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Abstract

Existing adaptation solutions for Web of Things (WoT) applications are tightly coupled with application
domains. In this deliverable, we propose a contextual adaptation solution that relies on Semantic Web
standards to make adaptation decisions for various concerns, using contextual information. We formalize
multi-purpose adaptation rules to infer and rank adaptation possibilities.
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1 Introduction

The ambition of the Web of Things (WoT) is to provide a layer on top of the Internet of Things (IoT), where
physical devices (things) can be involved in software applications in a standardized, interoperable and
secure manner' . To do so, existing WoT specifications rely on Web standards, among which the exposition
of things as RESTful resources [10] and semantic descriptions of these resources with description logics
(RDF [18], RDF-S [8], OWL2 [14]). WoT standards thus define semantic vocabularies (Thing Descriptionz)
and programming interfaces (servient’, scripting API*) reused in projects to design actual WoT applications.
In the ASAWOO project, we proposed a component-based framework to ease the development of such ap-
plications in diverse domains (industry, healthcare, agriculture...). This framework [20] allows semantically
describing and running applications, so that their software elements (descriptions, code) are decoupled from
physical (things, network) setups. The variety of technical constraints, applications and tasks imposes WoT
standards and their implementations to cope with numbers of situations: an application must be able to run
on different things, use different data sources and perform several tasks.

Yet, contextual adaptation in such applications is a major challenge. Existing adaptation solutions are either
tightly coupled with their application domains (as they rely on domain-specific context models) or offered
as standalone software components that hardly fit in Web-based and semantic architectures. The sets of
adaptation goals are usually difficult to extend for newly identified purposes, as it requires redefining the
whole context model and — in worst cases — reconsidering the adaptation process itself. This leads to inte-
gration, performance and maintainability problems. Hence, there is a need for an adaptation approach able
to remain independent from application domains and to comply with Web standards (e.g. resource-oriented
architectures, semantic Web, Web of things) by design. The ASAWoO framework proposes a context man-
agement component that copes with these constraints. It is loosely coupled with semantic descriptions of
relevant resources - including the application domain - and applies generic reasoning techniques to enable
domain-specific adaptation in WoT applications.

In this deliverable, we tackle the research question of multi-purpose contextual adaptation in WoT appli-
cations. We aim to provide an adaptive solution that brings together contextual information and adaptation
purposes, to provide adaptation rules in both user-friendly and generic ways. We formally describe the
theoretical adaptation framework that supports context management and details the design of adaptation
rules.

This deliverable is structured as follows. In Section 2, we overview related work on adaptation classification
and WoT-based solutions. In Section 3 we present a solution to illustrate our research problem. In Section 4,
we present our contributions on domain independent multi-purpose context adaptation. In Section 5, we
open a discussion regarding the questions brought by our solution. We conclude in Section 6.

2 Related work: semantic approaches for adaptation in the Web of
Things

[2] classify adaptation approaches according to several characteristics: functional vs. nonfunctional, de-
signed vs. unanticipated, predictable vs. unpredictable, third-party vs. self-adaptive (i.e. provoked by the
adaptation software itself) and business-specific vs. generic. Another adaptation classification from [11]
includes the notions of anticipation (as the degree of anticipation to changes) and domain-specificity (as
the level of parametrization of the adaptation solution) as well. It also introduces two additional char-
acteristics to position adaptation solutions: tools (denotes whether the adaptation solution comes with a
dedicated development environment or a runtime monitoring environment) and scope (describes the extent
of the adaptation process over the application components and services). In this work, we target generic
and largely scoped contextual adaptation techniques. In this section, we position our research with respect
to existing work on generic adaptation, semantics-based adaptation, semantics-based WoT solutions, and
adaptation rule generation.

"https://wuw.w3.org/WoT/

2https://uww.w3.org/WoT/IG/wiki/Thing Description
Shttps://w3c.github.io/wot/architecture/wot-architecture.html#general-description-of-wot-servient
‘https://uww.w3.org/WoT/IG/wiki/Web_of_Things_scripting_API
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2.1 Generic adaptation frameworks

Several techniques can be used to adapt a software system to contextual parameters: service configura-
tion, service substitution and adaptation planning [13, 2] [11, 4.4]. The following adaptation frameworks
illustrate these techniques and stress their advantages and drawbacks for generic adaptation approaches.

In [4], the authors provide a service configuration adaptation approach that is generic and based on reference
models. It aims to ease the design of adaptation solutions for business processes that are shared by vari-
ous participants, based on a multidimensional context model and complex transformation rules. The fact
that a service configuration engine has to generate numerous parameters makes such an approach strongly
parametric and does not guarantee optimal adaptation decisions. Moreover, it is more difficult for a domain
expert to completely formalize the transformation function than to express its behavior in natural language.
In the Adaptive CORBA Template (ACT) [22], the authors propose a service substitution approach for
dynamic adaptation based on CORBA middleware interceptors. Such interceptors can be registered, un-
registered and enhanced at runtime, thus producing adaptation cases that are not known in advance. This
framework is domain-independent, partially anticipatory as it preconfigures so-called adaptive CORBA tem-
plates and its adaptation scope can address different tasks through the use of rule-based interceptors. In this
sense — and even though it requires the CORBA middleware, which is neither tailored for resource-limited
devices and nor compliant with Web standards - it is close to more recent approaches such as aspect-oriented
adaptation [16], as well as to substitution of service-based applications [30], or more generally to adaptation
in dynamic, component-based middlewares.

WComp [28] is an aspect-oriented, Web service-based middleware that relies on the Aspect of Assembly
(AA) aproach to provide compositional adaptation of event-based services, depending on context changes.
The adaptation decision relies on aspect-oriented concepts, such as joint points, pointcuts, advices, etc.
The FraSCAti platform [23] aims to extend the Service Component Architecture (SCA) [6] by providing
reflexive behavior for service oriented architecture components. To do so, each component is associated to
a generic container (at a meta level of the architecture) that includes several services such as component
identity, lifecycle, hierarchy, wiring, etc.

The Mobility and ADaptation enAbling Middleware (MADAM) framework [19] applies an adaptation plan-
ning approach to ease the development of adaptive solutions. At request time, it chooses the combination of
available services to compose a response to a particular user’s need. To do so, it provides several managers
(context, configuration and adaptation managers) that allow for decoupled adaptation processes. Moreover,
it relies on "context reasoners", which are generic means to locate sensor data processing in the adaptation
workflow. In the perspectives, the authors foresee to reuse this approach using Web services and semantic
Web technologies.

2.2 Semantics-based adaptation approaches

By essence, context is metadata. Behind the well-known definition of context by Anind Dey [9] "Context
is any information that can be used to characterize the situation of an entity[...]" emerges the notion of
information annotation, and therefore of generating graphs of interrelated pieces of data. The semantic Web
was built to ease and to standardize the creation, handling, querying and transformation of such graphs [7].
Hence, it appears quite relevant to use semantic web languages (RDF, RDF-S, OWL)> to model contextual
information, as well as to reason about contextual data to make adaptation decisions.

[17] present a semantic adaptation framework for multimedia documents in which they describe documents
as sets of parts related by constraints. Although they only apply adaptation to this domain, their formal-
ization makes their approach quite reusable, even though they use an on-purpose graph matching algorithm
rather than classical reasoning tools. The work presented in [1] proposes a generic approach based on the
semantization of sensor data and a context intelligence module, that partly relies on a semantic reasoner to
provide adaptation propositions. However, to the best of our knowledge, [29] describes the first work to use
both rule-based reasoning for context adaptation, as well as the expressivity of high-level description logics
constructs available in OWL relations.

Hence, the potential offered by Web-based reasoning and semantic technologies could provide adaptation
in WoT applications in a generic, flexible and reusable manner, for multiple and high-level purposes. We

Shttps://uww.w3.0rg/2001/sw/interest/



https://www.w3.org/2001/sw/interest/

asaWUCo Deliverable 4.2

intend to reuse Web standards and provide compliance with the WoT Interest Group specifications (Thing
Description, Servient), to allow for adaptive WoT applications design.

2.3 Semantics-based WoT platforms

To reason about contextual data, semantic adaptation tools must first gather semantized data. In the WoT ap-
plication field, not all platforms provide semantic data to their components. Actually, only recent advances
in the WoT aim to bring together the Semantic Web with Web standards, on top of the Internet of Things.
UBIWARE [15] uses semantic annotations to describe agents and behavioral tasks, to provide interoperabil-
ity and reusability of these definitions. SPITFIRE [21] unites RESTful approaches using CoAP [24] with
OWL/RDFS and SPARQLY for constraint devices. Sense2Web [3] allows publishing sensor data and mea-
surements on the Web through a SPARQL endpoint, but still has to be coupled with a functional solution to
provide a complete WoT application capable of managing any type of thing (sensor or actuator). The M3
framework provides a more comprehensive and domain-independent approach through a dedicated vocab-
ulary to describe sensors, together with the tools to reason about these descriptions and deduce application
templates [12]. While these approaches facilitate things interoperability and WoT application development,
they do not tackle the adaptation concern.

3 Scenario

To illustrate our approach and contributions, we consider a vineyard-watering application. This application
detects parts of the field that need to be watered, while taking environmental conditions into account. A WoT
infrastructure hosts this application, which includes a cloud infrastructure, several wireless gateways as well
as an irrigation system composed of geolocated watering agribots and drones that embed a GPS sensor and
a thermal camera. Drones and agribots have the ability to move over/across the field to detect/water given
parts of the field.

While the application is active, several sensors (which are placed on each part of the field) regularly send
data to agribots to adapt their behavior with respect to the information given (e.g. the presence of entities
would disable their moving and watering functionalities). Drones possess a thermo-sensing camera along
with a CPU to process field images. If a drone cannot process a picture (due to limited memory or high
CPU usage), it sends the picture to another drone to fulfill the task. The drone then communicates with the
suitable agribots to take care of the parts that lack watering. Other devices consist in a desktop computer to
host the WoT infrastructure, as well as a tablet allowing users to remotely monitor the system.

In this scenario, the WoT application is designed as a hierarchy of functionalities, with the ManageWatering
functionality on top of it. The latter is composed of several functionalities, among which SprayWater
and DetectWateringNeeds, which implies TakeHdPicture, ProcessPicture and TransferPicture. Complex
processing task can be be executed either on the cloud platform, or on the device itself. We consider a field
equiped with an anemometer, a thermometer and a pluviometer to sense actual weather conditions. Drones
are equiped with a GPS sensor, a thermal camera, a Wifi and a Bluetooth network interfaces, and are able
to sense their hardware status (battery level, storage capacity, CPU usage, storage space).

4 Contextual Adaptation

Our work is based on the ASAW0O project’. ASAWoO consists in a WoT platform where each object has
its own avatar [20]. An avatar is a form of servient (a virtual representation of the object) that allows access
to and control over an object on the Web.

In ASAWo0O, we distinguish the object capabilities (i.e. the physical API provided by the manufacturer)
from the object functionalities (i.e. high-level tasks). Avatars exposes the object functionalities, which can
be either atomic (i.e. directly implemented by the object physical capabilities), or composed by lower-level

Shttps://www.w3.org/TR/rdf-sparql-query/
"https://liris.cnrs.fr/asawoo/
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functionalities. Functionalities are semantically annotated, in order to infer both atomic and composed
functionalities for each avatar.

Within the ASAWo0O platform, an avatar has a component-based architecture that allows its elements (aka
"managers") to exchange semantic data. Managers are designed to tackle different concerns: network
disconnections, social interactions, and naturally dynamic adaptation. In particular, managers allow the
implementation, composition, exposition, communication with and location of the object functionalities.
Hence, each of them deals with a specific purpose, and these purposes may require adaptation to the context.

4.1 Contextual Modeling

In [25], we have shown that contextual information can be diverse amongst application domains. Most of
the literature group information thematically. We hereafter formalize concepts related to the context and its
adaptation.

A contextual instance is a high-level piece of contextual information. In our work, contextual instances
can be either inserted at design time as semantic information by WoT application designers (e.g. user
preferences, regional settings, device static information, etc.) or inferred at design time from raw sensor
data using rule-based semantic reasoning. We group these contextual instances in thematic sets called
contextual dimensions.

4.1.1 Contextual Dimension

Let i be a contextual instance, i.e. a high-level, semantized piece of contextual data. We define contextual
dimensions as follows:

Definition 1 (Contextual dimension) A contextual dimension d represents the set of contextual instances
needed for any adaptation purpose, regarding a given type of observation (temperature, location, etc.).
d={is}, d € 9 where D is the set of available observations that are relevant for the application.

For instance, in our scenario, we use “Temperature” as a contextual dimension, which groups the following
contextual instances: {Hot,Warm,Cold}.

4.1.2 Adaptation Purpose

WoT application execution can rely on different types of adaptation we call adaptation purposes. To avoid
the redefinition of specific contextual dimensions and allow the instantiation of reusable domain-specific
context models, we have propose a meta-model for context in WoT application. This meta-model relies
on cross-domain adaptation purposes and promotes the usage of identical reasoning mechanisms for any
application domain, through common ontological concepts. We formally define an adaptation purpose as
follows:

Definition 2 (Adaptation purpose) An adaptation purpose ap represents the set of contextual instances
related to a certain type of adaptation, as described above.
ap = {igp}, ap € A P.

In the ASAWO0O platform, the different managers that compose the avatar architecture require the set
o P = {Imp,Comp,Exp, Prtcl,CdL} of adaptation purposes explained below:
e /mp Finding the best capability candidates to implement an atomic functionality,
e Comp Finding the best functionality candidates to take part in a functionality composition (either
locally on the object or with other avatars),
e Exp Deciding whether to expose or not a functionality to other avatars and users,
e Prtcl Finding the most suitable network protocol to communicate with the object during the execution
of a functionality,
e CdL Finding whether to locate the application code modules on the object processing unit, on a local
machine (e.g. a gateway) or on a cloud infrastructure.
In our scenario, the “Temperature” dimension contains instances for the the Exp adaptation purpose only,
as it allows deciding if the SprayWater functionality should be exposed or not.
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4.1.3 Multi-Purpose Context Model

The meta-model we have proposed allows to build multi-purpose context models using both contextual di-
mensions and adaptation purposes. At adaptation solution design time, WoT application designers discuss
with domain experts to determine the appropriate contextual dimensions and adaptation purposes compos-
ing the context model, as well as the contextual instances that will populate the model at runtime. We define
such models as follows:

Definition 3 (Context model) A context model # is a two-dimensional set of contextual instances corre-
sponding to both adaptation purposes o/ & _, and contextual dimensions 2. . Within a given model M,
dimensions and adaptation purposes are respectively disjoint in 9 4 and of & 4.

M=9 Py XDy = iapya,}wWhereap y € 4P yandd y € D y.

The context model for our scenario is composed of the following dimensions: Wind, Dryness, Temperature,
Location, Battery, Memory, CPU and Resolution. For each purpose, we have different sets of contextual
instances, depending of the adaptation needs. These instances are depicted in Figure 1. Sometimes, a
dimension may not be useful for a given purpose. In that case, its list of instances is marked as not applicable
(n/a) on the figure.

- Tempe- : Reso-
Wind Dryness T Location Battery Memory CPU lution
) . : ) HD
HighMemPict | HighCPUPict ;
Imp n/a n/a n/a n/a n/a . . AvgQuality
LowMemPict | LowCPUPict LowQuality
CloseToField |HighBattComp |[HighMemComp
Comp n/a n/a n/a FarFromField | LowBattComp |LowMemComp n/a n/a
StrongWind Dry Hot
Exp Breeze Wet Warm n/a n/a n/a n/a n/a
NoWind Flooded Cold
Close HighBattPrtcl
Prtcl n/a n/a n/a Far LowBatt-Prtc| n/a n/a n/a
HighBattCode |HighMemCode |HighCPUCode
CdL n/a n/a n/a n/a LowBattCode |LowMemCode | LowCPUCode n/a
Contextual Dimensions | Adaptation Purpooses | i Contextual Instances |

Figure 1: The context model of our scenario.

We justify our adaptation purposes association with dimensions as follows:

e Imp Choice of capability to implement TakeHdPicture depending on the available memory and CPU
on the device, as well as on its camera resolution.

o Comp Composition of DetectWateringNeeds depending on the drone location and battery level (suf-
ficient to move towards the field to take pictures from), as well as on its available storage space (to
save pictures taken).

e Exp Exposition of the functionality SprayWater requiring acceptable weather conditions.

e Prtcl Choice of protocol to send pictures with TransferPicture depending on the device location and
on its battery level (as some protocols are more energy consuming).

e CdL Location of the ProcessPicture functionality code depending on available memory, battery and
CPU on the device. The code can be deployed either on the device itself or on the cloud.

4.2 Contextual Adaptation Workflow

The solution we propose relies on adaptation planning, which infers ready-to-query adaptation possibilities
for multiple adaptation purposes from both static information and raw sensor data using semantic reason-
ing. The work we have proposed in [26] details the runtime process: when another manager needs to make
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an adaptation decision concerning a particular purpose, it sends an adaptation question to the context man-
ager. Processing such questions is reduced to a simple purpose-dependent SPARQL SELECT query to the
endpoint. The steps of this workflow are depicted in Figure 2 and detailed in the subsections below.

5 Score - ,Q@C
& ADAPTATION &
@ |'_4‘| s o applicable to+ s@} o
"y . . . - 3
H SEMANTI- TRANSFOR- N Adaptation Adap.ta.tl_on | ;| DECISION
@ ZATION MATION S rule possibility 7
] Situation -
"] infers

Figure 2: The contextual adaptation workflow

4.2.1 Semantization step

The contextual adaptation solution we have proposed in [27] relies on semantized contextual instances
implemented as RDF triples. At runtime, sensors send data to avatars to be semantized, i.e. converted
into RDF triples. For instance, if a thermometer sends the value “20.388”, the system will interpret this
information as the following triple: asawoo: Thermometer rdf:value ¢20.388.

4.2.2 Transformation step

As soon as numerical values are semantized as RDF triples, they are inserted into the semantic reasoner to be
transformed into contextual instances using transformation rules. Transformation rules relies on thresholds
and upper limits provided by experts to infer appropriate contextual instances. For example, the triple
(asawoo:Thermometer rdf:value ‘“20.388’’) will infer the contextual instance Warm, considering
the threshold between Cold and Warm is 20 degrees.

At runtime, contextual instances are inserted in and deleted from the semantic repository, which is equipped
with both a SPARQL endpoint and an OWL2 RL incremental reasoner. Context models are instantiated
this way; each cell of the matrix contain one contextual instance, or is empty in the case of a contextual
dimension is not applicable for a given adaptation purpose (e.g. the dimension “Location” and Imp in our
scenario).

We define subsets of instantiated contextual models as contextual situations. A contextual situation is
identified by domain experts to design appropriate adaptation rules in response of these situations. We
formalize them as follows:

Definition 4 (Contextual situation) A contextual situation G is a subset of an instantiated context model
that characterizes a salient situation identified by domain experts.
g ={ijx} where j€ o/ P U0 andk € 20

For example, in our scenario, the experts refer to a situation “FarDroneWithLowBatteryForTransfer” which
consists in the set of contextual instances {Far, LowBatteryPrtcl}.

4.2.3 Adaptation step

Adaptation possibilities are triples inferred using business-specific adaptation rules at the insertion of con-
textual instances, and removed at their deletion using incremental reasoning. Their subject is the function-
ality to be adapted in the application, the predicate is related to the purpose, and the object is the adaptation
candidate. Table 1 below details the possibility triple patterns for each purpose.

Definition 5 (Adaptation possibility) An adaptation possibility p associates an adaptation candidate to
a functionality to be adapted, with respect to an adaptation purpose. The set of possibilities for the same
adaptation purpose is denoted P.

Prap - fr,ap — c where f is a functionality, c is a candidate and py 4p € Py 4p.
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Table 1: Pattern of the possibility triple # for each adaptation purpose.
Purpose | Subject Type | Predicate Object Type
Imp Functionality | hasSuitableCapabilityForImplementation | Capability
Comp Functionality hasSuitabl eF unctionalityToTakePart Functionality
InComposition
Exp Functionality | hasExposability Exposability
Prtcl Functionality | hasSuitableProtocol Protocol
CdL Functionality | hasSuitableCodeLocation CodeLocation

For instance, in our scenario, the adaptation of communication protocols for the TransferPicture function-
ality may have either Wifi of Bluetooth as adaptation candidates.

Adaptation possibilities are inferred from contextual instances using adaptation rules. Adaptation rules
have similar patterns, regardless of their adaptation purposes: the body of the rule is a conjunction of
contextual instances, i.e. a contextual situation, and the head of the rule is a set of adaptation possibilities.

Definition 6 (Adaptation rule) An adaptation rule is a conjunctive rule in the form: /\kSIG\ ir — Pwhere
i € G is a contextual instance and P a set of inferred adaptation possibilities p. Each purpose ap € o/ &
is associated to a set )y of adaptation rules.

In ASAWO0O, contextual instances that trigger adaptation possibilities are respectively associated to capa-
bility instances for Imp, and to functionality instances for Comp. An example of adaptation rule in our
scenario is

if {Dry,Breeze,Warm} then {(SprayWaterhasExposabilityExposable)}

4.2.4 Scoring

To allow an optimal decision amongst several adaptation possibilities regarding a particular contextual sit-
uation at runtime, our solution relies on scoring. This score is determined as follows. At design time, each
possible contextual situation is presented to the domain expert. The expert then suggests an appropriate
response to this situation, to allow the WoT application designer to determines which capabilities/function-
alities are the most/least appropriate to implement/compose a functionality, which functionalities should not
be executed (i.e. should not be exposed to clients), which protocols shoud be used, or where the function-
ality code should be located. The “most/least” degree is thereafter interpreted as a score for this adaptation
possibility with respect to the observed situation.

Making binary decisions then consists in selecting an adaptation possibility if its score equals 1. Finding
the best candidate for another purpose consists in selecting the possibility with the highest score.

Definition 7 (Scoring function) Each instance of a context model is associated to a scoring function sf
that depends on its situation and allows to weight several adaptation possibilities. As scoring function re-
sults will be summed for each adaptation purpose, their results are normalized by the number of considered
dimensions.

Sfiap yd yrS = Sputs¥Pn € Prap , with sp, € [0; \KTI//,H

Definition 8 (Adaptation score) An adaptation score s is a numeric value that allows to weight an adapta-
tion possibility for an adaptation purpose. Scores are normalized, situation-dependent and obtained using
scoring functions.

7
S fapp = Zgl’" I1,(sf(iap , k>G)) with I1, the projection of the result set of sf on the possibility p and

0<sgapp =1

In ASAWO0O, to determine the score of a composition candidate for the Cmp purpose, we calculate the
average of each functionality scores that are part of the composition. Hence, if a functionality can be
composed in several ways, the composition with the highest score would be chosen.
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4.2.5 Decision step

Adaptation possibilities are queried at runtime, using adaptation questions. These questions are formulated
as SPARQL SELECT queries. Their pattern is based on the vocabulary described in Definition 5: subjects
are the components to adapt (a capability or a functionality), predicates are based on the adaptation purpose,
and objects are the adaptation candidates. Adaptation possibilities are linked with their purpose-based score
through blank node reification, so that each possibility is ranked using an ORDER BY clause on the scores.
The pattern of a generic SPARQL-based adaptation question is the following:

Listing 1: SPARQL-based adaptation question.

1 PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
2 SELECT 7adaptationPossibility ?score {

3 [l rdf:subject 7componentToBeAdapted ;

4 rdf :predicate 7adaptationPurpose ;
5
6

rdf:object 7adaptationPossibility ;
rdf:value ?score . } ORDER BY 7?7score

The adaptation question for the Exp purpose requires an additional FILTER clause on the score (this score
must be strictly positive to allow exposability). In the next section, we propose a generic way to design
adaptation rules and determine scores by relying on meta adaptation rules.

5 Discussion

In this work, we chose to rely on a semantic infrastructure to perform adaptation. The choice of using
semantic reasoning is questionable. Indeed, our whole adaptive solution takes raw sensor data — a number
— as input, infers contextual instances from these data, and attributes a score to adaptation possibilities
regarding a set of contextual instances, which is also a number. However, the meaning of the score number
is not the same. In a sense, scoring allows each type of information to be compared to each other, without
considering the data units and ranges. Semantics also provide reusability through linked open vocabularies®
and domain knowledge expertise ontologies’, in an interoperable manner. Being a proven standard, OWL
guarantees the inference correctness at all expressivity levels (being 7%+ in our solution). Thus, having
a correct adaptation requires consistent rules and scores, which depends on the design of the rules and
the scoring functions rather than on the adaptation solution. To ensure this, we always keep the correct
orders between adaptation possibility scores during the rule engine transformation processes, as we always
compute the average amongst each individual contextual instance score related to a given possibility.

5.1 Runtime performance

In this work, we propose a semi-anticipated adaptation planning approach. At design time, the application
designer and experts pave the way for generating adaptation possibilities and situation-based adaptation
rules. These possibilities and rules are inferred at runtime and triggered by context change events. In this
sense, this approach can be considered anticipated, as it pre-processes some (most of the) necessary element
on which the adaptation planning is based. However, plans are not yet available at context change. Actual
adaptation planning corresponds to the selection of an adaptation possibility (if any), which depends on the
scores of these possibilities that are computed at request time (i.e. unanticipatedly). This strategy allows
reconciling the cost and benefits of relying on an inference engine. Indeed, while inferences are processed
at runtime, they are not triggered when an adaptation request arises, but can be processed in parallel. The
inference results are only integrated in the context graph when they have all been inferred, so that the graph
that is queried for adaptation always keep consistent. Moreover, performance also comes from the fact that
we use an incremental reasoner'? that only recomputes the parts of the graph that are impacted by context

8Linked Open Vocabularies (LOV) — http://lov.okfn.org/dataset/lov/

9Linked Open Vocabularies for Internet of Things (LOV4IoT) —http://sensormeasurement . appspot .com/?p=ontologies

10Tncremental reasoning allows capitalizing on previous reasoning process. The inferred information is continuously maintained in
a graph, and the algorithm only processes the knowledge impacted by new insertions and deletions. In this work we used the HyLAR
(https://github.com/ucbl/HyLAR-Reasoner/) reasoner.
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changes. In [27], we have evaluated the time performance of the adaptation process. The processing times

were respectively less than 650ms and 30ms for the contextual data integration and the adaptation decision
11

processes’ .

5.2 Optimization of adaptation rule set

The choice of dimensions and instances is also crucial to pre-reduce the set of adaptation rules. The number
of instances per dimension is fixed by semantization thresholds, which allow inferring contextual instances
regarding a raw value range. The fuzzy logic-based solution proposed in [S] shows that discretization con-
siderably reduces the number of rules produced for an adaptation solution. However, we could not literally
reuse the same approach of targeting an ideal variant, as fuzzy logics can admit uncertainty, whereas seman-
tic inferences cannot. This is one of the reasons why we developed this concept of context situation, which
also aims at identifying and targeting as soon as possible a given “type of adaptation”, and at optimizing
the rule according to this target.

5.3 Genericity and adaptability of our approach

In our approach, adaptation rules always infer “positive” answers, i.e. our adaptation solution is not built
upon negative assumptions. This way, the system reasons about contextual information in a open-world
assumption: the absence of data does not imply that the contextual information is false or invalid, but rather
is unknown. By relying on the open-world assumption characteristic of OWL, we avoid to unexpectedly
block application functionalities because a data is missing, or not available, or if it takes longer to transfer.
Moreover, the scoring functions can take into account this imprecision by normalizing scores according
to the number of actually available observations (aka dimensions). This makes our approach dynamically
adaptive to context changes.

On the long run, our approach can also be adapted throughout projects and platforms. dimensions can be
removed or added at design time. In turn, adaptation purposes can vary according to the platform needs.
For instance, at some point of the software maintenance cycle, the adaptation solution may require an addi-
tional adaptation purpose (corresponding to a new identified adaptation need). In that case, the application
designers have to identify the possible candidates for this purpose as well as their nature (identified as ob-
jects in Section 4 — Table 1). They must also identify the contextual dimensions and their set of contextual
instances, as well as the scoring functions required to provide adaptation for this purpose.

6 Conclusion

In this deliverable, we present a solution to provide multi-purpose context adaptation in WoT applications.
Our solution relies on a semantic WoT platform, able to incrementally reason about contextual information
to support situation-based adaptation for multiple purposes. We formalize the notions of multi-purpose and
situation-based adaptations, and detail how this process generates adaptation rules in a declarative way,
through the use of a meta adaptation rule engine. Our approach defines sets of adaptation possibilities for
each adaptation purpose, that are scored using scoring functions. We present our implementation of this
engine and evaluate it on a sustainable agriculture scenario, for several situations and on different criteria
(corectness and coverage). We discuss the positioning of our semantic approach and its performance (in
terms of computation times) and adaptability.

Our perspectives include dynamically generating scoring functions to reduce the design time of application
design. We also aim at integrating semantization rules as in S-LOR, to generate contextual instances in a
reusable manner.

For data integration, we have assumed one second as the commonly admitted threshold upon which the user’s attention stops
focusing on the current task. The decision step is however time critical; we have fixed its acceptable response time to 100ms.
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