Laboratoire d'InfoRmatique en Images et Systèmes d'information
UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université Lumière Lyon 2/Ecole Centrale de Lyon
(soutenance de thèse)
Les séries temporelles sont des collections de données obtenues par des mesures dans le temps. Ces données offrent un cadre de réflexion pour l'extraction d'événements et à les représenter dans une configuration compréhensible pour une utilisation ultérieure. L'ensemble du processus de découverte et d'extraction de modèles à partir de l'ensemble de données s'effectue avec plusieurs techniques d'extraction, notamment l'apprentissage automatique, les statistiques et les clustering. Ce domaine est ensuite divisé par le nombre de sources adoptées pour surveiller un phénomène: les séries temporelles univariées lorsque la source de données est unique, et les séries temporelles multivariées lorsque la source de données est multiple. La série chronologique n'est pas une structure simple. Chaque observation de la série a une relation forte avec les autres observations. Cette interrelation est la caractéristique principale des séries temporelles, et toute opération d'extraction de séries temporelles doit y faire face. La solution adoptée pour gérer l'interrelation est liée aux opérations d'extraction. Le principal problème de ces techniques est de ne pas adopter d'opération de prétraitement sur les séries temporelles. Les séries temporelles brutes comportent de nombreux effets indésirables, tels que des points bruyants ou l'énorme espace mémoire requis pour les longues séries. Nous proposons de nouvelles techniques d'exploration de données basées sur l'adoption des caractéristiques plus représentatives des séries temporelles pour obtenir de nouveaux modèles à partir des données. L'adoption des caractéristiques a un impact profond sur la scalabilité des systèmes. En effet, l'extraction d'une caractéristique de la série temporelle permet de réduire une série entière en une seule valeur. Par conséquent, cela permet d'améliorer la gestion des séries temporelles, en réduisant la complexité des solutions en termes de temps et d'espace. FeatTS propose une méthode de clustering pour les séries temporelles univariées qui extrait les caractéristiques les plus représentatives de la série. FeatTS vise à adopter les particularités en les convertissant en réseaux de graphes pour extraire les interrelations entre les signaux. Une matrice de cooccurrence fusionne toutes les communautés détectées. L'intuition est que si deux séries temporelles sont similaires, elles appartiennent souvent à la même communauté, et la matrice de cooccurrence permet de le révéler. Dans Time2Feat, nous créons un nouveau clustering de séries temporelles multivariées. Time2Feat propose deux extractions différentes pour améliorer la qualité des caractéristiques. Le premier type d'extraction est appelé extraction de caractéristiques intra-signal et permet d'obtenir des caractéristiques à partir de chaque signal de la série temporelle multivariée. Inter-Signal Features Extraction permet d'obtenir des caractéristiques en considérant des couples de signaux appartenant à la même série temporelle multivariée. Les deux méthodes fournissent des caractéristiques interprétables, ce qui rend possible une analyse ultérieure. L'ensemble du processus de clustering des séries temporelles est plus léger, ce qui réduit le temps nécessaire pour obtenir le cluster final. Les deux solutions représentent l'état de l'art dans leur domaine. Dans AnomalyFeat, nous proposons un algorithme pour révéler des anomalies à partir de séries temporelles univariées. La caractéristique de cet algorithme est la capacité de travailler parmi des séries temporelles en ligne, c'est-à-dire que chaque valeur de la série est obtenue en streaming. Dans la continuité des solutions précédentes, nous adoptons les fonctionnalités de révélation des anomalies dans les séries. Avec AnomalyFeat, nous unifions les deux algorithmes les plus populaires pour la détection des anomalies : le clustering et le réseau neuronal récurrent. Nous cherchons à découvrir la zone de densité du nouveau point obtenu avec le clustering.
Mots-clés : séries temporelles, science des données, réseaux de graphes, clustering, apprentissage automatique, extraction des caractéristiques, interprétabilité des modèles, réseau neuronal.