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Résumé

Une rotation discrete est la composition d’une rotation euclidienne et d’une opération d’arrondi. Bien siir, toutes
les rotations discrétes ne sont pas bijectives : par exemple, deux points distincts peuvent avoir la méme image
pour une rotation discrete donnée. Néanmoins, pour un certain ensemble d’angles, les rotations discretes sont
bijectives. Dans la grille carrée réguliere, les rotations discréetes bijectives ont été complétement caractérisées
par Nouvel et Rémila (IWCIA’2005). Nous donnons une preuve qui utilise les propriétés arithmétiques des entiers

de Gauss.

A discretized rotation is the composition of an Euclidean rotation with a rounding operation. It is well known that
not all discretized rotations are bijective : e.g. two distinct points may have the same image by a given discretized
rotation. Nevertheless, for a certain subset of rotation angles, the discretized rotations are bijective. In the regular
square grid, the bijective discretized rotations have been fully characterized by Nouvel and Rémila (IWCIA’2005).
We provide a simple proof that uses the arithmetical properties of Gaussian integers.

Mots clé : Gaussian integers, bijective discretized rota-
tions.

1. Introduction

A discretized rotation is the composition of an Euclidean
rotation with a rounding operation to the closest grid point. It
is well known that not all discretized rotations are bijective :
after a discretized rotation, two distinct points may have the
same image (see Fig. 1.b) or the image of all points may not
partition the whole plane (the reader may look for the holes
in Fig. 1.b). Nevertheless, for a certain subset of rotation
angles, the discretized rotations are bijective (an example of
such discretized rotations is shown Fig. 1.a). In the regu-
lar square grid, many authors have discussed about condi-
tions on the angle to have bijective discretized rotations.
In [NRO5], Nouvel and Rémila have fully characterized bi-
jective discretized rotations (necessary and sufficient condi-
tions on rotation angles). We give in this paper a different
proof that uses simple arithmetical properties of Gaussian
integers.

In section 2, we recall the crucial properties of Gaussian
integers and we give a geometrical interpretation of main
arithmetical operations involving Gaussian integers. In sec-
tion 3, we define a discretized rotation and characterize a cer-
tain set of rotation angles by the so-called twin Pythagorean
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triples. Finally, in section 4, we show theorem 1, which pro-
vides a necessary and sufficient condition for rotation angles
to lead to bijective discretized rotations.

2. Gaussian integers

The Gaussian integers are the set Z[i]:={u+vi | u,v € Z},
where i = —1. Within the complex plane C, they constitute
the 2-dimensional integer lattice 72,

2.1. Main properties

As discussed in [HW79][pp. 182-187], Gaussian integers
look like usual (or rational) integers of Z. Indeed, the no-
tions of Euclidean division, prime, greatest common divisor
are defined. Moreover, every Gaussian integer has a unique
factorization into primes (up to order and unit multiples).

More precisely, let &, k; be nonzero integers from Z[i].

— The norm of x = u+vi, defined by Nx:=xk = u? +1?
is multiplicative, i.e. Nkk; = NKNX].

— The units of Z[i] are the integers of norm 1, i.e. the set
{£1,+i}.

— Since there are several units, the product of kK = u+ vi
by any number of units, i.e. the four integers +u 4 vi,
are the associates of K ;
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Figure 1: In (a), the rotation by angle 0, s.t. tan(64) = 4/3 leads to a bijective discretized rotation because each digitization
cell (black squares around black dots) contains one and only one rotated point (red dots). In (b), the rotation angle 0y, s.t.
tan(0,) = 8/15 does not lead to a bijective discretized rotation : some digitization cells contain zero (holes) or two points.

— K is divisible by x iff there exists Kk, such that Kk =
KiK2

— A prime is an integer, neither zero nor a unit, divisible
only by numbers associated to itself or 1 ;

— Any K can be obtained as a product of primes (unique
up to order and unit multiples) : K =TTy ... Ty.

— The greatest common divisor ged(K, K1) = ¥, is de-
fined such that (i) K, divides both ¥ and k; and (ii)
every common divisor of k¥ and k; divides K.

For a complete overview, please refer to [HW79]. We fo-

cus now on the geometrical interpretation of Gaussian inte-
gers.

2.2. Geometrical interpretation

Gaussian integers are complex numbers. The image of a
Gaussian integer K = u + vi is the point (u,v) of the integer
lattice Z°.

Let us first observe that :

— an addition by ¥ maps Z 0 7% + (u,v) (translation).

— a multiplication by k maps Z> to Z(u,v) + Z(—v,u)
(rotation by angle 0 such that tan(0) = v/u and scaling
by V/Nx; see Fig. 2).

3. Discretized rotations

Given a Gaussian integer o, the Euclidean rotation is the
map defined as follows :

ro,: Z[i] = C
Vi € Z[i], ra(x) = £L. (M

Moreover, we focus on Pythagorean rotation angles, i.e.
such that VNa = c € Z.

i) = (140) -

Figure 2: A multiplication by o.:= (3 + 4i) results in a rota-
tion of angle 0 s.t. tan(0) = 4/3 and a scaling by 5. Moreo-
ver, the image of any Gaussian integer that is a multiple of
o (red dots) is a point of the lattice Z(3,4) + Z(—4,3) (red
grid).

3.1. Pythagorean triples

Pythagorean triples are triples (a,b,c) of strictly positive
integers such that a4+ b =% Setting o :=a + bi, Pytha-
gorean triples provide solutions to the equation : Now = Pl

Primitive Pythagorean triples are such that ged(a,b,c) = 1.

It is well known [HW79][p. 190] that for any primitive
Pythagorean triple, there exists a unique pair (p,q) of posi-
tive integers such that 0 < ¢ < p, ged(p,q) =1, p—q is odd
and

2 2
a=p —q,
b=2pq,

c:p2+q2.

A specific family of Pythagorean triples is the so-called
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twin Pythagorean triples or (k+ 1,k)-family, where p = k+
land g =k.

Setting y:= p + gi, we have on the one hand
a=v, @

and on the other hand
c=77. 3)

First, v is neither divisible by a rational integer because
p and ¢ are coprime, nor divisible by a unit because p — ¢
is odd. Second, we have gcd(7,¥) = 1 because if we denote
Y=TT;...T,, we have Y= 7| T, ... T, and thus no factor of
Yis also a factor of . As a consequence, since 7y divides both
o and ¢, we have

ged(a,c) = . )

3.2. Discretization

For any k¥ = u + iv, let the discretization cell of K be defi-
ned as follows :

u—1/2< (utx) <u+1/2 }

D(K):{z=x+iy€<c| { v—1/2< (v+y)<v+1/2

Geometrically, the discretization cell is an isothetic unit
square around an integer point (see Fig. 1).

The rounding function is now defined as a function C —
Z[i] such that Vz = x+ iy € C, [z] is the unique Gaussian
integer such that z € D([z]).

Let us denote by [ro] the composition of the Euclidean
rotation ro, and of the rounding function [.], i.e.

[ra] : Z[i] — Z]i]

Vi € Z[i, [ro](x) = [\Z\%} '

&)

The goal of the next section is to prove the following theo-
rem :

Theorem 1 The discretized rotation [rg] is bijective iff o0 =
(k+1)+ki,keZT.

This result is equivalent to Nouvel and Remila’s one
[NROS]. However, in the following section, we prove this
theorem using arithmetical and geometrical properties of
Gaussian integers.

4. Main result

Until now, we divide x- o by v/No. = ¢ and then we consi-
der the result with respect to the discretization cells of the
integer lattice 7? (Eq. 5). In this section, we do not divide
k- o by ¢, but we consider the result with respect to the dis-
cretization cells of the scaled lattice cZ? (see Fig. 3). In this
framework, we introduce the map sq,c defined as follows :

Souc  Z[i] X Z[i] — Z]i] ©)
V(k,A) € Z[i] X Z[i], sac(K,A) :=K- ot — A-c.
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4.1. Approach

The idea is to compare the points of the lattice Z(a,b) +
Z(—b,a) (i.e. the images of k- a, k € Z[i], in red, Fig. 3)
to the lattice ¢Z (i.e. the images of A- ¢, A € Z[i], in blue
Fig. 3). However, instead of comparing any pair (k- o, A - ¢),
K, A € Z][i], we focus either on pairs such that k- o € cD(A),
or on pairs such that A - ¢ € aD(x). Such pairs are depicted
with arrows in Fig. 3.

/.

Figure 3: In (a) (resp. (b)), discretization cells of the lattice
572 (resp. 177* ) are depicted in blue, whereas discretiza-
tion cells of the lattice 7Z(3,4) + Z(—4,3) (resp. Z(15,8) +
7Z(—8,15)) are depicted in red. In both subfigures, blue
(resp. red) arrows associate every red (resp. blue) point to
the center of the blue (resp. red) discretization cell it belongs
to. We use green for arrows that must be both blue and red.

Indeed, for all k € Z[i], the proposition A = [rg ()], i.e.
A € D(x-0/c), is equivalent to the proposition A-c € ¢D(K-
o), which is equivalent to the proposition
soc(K,A) € eD(0).

Similarly, for all A € Z[i], the proposition k = [rc(A)] is equi-
valent to the proposition

sa,c(k,A) € aD(0).

Hence, we focus now on possible values of sq (&, A) that
belong to ¢D(0) or aD(0).
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4.2. (Reduced) sets of remainders

Since ged (o, c) = 7y due to Eq. 4, v divides o and c. Fur-
thermore, for all x,A € Z[i], y also divides sq,c(k,A). Thus,
we have :

V(k, M) € Z[i] x Z[i], soc (5,1) = yyg(,A).  (7)

Since ged(y, ¥) = 1 and from Bézout’s identity, there
exists a family of solutions {(kg + T¥,A0 + 1Y)}, T € Z]i],
to the equation

syy(A) =x-y—A-y=1. (8)

We can conclude that for all k, A € Z[i], sy7(,A) can have
any possible values, whereas multiples of v are the only pos-
sible values of s, (K, A).

Let Sy (resp. Sy) be the reduced set of remainders defined
such that Sy = {p € Z[i] | p € ¥D(0)} (resp. Sy = {p € Z]i] |
p € YD(0)}). As illustrated in Fig. 4, these two sets are two
sets of integer points lying into two different squares. As
illustrated in Fig. 5, there is no loss of generality to compare
these reduced sets.

(a) (b)
Figure 4: In (a), the reduced sets of remainders Sy; and

S>_i. In (b), the reduced sets of remainders S4q+; and Sq_;.
Note that Sy1j = Sy—; but Sy y; # S4—;.

(@)
Figure 5: In (a), the sets of multiples of (2 + 1) that belong

to (34 4i)D(0) and 5D(0). In (b), the sets of multiples of
(4+1) that belong to (15+ 8i)D(0) and 17D(0).

It remains to compare the two reduced sets of remainders
Sy and Sy, because the discretized rotation [rq] is bijective iff
Sy = Sy.

4.3. Geometry of the reduced sets of remainders

We first show that Sy # Sy if p > ¢+ 1 (i). Then, we show
that Sy = Syif p = g+ 1 (i).

To show (i), we exhibit a Gaussian integer that belongs to

Sy but not to Sy if p > g+ 1. Without loss of generality, we
multiply everything by (1 + ) so that the vertices of the dis-
cretization cells (1 +)yD(0) and (1 + {)¥D(0) are Gaussian
integers (see Fig. 6). Let { be equaltoy— 1= (p—1) +gi.
It is easy to see that { € (1+i)yD(0). We now want to show
that it does not belong to (1 +{)¥D(0) because
2 2

(p+a)p—D)+(p—q9)g—1)—p" —¢" >0, (9)

i.e. #y, ¥ and { are counter-clockwise oriented.
Developing Eq. 9 we get
29(p—q)—p—q>0.

If we write p = g+ e, we obtain :

2q
2g—1’

which is always true if g > 1 ande > 1l orif g=1and e > 2.

e>

. -«

-l,—Y
°

Figure 6: Example for Y = 4 +i. The discretization cells
(1449)yD(0) and (1+i)¥D(0) are respectively depicted with
red and blue. The images of iy and 7y are depicted with blue
dots, whereas £ =y— 1 is depicted with a red dot. These
three points are counter-clockwise oriented, which means
that Sy # Sy for the pair p =4 and q = 1.

To show (ii), it is enough to see that if p = g+ 1, the boun-
daries of the discretization cells yD(0) and yD(0) lie between
two consecutive L balls of integral radius g and p = g+ 1,
which means that Sy = Sy (see Fig. 4).

From (i) and (ii), we finally have theorem 1.
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