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Abstract
This document presents the principles and the implantation of inter-avatar collaboration based on the seman-

tic Web services. Avatars 1 have to expose their services as RESTful resources, to be combined in composite

applications. Though, due to the proliferation of connected objects, multiple smart things often are available to

provide a single service, showing the need for a task allocation mechanism for the Web of Things. We address

here the task allocation problem, which consists in selecting a set of objects to realize a complex application in

a setup where several objects provide the same functionality. We rely on a multi-agent approach to describe this

problem as a Distributed Constraint Satisfaction problem. We propose a solution that respects the fundamental

principles of the Web by respecting the REST architectural style and design principles. We implemented our

solution with a typical smart city scenario to show the applicability of our approach.
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1 Introduction

The Internet of Things (IoT) refers to the current trend of connecting everyday objects to the Internet Procotol
(IP) world. It aims at establishing identification, connectivity and communication to devices, ranging from the
simplest sensors to the most complex robots. As more and more devices are getting connected to the Internet, a
promising next step is to use the Web and its associated technologies as a platform for smart things : this vision
is called the Web of Things (WoT) [20]. It refers to the use of Web technologies to address and consume services
exposed by physical things. More concretely, the WoT promotes the use of the HTTP protocol and resource-
oriented computing to allow exposing object functionnalities as RESTful Web Services (also called Web resources
or simply resources). Hence, HTTP methods allow generic HTTP clients seamless access to any Web resource. As
well, Uniform Resources Identifiers (URIs) provide a generic addressing scheme for physical things. For example,
a HTTP GET on http://lamp.office.home/status would retrieve the state (on or off) of a lamp.

While Web technologies help communicating with connected objects, it remains difficult to manage or antici-
pate the complexity of a typical WoT setup, including interactions among things. In an open environment like the
WoT, physical devices are heterogeneous (in terms of CPU, storage, capabilities, energy consumption, etc.). They
reply to requests of different consumers, by providing and requesting services. Indeed, the WoT forms a complex
system in which entities interact with each other and with their environment. “The basic idea of this concept

is the pervasive presence around us of a variety of things or objects which are able to interact with each other

and cooperate with their neighbors to reach common goals" [2]. Among manifold visions of the WoT paradigm,
Multi-agent systems (MAS) provide an attractive solution in order to enable cooperation between objects in such
context [11] as they allow autonomous behavior and distributed decision-making. However, the implementation of
typical distributed algorithms used in multi-agent systems (such as the asynchronous backtracking algorithm [22])
according to the principles of resource-oriented computing remains a challenge. To the best of our knowledge, no
work has proposed a RESTful mapping of such a distributed algorithm.

We setup our work in a typical WoT context where several objects can provide different functionalities to be
combined in a single application. We propose a multi-agent approach for solving the task allocation problem that
consists in deciding which functionalities of which objects should be selected to run a WoT application. From a
technical aspect, we provide a resource-oriented implementation of a distributed artificial intelligence algorithm
by providing a mapping between exchanged messages and the REST architectural style. We show the applicability
of this mapping with the help of a typical “smart city” motivating scenario.

This document is structured as follows. In Section 2, we provide an illustrative scenario that presents a smart
city environment and highlights the challenges we address in this work. Section 3 overviews related work and
shows the originality of our approach. Section 4 details our contribution, then we show how our implementation
applies to the illustrative scenario in Section 5. We draw conclusions from the results obtained and give guidelines
for future work in Section 6.

2 Motivation and Problem Statement

2.1 Illustrative Scenario

On a rainy Saturday morning in Lyon, a student’s usual plan is to do homework in the public local library. At 09:00,
the “homework plan" prescribed in the student’s smartphone shall be automatically set. One of the actions to be
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performed in the “homework plan" is “take a means of transportation". This action needs a service composition to
recommend a means of transportation for the student (Fig. 1). We consider that the student prefers cycling because
it is much faster as it allows avoiding traffic jams, while in cold or rainy days, it is more convenient to take a public
transport (bus, tram, metro) in urban areas. The Web application provides our user with a recommendation of the
nearest means of transportation (bike or public transport), taking into account the (i) user’s GPS location, the (ii)
ambient temperature, and (iii) information about public transport stations and bike stands.

GPS Station
Finder

Weather
Transportation
Recommender

Figure 1: Flow of Services in the Smart City Scenario

The application relies on a composite service, as illustrated in Fig. 1, which combines the following atomic
services from different providers :

• GPS : provides the position of the user (Long., Lat.).

• Weather : provides the weather condition and temperature according the user’s current position.

• TransportationRecommender : recommends a means of transportation for the user. For the sake of simplicity,
this service simply recommends a public transport in bad weather or biking if appropriate.

• StationFinder : Finds the name of the nearest station based on the recommended means of transportation and
the user’s GPS position.

We consider that atomic services are provided as follows :

• GPS is provided by the phone’s embedded sensor,

• Weather service (temperature only) is provided by (i) the user’s smartphone, (ii) a weather API, and (iii) an
ambient temperature sensor located somewhere in the city.

• TransportationRecommender and StationFinder are RESTful Web services.

This illustrative scenario is simple enough to be particularly suited to dealing with several aspects of our problem.
We use it to motivate our multi-agent vision and to explore the various barriers to realizing this vision. Real world
scenarios involve more users, devices, and constraints.

2.2 Problem Statement

Our contribution aims at tackling the following problems :

• Task allocation : As illustrated in our scenario, in a Web of Things context, several objects can provide
similar services. However, available resources (memory, storage, energy, processing, bandwidth) are often
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limited. Considering the size of a heterogeneous system such as the WoT, there is a need for applications to
select the services they will use during runtime. To do so, and considering the distributed nature of the WoT,
we shall rely on distributed algorithms.

• REST adaptation for distributed algorithms : While REST promotes adaptability, visibility, interoperability
and loosely coupled interactions between objects, there is a need to adapt the execution of distributed al-
gorithms used to solve the task allocation problem. Such adaptation should respect the REST constraints
(uniform interface, protocol statelesness, etc), and at the same time allow for dynamic service composition
to offer complex applications [10].

• Resource-oriented mapping : In daily Web practice, developers often misuse the resource-oriented paradigm
as proposed by the REST model2. In this model, the fundamental architectural concept is the resource, and
the interaction mode follows the semantics of the HTTP verbs. Another challenge is to be able to describe
objects and their interactions from a resource-oriented (i.e. RESTful) perspective.

3 Related Work

Many works of different communities deal with the aformentionned scenario. We study different approaches that
can guarantee the cooperative behavior in a Web of Things context.

3.1 WoT Platforms

In [8], “Physical Mashups" are proposed as a lightweight approach for combining software services with physical
objects. For example, a physical mashup can be a Web dashboard for controlling and monitoring household
appliances. Such “Mashup Editors"3 are used to connect physical and virtual services to develop hybrid workflows.
Since all services are exposed in a RESTful way in our illustrative scenario, the user can define rules and processes
according to some situations. For example, one can list all the available services provided by devices in the vicinity,
and define a rule like : if it is rainy today, then find the nearest bus station. More WoT platforms that support service
composition have been surveyed in [23, 9]. This class of approaches is very successful in our context, however,
decision-making is not delegated to physical devices which can cause problems related to scalability and adaptation
to situations not pre-defined by the user via the mashup editor.

3.2 Service Composition

Motivated by the same concern, i.e. WoT platforms focus mainly on aspects related to basic device interoperation
and spontaneous networking without prodiving for dynamic coordination and the realisation of more complex and
intelligent functionalities that can be built at a higher application level, a SOA-based architecture adopting an
artificial intelligence domain-independent planning approach to automatic service composition, and using OSGi
as a platform for exposing RESTful web services is shown in [10]. Nonetheless, we believe that using distributed
hypermedia system like REST, distributed models and algorithms for service composition is more relevant than
applying CSP-based AI planner, as it is more adapted to the distributed Web setup.

2http://ruben.verborgh.org/blog/2012/09/27/the-object-resource-impedance-mismatch/
3http://clickscript.ch/
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3.3 Multi-Agent Approaches

Applying a different approach to our scenario, [4] proposes to use RESTful Web services as an abstraction layer of
the proposed architecture to be accessed by users to monitor the Social WoT platform. However, the other layers
are not Web compliant and use multi-agent techniques without respecting Web constraints.

Another approach [14] is suggested in a IoT context, taking advantage of using embedded RESTful Web
services [18] for constrained embedded networked devices to expose smart objects resources, capabilities and
services to the Web for human-machine interactions. The novelty of this approach is its straighforward adaptation
to our scenario. However, the approach suggests to use mobile agents. This requires the support of distributed
programming models : macroprogramming languages, code migration, task offloading, virtual machines and cyber
foraging. The caveat of such approach is that decision making is not reached in a multi-agent way (multiple agents
cooperating together to fulfill a complex task) but with agent migration between devices. This technique may open
the doors to many security problems due to the agent migration.

Starting from the same area of interest, i.e. multi-agent coordination in ambient intelligence, [17] tackles the
challenge of integrating diversified intelligent capabilities to create proactive assistant for everyday life in a do-
mestic environment. This integration, within a coordination scheme, allows to leverage potentially sophisticated
domestic services to obtain a smart home with more added value than the sum of is parts. Their contribution con-
sists in reducing the service coordination to a multi-agent coordination, thus casting the smart home coordination
to a DCOP (Distributed Constraint Optimization Problem). The fundamental difference related to our work is the
use of a constraint optimization approach, while we opt for a constraint satisfcation one [3]. Another distinctive
difference lies in the compliance of our work with the RESTful paradigm, which is much more convenient in a
WoT setup.

4 Approach

Providing users with understandable functionalities usually requires composing services offered in the user’s vicin-
ity. So, devices need to deal with the incoming requested tasks, called Functional Requirement Descriptions (FRD).

GPS
Station
Finder

Weather
Transportation
Recommender

A2

A4

A1 A3

Figure 2: The task allocation problem for the Smart City scenario
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4.1 Negotiation Protocol

4.1.1 Functional Requirement Description

A FRD is a composed service that can be divided into multiple atomic services. For example “bring warm coffee"
as a FRD includes the invocation of “go to the kitchen", “make coffee" and “carry plate" atomic services that are
provided by a robot and a coffee machine. Fig. 2 shows the FRD of our scenario, composed of the GPS, Weather,
TransportationRecommender, and StationFinder atomic services. In general, an avatar is not able to accomplish
alone such FRD in the most optimal way, so it will form a coalition to deal in a collective way with the given
requirement. This is where the Contract Net Protocol comes into play.

4.1.2 Contract Net Protocol

Contract Net Protocol is a task-sharing protocol defined by Smith and Davis [19] for decentralized task allocation
based on calls for bids by a manager and submissions of proposals by the contractors. Many extensions and
variations to the Contract Net Protocol have been proposed. In this work we use the one proposed by Aknine et
al. [1]. This extension was intended to enable an agent to manage several negotiation processes in parallel, and to
reduce the contractors’ decommitment situations. The extended communication primitives used by the managers
and the contractors are: Announce, i.e., an agent proposes the execution of a task. PreBid, i.e., an agent makes a
temporary bid for the execution of a task. PreAccept, i.e., an agent is temporarily accepted for the execution of a
task. PreReject, i.e., an agent is temporarily rejected for the execution of a task. DefinitiveBid, i.e., an agent makes
a final bid for the execution of a task. DefinitiveAccept, i.e., an agent is definitively accepted for the execution of
a task. DefinitiveReject, i.e., an agent is definitively rejected for the execution of a task. We find Aknine et al. [1]
extension very suitable to our problem, since an agent needs to reason about the potential coalitions and collective
actions before committing to participate.

Once a FRD is decomposed, the avatar sends, as illustrated in Figure 3, Announce messages to all other avatars
in its vicinity requesting the execution of all the sub-tasks and actions derived from the decomposition. When
another avatar receives the Announce message, it will respond to this request by sending a PreBid message for
each of the sub-tasks or actions that it can perform. After a given timeout, the manager evaluates the proposals
submitted by the bidders, and selects the best k+ 1 prebids for each requested sub-task or action. A coalition is
viewed as k-robust [16] (for a given non-negative integer k) if removing any k agents from it leads to a remaining
team which can still accomplish the given tasks. Then, the contractor avatar will send PreAccept messages to the
best k+1 bidders for each requested sub-task or action. The coalition is not formed yet since, agents neither know
their teammates nor their proposed sub-tasks (or actions). After sending pre-accepts, the manager will set up a
constraint network such that each constraint involves bidders from distinct systems.

For a FRD, many agents are likely to be proposing a similar atomic service (e.g., in Fig. 2, temperature can
be provided by the sensor (A4), weather API (A3), and device (A1) agents). The first aspect of our contribution
consists in dealing with this task allocation problem in a Web of Things context. Ideally, we aim to assign each
requested atomic service to a participating agent in the service composition.
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Figure 3: Extended CNP

4.2 Task Allocation as a “Distributed Constraint Satisfaction Problem"

In a Web of Things context, objects are confronted to multiple constraints. (i) Each device has its own limitations
with respect to hardware capabilities, organizational policies, and cognitive abilities. (ii) Consumers’ needs vary in
terms of data quality, nature, format, etc. (iii) New constraints are imposed among services provided by physically
distributed agents controlling objects.

We introduced in one of our previous works [3] a self-adaptive ecosystem of services based on a multi-agent
perspective for dealing with the dynamic nature of physical environments. This work proposes an approach to
face the challenge of service adaptation by modeling this problem as a Distributed Constraint Satisfaction Problem
(DisCSP). Since we view this problem from a multi-agent perspective, we use this work as a task allocation
mechanism for agents.

4.2.1 DisCSP

The formal definition of a CSP involves a set of variables X1,X2,. . . ,Xn whose values are taken from finite, discrete
domains D1,D2,. . . ,Dn respectively, without violating a number of constraints C1,C2,. . . ,Cn. The set of constraints
specifies allowable combinations of values for subsets of variables. A solution to a CSP is an assignment of every
variable to a value in its domain such that every constraint is satisfied.

7



A Distributed CSP [22] is a CSP in which variables and constraints are distributed among multiple agents.
Solving a DisCSP consists in finding a set of values for variables to satisfy inter-agent constraints to reach consen-
sus among agents. Unlike the centralized CSP, no agent has a complete view of the states of involved agents. Many
AI problems can be modeled as DisCSPs. In the same way, we propose to model the dynamic task allocation as a
Distributed Constraint Satisfaction Problem.

4.2.2 DisCSP Model

To fulfill each FRD in the system, we represent it as a tuple 〈Ax,SDx,SCx〉, where :

• Ax is the set of agents 〈a1,a2, . . . ,an〉 which accepted to collaborate to fulfill the FRD;

• SDx is a set of service domains 〈sda1,sda2, . . . ,sdan〉, each service domain SDx comprises services provided
by the corresponding ax in the service composition;

• SCx is the set of constraints on Ax.

A solution to this DisCSP model consists of assigning services to agents without violating (intra-)constraints.

s1

s2

s3

s4

A1

A2

A3

A4

s1

s2

s3

s4

A1

A2

A3

A4

Figure 4: Task Allocation Problem represented as a (bipartite) graph

Task allocation can be represented with Fig. 4. On the left side, we have the required services for the FRD, and
the agents that accepted to provide them, dashed links mean a potential participation of the agents. On the right
side, normal links mean self-acquired obligation of agents to provide the linked services (We assume, there is a
constraint preventing an agent to take a service provided by another).

To create this graph, an agent receives a requested FRD, it decomposes this FRD into atomic services, then
sends atomic service requests to its neighbors. Each neighbor decides whether or not to provide the requested
services. After receiving replies from neighbors, the agent forms a candidate table with the neighbors and the
corresponding services (the services that they agreed to provide).

To provide a composite service, as illustrated in Fig. 1, we must solve the following task allocation problem
modeled as a DisCSP (Fig. 5).

In this model, nodes represent agents, services provided by each agent are listed in the corresponding node,
arrows between agents represent the following constraint : Two agents can not provide the same service. Each edge
is directed from the agent with the higher priority to the agent with the lower priority. In this type of problems, it
is highly recommended to establish a priority between the participating agents. We simply set the highest priority
to the agent which provides the highest number of services. For each constraint, the lowest priority agent involved
in the constraint is the agent that evaluates the constraint. The other agents in the constraint send their assignments
to the first agent, which will check the consistency of the constraint.
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Figure 5: Task Allocation DisCSP Model of our Smart City Scenario

5 Mapping DisCSP to the Web of Resources

For solving a DisCSP, one trivial approach is to collect all the information about the problem (variables, domains
and constraints) into a single agent. Then, this agent solves the problem in a centralized way. However, centraliz-
ing the entire problem into a single agent could be very costly in terms of communication and scalability and is not
relevant with respect to the distributed nature of the Web. Therefore, we do not consider a centralized algorithm
for solving our DisCSP model. A common method for solving a DisCSP is by backtracking, that is, by repeat-
edly assigning values to the variables in a predetermined order and then backtracking whenever reaching a dead
end. The solution involves assignments of all agents to all their variables. Agents exchange messages containing
information about their assignments which allow them to check the consistency of assignments with respect to the
problem constraints.

5.1 The Asynchronous BackTracking Algorithm

Following the pioneer work on the ABT (Asynchronous BackTracking) algorithm [22], manifold ABT-based
extensions have been proposed for solving both distributed constraint satisfaction and optimization problems
: ABTkernel, Asynchronous Distributed Constraints Optimization (ADOPT), ADOPT-ng, AgileABT, Dynamic
Backtracking for distributed constraint optimization (DyBop), etc. . All these extensions share commun princi-
ples and assumptions with ABT. Therefore, in this work, we found it logical to base our implementation on the
original ABT algorithm as a cornerstone for adapting the implementation of more extensions to the Web. ABT
is an asynchronous algorithm executed autonomously by each agent in the task allocation process. Each agent
manages to find an assignment (provided service) satisfying the constraints with what is known from other agents
in a distributed way. To give an idea about the progress of the algorithm (detailed in [22]), agents exchange many
messages :

• ok? : sent after choosing a service.

• nogood : sent after finding that the current local view (assignment of neighbors) violates one of the con-
straints.

• newlink : sent to a non-neighbor to know its current assignment.
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5.2 Mapping ABT messages to HTTP Requests

An important aspect of our contribution lies in the alignment of the implementation of an AI distributed algorithm
with REST architectural principles [6, 7]. Many of the successful RESTful Web applications are still limited to
data exposure and manipulation, it is still not clear how to apply them to process-intensive systems [21]. So, we
consider mapping the ABT algorithm to the REST design principles as a step forward towards further application
to wider problem domains. We respect the following REST constraints as follows :

C1 Everything being resource identified through URI The central principle of REST is to model as a resource
any entity that needs to be used or addressed, which the client can consume or act upon. Each agent par-
ticipating in the fulfillment of the FRD (Fig. 2) has a unique URI. As shown in Fig. 6, the agent’s state is
modeled as a Web resource. Its most relevant state attributes (localview, constraints) are modeled as sub-
resources. Following this segmentation, the size of requests and responses is reduced, giving more scalability
to distributed algorithms [5].

Figure 6: JSON Representation of an Agent resource

C2 Manipulation of resources through representations We provide agents with a uniform interface through
HTTP operations (GET,POST,PUT,DELETE) such that :

• GET is used to retrieve the agent’s attributes,

• POST sets the agent’s initial constraints (arcs in Fig. 5) and neighbors (parents and children),
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• PUT is invoked to allow agents to exchange messages in a resource-oriented manner as illustrated in
Fig. 7,

• DELETE is used to reinitialize agents states after the execution of the ABT algorithm : agents constraints
and local view sub-resources are deleted after the adhoc task allocation phase.

C3 Stateless interactions In the ABT algorithm, agents exchange their selected services and local views (a table
containing services provided by neighbors). These asynchrnonous interactions are separate and do not de-
pend on any additional context information for interpretation, thus we keep no state between interactions as
illustrated in Fig. 7 which reduces the workload on the agents.

A3 A4

PUT

outdated resource

304 Not Modified

evaluatePreconditions()

outdated resource 204 No Content

412 Precondition Failed

evaluatePreconditions()

GET /agents/A4/localview/

{
  "view": {
    /agents/A2/": "GPS",
  }
}
ETag : "277421249"

Last-Modified : 01/01/2016 00:00:01

200 Ok

PUT /agents/A4/localview/
If-Unmodified-Since : 01/01/2016 00:00:01

{
  "view": {
    /agents/A2/": "GPS",
    /agents/A3/": "W"
  }

}

alt

alt

up-to-date resource

up-to-date resource

response.getStatus() == 412

loop

Weather,

Recomnd.
Weather

A4 A3

ok?, A3=W

GET

Figure 7: Sending an ok? message

C4 Self-descriptive messages This constraint tightly liked to C3, as interactions are self-contained. Standard
HTTP operations are used to indicate semantics and exchange information (C2).

C5 Hypermedia as the engine of application state (HATEOAS) Each agent resource contains links to other re-
sources or sub-resources. This allows other agents or users to navigate through the accessed agent. Even if
we have implemented this constraint, we do not use it in the distributed task allocation mechanism because
the algorithm’s steps are predefined, and there is no dynamic interactions in the process. Yet, we can fully
exploit the potential of this constraint to provide users with links to others resources (agents, functionalities,
services, etc.)

C6 Cache Caching is one of the many performance and scalability aspects of the Web. Agents use this information
technology to store temporary data by caching responses. As a result, we prevent agents from sending
unnecessary data in response to further requests, and reduce the time generating the results. By adding ETag
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and Last-Modified headers to responses, agents can get other agents state only when necessary. Requests
containing these headers are called Conditional Requests and give the sender an opportunity to skip the
response body if the representation has not changed since the last time it served the representation.

Therefore, our solution supports by design the constraints of the REST architectural style, which allows getting
most benefits of the Web as a support platform for realizing our view of avatar [15] communities to build the Web
of Things.

6 Conclusion

We have presented a solution to map a task allocation algorithm based on a cooperative distributed problem solving
approach to the Web. We setup our contribution in a Web of Things context where agents are required to compose
services offered in their vicinity to provide users with understandable functionalities. The novelty of our contribu-
tion lies in envisioning a WoT problem as a distributed constraint satisfaction problem (DisCSP), and in providing
a translation of the Asynchronous BackTracking (ABT) distributed algorithm into the REST architectural style to
solve this problem [12]. We show that a Web-compliant mapping of the ABT algorithm is possible and offers
interesting features. Future work includes studying to what extent other problems from the Web of Things can be
modeled as distributed constraint satisfaction problems and solved with well-known distributed algorithms.

The extension of this work is already underway [13], we have adapted the negotiation protocol so that avatars
can satisfy a very particular interest, which is committing to potentially conflicting objectives. Indeed, avatars
are likely to coexist with avatars of other systems in the same physical space. So, cooperation is not restricted to
avatars of the same system, an avatar needs to be able to cooperate with avatars from other systems, to respond to
requests expressed in a opportunistic way, and to form coalitions with unfamiliar teammates. Before committing
to cooperate with others, an avatar must take into account that it may get involved in the achievement of objectives
that are incompatible with its own objectives, with the global objectives of its system, or with those derived from
its previously joined coalitions. To avoid such situations, we propose an identity-based cooperation mechanism.
This mechanism involves creating and sustaining the avatar identity, and a commitment process to reason about
"identities" when solicited to participate in a collective action.
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