'E', 'ME' >$ $< step_5, D \xleftarrow{d} B, 'ME' >$

<'Rc',1, (Φ), (E), (RoPc), step_3>

<'Rc', 2, ('Rc.1'), (E,M) (RoPc, RoPв),step_4> , <'Rc', 3, ('Rc.2'), (E,M), (RoPc, RoPв), step_5>

• 'Request based' slicing - Step 1: first consumer 'D', 'QoPD', compared with (ev $< step_2, B \xrightarrow{c} C >$ $< step_3, B \xleftarrow{d} C, 'E' >$ $< step_4, B \xleftarrow{d} B, 'E', 'ME' >$ $< step_5, D \xleftarrow{d} B, 'ME' >$

 $\begin{array}{ll} \text{`Request based' slicing} & < step_1, D \stackrel{c}{\longrightarrow} B > \\ & - \text{ Step 2: `B' joins and calls `C'} & < step_2, B \stackrel{c}{\longrightarrow} C > \\ & < \text{`QoPD,QoPB' should be ad} & < step_2, B \stackrel{c}{\longrightarrow} C > \\ & - \text{`on behalf of': after D callin} < step_3, B \stackrel{d}{\longleftarrow} C, 'E' > \\ & \text{`on behalf of D'.} & < step_4, B \stackrel{d}{\longleftrightarrow} B, 'E', 'ME' > \\ & < step_5, D \stackrel{d}{\longleftarrow} B, 'ME' > \end{array}$

<'Q_D', 1, (Φ), QoP_D), step_1> <'Q_D', 2, (Q_D.1), (QoP_D,QoP_B), step_2> RoPc

Integration of DRM in Service Systems Request-based Context slicing (3)

- 'Request based' slicing
 - Strong point: More timingly
 - Shortcoming: Not enough
 - RoPB & RoPC conflicting?

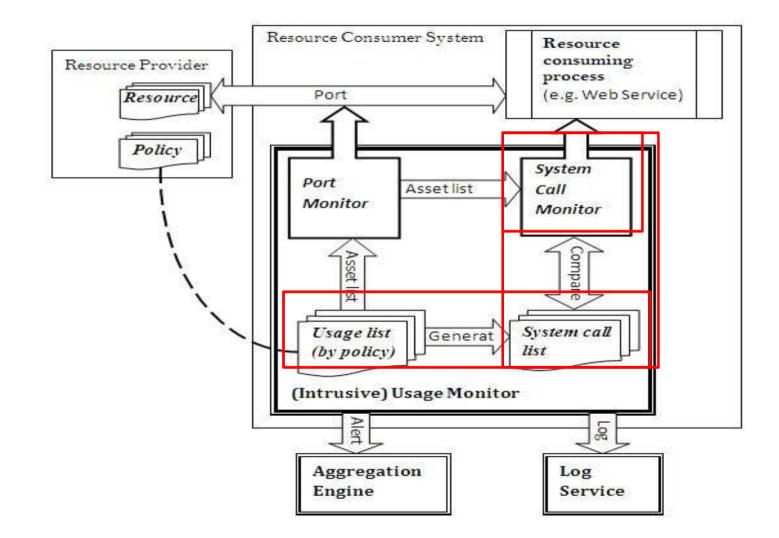
$$\begin{array}{l} < step_1, D \stackrel{c}{\longrightarrow} B > \\ < step_2, B \stackrel{c}{\longrightarrow} C > \\ \text{ngly} \\ \text{gh} \\ < step_3, B \stackrel{d}{\longleftarrow} C, 'E' > \\ g? \\ < step_4, B \stackrel{d}{\longleftrightarrow} B, 'E', 'ME' > \\ < step_5, D \stackrel{d}{\longleftarrow} B, 'ME' > \end{array}$$

<'Q_D', 1, (Φ), QoP_D), step_1> <'Q_D', 2, (Q_D.1), (_{QoPD}, QoP_B), step_2>

Workshop Security

- 'Pre-' and 'on the fly' slicing
 - 'Pre-processing' a business process script, e.g. defined by 'WS-BPEL2.0'
 - Can be done using 'asset based' slicing, not very timingly, but simple
 - Slice the script before the process is executed, to see whether security requirements / profiles are compatible or not.
 - No wast of partners' resources
 - 'On-the-fly' processing a run-time service composition,
 - Should be done with both 'request based' and 'asset based' slicing
 - As partners that will join such a 'random' process can not be known at the starting time
 - Need to identify conflicts as early as possible, in order to avoid waste of partners' (time & processing capabilities) resources

In brief



- Our approach is an 'originator control' (or 'upstream provider control', or 'downstream information control') approach which ensures
 - Providers' policies upon their assets are maintained and respected in the whole business process, by all 'downstream' consumers
- Policy model
 - Express multiple 'security attributes' related to partners, assets and the context
 - Express various 'consumption' rights and obligations
- Context slicing
 - Track 'assets derivation' (service composition & information dissemination)
 - To know which asset is consumed by which consumers
 - In order to apply our policy model

Enforcement & monitoring

Conclusion

Contributions

A governance framework to enhance trust and assurance in virtual-enterprise.

Our security governance framework aims to :

- identify the risks and define security policies;
- enforcing fine-grained security & access control;
- ensure that providers' requirements have been fulfilled by consumers' security profiles;
- ensure end-to-end protection of shared assets and interoperability between security policies.

LIRIS