- calculate(List<Parameter>) - Method in class Abstract.Abstract_Atom
-
The objective here is to force the person who will implement a gdl instance to implement a calculate method.
- calculate(Abstract_Atom, Abstract_Atom) - Method in class Abstract.Abstract_CommutativeMonoid
-
A commutative monoid must be able to do real calculations.
- calculate(List<Parameter>) - Method in class Abstract.Abstract_Function
-
To calculate a function there is a specific method that is "functionImplementation".
- calculate(Abstract_Atom, Abstract_Atom) - Method in class Implemented_Monoid.AllenMonoid
-
- calculate(Abstract_Atom, Abstract_Atom) - Method in class Implemented_Monoid.ANDMonoid
-
- calculate(Abstract_Atom, Abstract_Atom) - Method in class Implemented_Monoid.ANDMorganMonoid
-
- calculate(Abstract_Atom, Abstract_Atom) - Method in class Implemented_Monoid.ORAllenMonoid
-
- calculate(Abstract_Atom, Abstract_Atom) - Method in class Implemented_Monoid.ORMonoid
-
- calculate(Abstract_Atom, Abstract_Atom) - Method in class Implemented_Monoid.ORMorganMonoid
-
- calculate(Abstract_Atom, Abstract_Atom) - Method in class Implemented_Monoid.UsualAdditionMonoid
-
- calculate(Abstract_Atom, Abstract_Atom) - Method in class Implemented_Monoid.UsualMultiplicationMonoid
-
- calculate(List<Parameter>) - Method in class Implemented_Operation.Addition
-
- calculate(List<Parameter>) - Method in class Implemented_Operation.AllenComposition
-
- calculate(List<Parameter>) - Method in class Implemented_Operation.AND
-
- calculate(List<Parameter>) - Method in class Implemented_Operation.ANDMorgan
-
- calculate(List<Parameter>) - Method in class Implemented_Operation.GenericAdditionOperationOnSet
-
- calculate(List<Parameter>) - Method in class Implemented_Operation.GenericMultiplicationOperationOnSet
-
- calculate(List<Parameter>) - Method in class Implemented_Operation.Multiplication
-
- calculate(List<Parameter>) - Method in class Implemented_Operation.OR
-
- calculate(List<Parameter>) - Method in class Implemented_Operation.ORAllen
-
- calculate(List<Parameter>) - Method in class Implemented_Operation.ORmorgan
-
- calculate(List<Parameter>) - Method in class Implemented_Operation.OrOperationOnSet
-
- calculateAllStateOfVertex(List<JunctionTreeCell>) - Static method in class GDL.MessagePassing
-
This method call the method which calculate the state of one vertex on every existing vertex in order to get the full vertex problem.
- calculateComplexity() - Method in class Util_Graph.Edge
-
The Kruskal algorithm not always give a unique maximal weight spanning tree.
- calculateNumberEdgeNeeded() - Method in class Util_Graph.MoralGraphCell
-
For the triangulation, an order is required in order to perform the
algorithm.
- calculateOnSet(List<Variable>, Abstract_Atom) - Method in class Abstract.Abstract_CommutativeMonoid
-
A commutative monoid must be able to do real calculations.
- calculateOnSet(List<Variable>, Abstract_Atom) - Method in class Implemented_Monoid.AllenMonoid
-
- calculateOnSet(List<Variable>, Abstract_Atom) - Method in class Implemented_Monoid.ANDMonoid
-
- calculateOnSet(List<Variable>, Abstract_Atom) - Method in class Implemented_Monoid.ANDMorganMonoid
-
- calculateOnSet(List<Variable>, Abstract_Atom) - Method in class Implemented_Monoid.ORAllenMonoid
-
- calculateOnSet(List<Variable>, Abstract_Atom) - Method in class Implemented_Monoid.ORMonoid
-
- calculateOnSet(List<Variable>, Abstract_Atom) - Method in class Implemented_Monoid.ORMorganMonoid
-
- calculateOnSet(List<Variable>, Abstract_Atom) - Method in class Implemented_Monoid.UsualAdditionMonoid
-
- calculateOnSet(List<Variable>, Abstract_Atom) - Method in class Implemented_Monoid.UsualMultiplicationMonoid
-
- childContain(JunctionTreeCell) - Method in class Util_Graph.JunctionTreeCell
-
Check if a precide JunctionTreeCell in include in the list of child
- convertSpanningTreeIntoJunctionTree(Graph) - Static method in class GDL.GraphManipulation
-
If the maximal weight spanning tree is a junction tree this method will convert the data format of it.
- CoupleVariableValue - Class in Util_Implemented_Function
-
This class is used to simulate a probability table for the implemented function
ProbabilityofGiven.
- CoupleVariableValue(Variable, Object) - Constructor for class Util_Implemented_Function.CoupleVariableValue
-
The constructor
- createEdge(Vertex, Vertex, Variable, ArrayList<Edge>) - Static method in class GDL.GraphManipulation
-
This method is used for creating the edge between the vertices for the
local domain graph and for the maximun weight spanning tree.
- CreateEdgesInLocalDomainGraph(Graph) - Static method in class GDL.GraphManipulation
-
In the "The Generalized Distributive Law" of Aji & McEliece the local
domain graph is defined as follow :
The local domain graph is a weighted complete graph with M vertices
V1, ..., Vm, one for each local domain, with the weight of the edge
defined by : Wi,j = |Si Union Sj|
[ See the "The Generalized Distributive Law" of Aji & McEliece,]
This method create this local domain graph, the created graph is
available in two fields :
- 'listVertex' for the list of the vertex
- 'listEdgeDomainGraph' for the edges
- createGraphAfterTriangulate(List<List<MoralGraphCell>>) - Static method in class GDL.GraphManipulation
-
This method is here to create a graph after the triangulation of the moral graph.
- createLinkWith(JunctionTreeCell) - Method in class Util_Graph.JunctionTreeCell
-
This method create a link between two cell.
- createMaximalSpanningTree(Graph) - Static method in class GDL.GraphManipulation
-
The goal of the local domain graph is to create the maximal weight
spanning tree [ See the "The Generalized Distributive Law" of Aji
& McEliece].
- createMoralGraph() - Static method in class GDL.GraphManipulation
-
This method create the moral graph please see the Chapter III of the
"The Generalized Distributive Law" of Aji & McEliece.