A B C D E F G I J L M N O P R S T U V W 

C

calculate(List<Parameter>) - Method in class Abstract.Abstract_Atom
The objective here is to force the person who will implement a gdl instance to implement a calculate method.
calculate(Abstract_Atom, Abstract_Atom) - Method in class Abstract.Abstract_CommutativeMonoid
A commutative monoid must be able to do real calculations.
calculate(List<Parameter>) - Method in class Abstract.Abstract_Function
To calculate a function there is a specific method that is "functionImplementation".
calculate(Abstract_Atom, Abstract_Atom) - Method in class Implemented_Monoid.AllenMonoid
 
calculate(Abstract_Atom, Abstract_Atom) - Method in class Implemented_Monoid.ANDMonoid
 
calculate(Abstract_Atom, Abstract_Atom) - Method in class Implemented_Monoid.ANDMorganMonoid
 
calculate(Abstract_Atom, Abstract_Atom) - Method in class Implemented_Monoid.ORAllenMonoid
 
calculate(Abstract_Atom, Abstract_Atom) - Method in class Implemented_Monoid.ORMonoid
 
calculate(Abstract_Atom, Abstract_Atom) - Method in class Implemented_Monoid.ORMorganMonoid
 
calculate(Abstract_Atom, Abstract_Atom) - Method in class Implemented_Monoid.UsualAdditionMonoid
 
calculate(Abstract_Atom, Abstract_Atom) - Method in class Implemented_Monoid.UsualMultiplicationMonoid
 
calculate(List<Parameter>) - Method in class Implemented_Operation.Addition
 
calculate(List<Parameter>) - Method in class Implemented_Operation.AllenComposition
 
calculate(List<Parameter>) - Method in class Implemented_Operation.AND
 
calculate(List<Parameter>) - Method in class Implemented_Operation.ANDMorgan
 
calculate(List<Parameter>) - Method in class Implemented_Operation.GenericAdditionOperationOnSet
 
calculate(List<Parameter>) - Method in class Implemented_Operation.GenericMultiplicationOperationOnSet
 
calculate(List<Parameter>) - Method in class Implemented_Operation.Multiplication
 
calculate(List<Parameter>) - Method in class Implemented_Operation.OR
 
calculate(List<Parameter>) - Method in class Implemented_Operation.ORAllen
 
calculate(List<Parameter>) - Method in class Implemented_Operation.ORmorgan
 
calculate(List<Parameter>) - Method in class Implemented_Operation.OrOperationOnSet
 
calculateAllStateOfVertex(List<JunctionTreeCell>) - Static method in class GDL.MessagePassing
This method call the method which calculate the state of one vertex on every existing vertex in order to get the full vertex problem.
calculateComplexity() - Method in class Util_Graph.Edge
The Kruskal algorithm not always give a unique maximal weight spanning tree.
calculateNumberEdgeNeeded() - Method in class Util_Graph.MoralGraphCell
For the triangulation, an order is required in order to perform the algorithm.
calculateOnSet(List<Variable>, Abstract_Atom) - Method in class Abstract.Abstract_CommutativeMonoid
A commutative monoid must be able to do real calculations.
calculateOnSet(List<Variable>, Abstract_Atom) - Method in class Implemented_Monoid.AllenMonoid
 
calculateOnSet(List<Variable>, Abstract_Atom) - Method in class Implemented_Monoid.ANDMonoid
 
calculateOnSet(List<Variable>, Abstract_Atom) - Method in class Implemented_Monoid.ANDMorganMonoid
 
calculateOnSet(List<Variable>, Abstract_Atom) - Method in class Implemented_Monoid.ORAllenMonoid
 
calculateOnSet(List<Variable>, Abstract_Atom) - Method in class Implemented_Monoid.ORMonoid
 
calculateOnSet(List<Variable>, Abstract_Atom) - Method in class Implemented_Monoid.ORMorganMonoid
 
calculateOnSet(List<Variable>, Abstract_Atom) - Method in class Implemented_Monoid.UsualAdditionMonoid
 
calculateOnSet(List<Variable>, Abstract_Atom) - Method in class Implemented_Monoid.UsualMultiplicationMonoid
 
childContain(JunctionTreeCell) - Method in class Util_Graph.JunctionTreeCell
Check if a precide JunctionTreeCell in include in the list of child
convertSpanningTreeIntoJunctionTree(Graph) - Static method in class GDL.GraphManipulation
If the maximal weight spanning tree is a junction tree this method will convert the data format of it.
CoupleVariableValue - Class in Util_Implemented_Function
This class is used to simulate a probability table for the implemented function ProbabilityofGiven.
CoupleVariableValue(Variable, Object) - Constructor for class Util_Implemented_Function.CoupleVariableValue
The constructor
createEdge(Vertex, Vertex, Variable, ArrayList<Edge>) - Static method in class GDL.GraphManipulation
This method is used for creating the edge between the vertices for the local domain graph and for the maximun weight spanning tree.
CreateEdgesInLocalDomainGraph(Graph) - Static method in class GDL.GraphManipulation
In the "The Generalized Distributive Law" of Aji & McEliece the local domain graph is defined as follow : The local domain graph is a weighted complete graph with M vertices V1, ..., Vm, one for each local domain, with the weight of the edge defined by : Wi,j = |Si Union Sj| [ See the "The Generalized Distributive Law" of Aji & McEliece,] This method create this local domain graph, the created graph is available in two fields : - 'listVertex' for the list of the vertex - 'listEdgeDomainGraph' for the edges
createGraphAfterTriangulate(List<List<MoralGraphCell>>) - Static method in class GDL.GraphManipulation
This method is here to create a graph after the triangulation of the moral graph.
createLinkWith(JunctionTreeCell) - Method in class Util_Graph.JunctionTreeCell
This method create a link between two cell.
createMaximalSpanningTree(Graph) - Static method in class GDL.GraphManipulation
The goal of the local domain graph is to create the maximal weight spanning tree [ See the "The Generalized Distributive Law" of Aji & McEliece].
createMoralGraph() - Static method in class GDL.GraphManipulation
This method create the moral graph please see the Chapter III of the "The Generalized Distributive Law" of Aji & McEliece.
A B C D E F G I J L M N O P R S T U V W