
UMR 5205

Lyon- 09/12/2014

A Self-Stabilizing Algorithm for
Edge Monitoring Problem

Brahim NEGGAZI 1, Mohammed HADDAD 1, Volker TURAU 2, Hamamache KHEDDOUCI 1

Team: Graphs, Algorithms and Applications (GOAL)

Published in the proceeding of the 16th International Symposium

on Stabilization, Safety, and Security of Distributed Systems (SSS 2014), Paderborn, Germany

1 Laboratoire d'InfoRmatique en Image et Systèmes d'information

Université Claude Bernard Lyon (LIRIS/UCBL)

2 Institute of Telematics, Hamburg University of Technology,

Hamburg, Germany (IT/TUHH)

3rd Workshop on CyberSecurity

2

Wireless Sensor Network
(WSN)

Gateway node

A Wireless Sensor Network (WSN) consists of distributed
autonomous sensors to monitor Physical or environmental
conditions such as temperature, sound, vibration, pressure.

WSN Applications

 Environmental/Habitat monitoring
 Acoustic detection
 Seismic Detection
 Military surveillance
 forest fire control
 Medical monitoring
 Industrial process control
 Process Monitoring
 …

4

Challenges in Running a WSN

Vulnerability of WSN due to :
 Wireless communication
 Hostile unattended environments
 Limited resources of sensors

Gateway node

Security of WSN
is a real challenge

Security of WSN

Cryptography techniques are efficient for data
confidentiality and integrity.

Are there sufficient for compromised nodes ?
 NO

Security community develops complementary security
techniques, based on the self-monitoring

Security of WSN

Self-monitoring : assigning monitoring roles to some of
the nodes in the network.

Monitors are placed somewhere in the intersection of

the communication ranges of the sending and the
receiving nodes.

We distinguish two types of self-monitoring

Self-protection Edge-monitoring

Security of WSN

M
M1

M2

Mk

k-tuple total
dominating set

We distinguish two types of self-monitoring

Self-protection Edge-monitoring

Security of WSN

M
M1

M2

Mk

k-tuple total
dominating set

9

This concept has been introduced in WSN by Marti et al. [Marti00]

Edge monitoring

S R

M

S : Sender

R : Receiver

M : Monitor
Node M monitors link from S to R
by monitoring traffic that R
receives from S and forwards out

By analyzing traffic flows,
monitoring nodes are able to
detect behavior deviating from
the specification caused by an
implementation error or a fault,
such as delaying, dropping,
modifying, or producing faulty
packets

[Dong08]

10

Since it is natural to model a WSN by a graph G=(V,E)

• V: set of nodes that represents the sensors

• E: set of edges that represents their communications

• We denote

• N(v)={u ∈ V / <v,u> ∈ E}
• n=|V|
• m=|E|
• ∆ max node degree in G

Edge monitoring

11

• Edges have monitoring constraints ω

specifying the number of required monitors

• Assumption: For each e = <u,w> ∈ E then

|N(u) ∩ N(w)| ≥ ω(e)

Edge monitoring

v ω(e)=1

w

u

ω(e)=3

w

u

ω(e)=4

w

u

12

Example

1 1

1

red :: edges to be monitored
black :: monitors

13

Example

1 1

2

red :: edges to be monitored
black :: monitors

2

5 monitors!

14

Example

1 1

2

red :: edges to be monitored
black :: monitors

2

Only 4 monitors!

15

• Finding a minimum set of edge monitoring nodes
is NP-hard

• Goal: Minimal edge monitoring sets
• i.e. a subset D of nodes s.t. for each edge e ∈ E there

are at least ω(e) nodes in D that can monitor e and no
proper subset of D satisfies this property

• Distributed algorithms with provable
approximation ratios are known [Dong08, Dong11]

• What about self-stabilizing algorithms?

Edge monitoring

16

• Hauck proposed the first self-stabilizing algorithm for
minimal edge monitoring problem [Hauck12]

• O(n2m) moves under unfair distributed scheduler

Previous Work

Reference
Dist.

knowledge
Transformer Com. model

Self-stab.
?

Complexity.

[Dong 08]
[Dong 11]

Distance-two Yes Synchronous No O(∆)

[Hauck 12]
Expression

model
Yes Asynchronous Yes

O(n2 m)

Our paper - - - - -

17

New self-stabilizing algorithm for computing minimal edge
monitoring set: SEMS

Algorithm SEMS operates under the unfair distributed
scheduler and converges in O(Δ2m) moves

Contribution

Reference
Dist.

knowledge
Transformer Com. model

Self-stab.
?

Complexity.

[Dong 08]
[Dong 11]

Distance-two Yes Synchronous No O(∆)

[Hauck 12]
Expression

model
Yes Asynchronous Yes

O(n2 m)

Our paper Distance-one No Asynchronous Yes O(∆2 m)

Self-stabilizing algorithm

Unsafe

configurations

Safe

configurations

• Self-Stabilization = Closure + Convergence

19

• Edge Monitoring

• Problem: Critical nodes are not neighbors
• Solution: Intermediate nodes give permission to a

single neighbor to make a move
• Problem: Deadlocks may arise
• Solution: Enforce ordering (based on ids)

Algorithm for minimal Edge
monitoring set (SEMS)

v

1
1

v

20

SEMS

• Each node maintains a variable state with range
 {IN, OUT,WAIT}

• Nodes with state IN are monitors

• State WAIT is an intermediate state from IN to OUT

required for symmetry breaking

21

SEMS

• Monitors of an edge are administered by end node of
edge with smaller identifier

• Neighbors of v that do or could monitor an edge

adjacent to v are called target monitors

• A node maintains for each edge it is responsible for a

set of target monitors (TM)

v

u

2

TM

22

SEMS

Rule to maintain TM of edge e = (v,u)

1.If number of common neighbors of v and u with state
IN or WAIT is larger than ω(e) then let TM = ∅

2.Otherwise TM consists of common neighbors of v and
u with state IN or WAIT. If this number is less than
ω(e) then smallest common OUT
neighbors are added

v

u

2

23

SEMS

State=OUT

ω(v,u)=3

u

v

State=OUT

State=IN

State=OUT

2

3

1

4

Potential monitors
for (v,u)

If an OUT node discovers that it is contained in TM of a
neighbor it regards this as an invitation to change to IN

24

SEMS

State=OUT

ω(v,u)=3

u

v

State=OUT

State=IN

State=OUT

2

3

1

4

25

SEMS

State=IN

ω(u,w)=3

u

State=IN

State=IN

State=OUT

v
2

3

1

4

26

SEMS

State=IN

ω(u,w)=3

u

State=IN

State=IN

State=OUT

v
2

3

1

4

27

SEMS

State=IN

ω(u,w)=3

u

State=IN

State=IN

State=IN

v
2

3

1

4

28

SEMS

State=IN

ω(u,w)=3

u

State=IN

State=IN

State=IN

v
2

3

1

4

29

SEMS

• Nodes with state IN that are not target monitor

for any neighbor changes from IN to WAIT
• To transit from WAIT to OUT, all neighbors must

give permission
• A node gives this permission (variable PO) to

neighbor with state WAIT with smallest identifier

30

SEMS

State=IN

ω(u,w)=3

u

State=IN

State=IN

State=IN

v
2

3

1

4

31

SEMS

State=WAIT

ω(u,w)=3

u

State=WAIT

State=WAIT

State=IN

v
2

3

1

4

32

SEMS

State=WAIT

ω(u,w)=3

u

State=WAIT

State=WAIT

State=IN

v
2

3

1

4

u.PO=1

33

SEMS

State=WAIT

ω(u,w)=3

u

State=WAIT

State=OUT

State=IN

v
2

3

1

4

u.PO=1

34

SEMS

State=WAIT

ω(u,w)=3

u

State=WAIT

State=OUT

State=IN

v
2

3

1

4

SEMS

State=IN

ω(u,w)=3

u

State=IN

State=OUT

State=IN

v
2

3

1

4

36

 Variables for each node v:

– TM :: the set of target monitors (note that |TM | ≤ ∆)
– PO :: contains the smallest id of all neighbors in state
 WAIT not contained in TM or null – used to
 give permission to change state to OUT

SEMS

37

SEMS: Formal Definition

Two groups of rules:
• Management of invitations and permissions
• Management of state

38

SEMS: Formal Definition

39

SEMS

Example with corrupted
state

To simplify the example, we consider the synchronous scheduler

40

SEMS

1 3

2

3 5

6

Out

In

In

In

In

Out

4

2

1

TM=∅

TM={1,4}

TM={1,4,5}

41

SEMS

1 3

2

3 5

6

In

Wait

Wait

In

Wait

In

4

2

1

TM=∅

TM={2,4}

TM={1,4,5}

Step 1

42

SEMS

1 3

2

3 5

6

In

In

Wait

In

Wait

In

4

2

1

TM=∅

TM={2,4}

TM={1,4,5}

PO= 2

PO= 2

PO= 2

Step 2

43

SEMS

1 3

2

3 5

6

In

In

Wait

In

Wait

In

4

2

1

TM=∅

TM={2,4}

TM={1,4,5}
PO= 3

PO= 3

Step 3

PO= 3

PO= 3

PO= 3

44

SEMS

1 3

2

3 5

6

In

In

Out

In

Wait

In

4

2

1

TM=∅

TM={2,4}

TM={1,4,5}
PO= 3

PO= 3

Step 4

PO= 3

45

SEMS

1 3

2

3 5

6

In

In

Out

In

Wait

In

4

2

1

TM=∅

TM={2,4}

TM={1,4,5}
PO= 6

PO= 6

Step 5

46

SEMS

1 3

2

3 5

6

In

In

Out

In

Out

In

4

2

1

TM=∅

TM={2,4}

TM={1,4,5}
PO= 6

PO= 6

Step 6

47

SEMS

1 3

2

3 5

6

In

In

Out

In

Out

In

4

2

1

TM={2}

TM={2,4}

TM={1,4,5}

Step 7 Final configuration

48

Contribution:

• SEMS: A self-stabilizing algorithm for computing a
minimal edge monitoring set

• SEMS converges in O(∆2m) moves under unfair
distributed scheduler

• Improving on previous work (Hauck O(n2m) moves)

•No transformer

Conclusions & future work

49

Conclusions & future work

Future work

• We believe that complexity of algorithm is lower
than O(∆2m). Conjecture: O(∆m)

• Study lower bounds of the problem for distributed
scheduler

