
Optimization of avatar’s life cycle in a
cloud infrastructure

LIRIS - Université Claude Bernard - Lyon 1

09 september 2016

Contents

1 Introduction 1

2 Environment and Concepts 2
2.1 Web of Things . 2
2.2 Avatars . 3

2.2.1 Avatar architecture . 3
2.2.2 Avatar features . 5
2.2.3 Avatar life-cycle . 6
2.2.4 Avatar deployment on cloud infrastructures 6

2.3 ASAWoO project . 7

3 Motivation scenarios and related work 8
3.1 Motivation scenarios . 8
3.2 Migration . 10
3.3 Related work . 11

3.3.1 Component migration - OSGi-PC 11
3.3.2 Component migration - Kalimucho 12
3.3.3 Service migration - ATP 13
3.3.4 Migration requirements 13

3.4 Summary of the research problem 14

4 Contributions 14
4.1 Migration Methods . 15
4.2 Mutex for chained migration 18
4.3 Model of criteria . 18

4.3.1 Capacity of the source infrastructure 19
4.3.2 Power consumption . 19
4.3.3 Used Data . 21
4.3.4 Time of residence . 23
4.3.5 Delay . 24
4.3.6 Time of integration and downtime 24
4.3.7 Capacity of destination infrastructure 25
4.3.8 Available functionalities on the destination 25

4.4 Additional Criteria . 26
4.4.1 Quality of Service (QoS) 26
4.4.2 Security . 28

4.5 Deployment of the model of criteria 29

5 Experiments and evaluation 30
5.1 Measurements . 30
5.2 Interpretation . 31

6 Conclusion 32

List of Figures
1 Avatar architecture . 4
2 Scenario of migration . 9
3 Schema of the migration . 17
4 Idle power Consumption of the infrastructure 21
5 Power consumption on the infrastructure during the migration 21
6 Inter-avatar communication packets 22
7 TCP connection establishment packets 23
8 Schema model of criteria . 30

List of Tables
1 Values of different metrics . 31
2 Mean and standard deviation for different metrics 32

1 Introduction
Nowadays the web is the major medium of communication between humans
and applications. Moreover, web services have been proven to be indispens-
able for interoperable applications. Existing web technologies and protocols
are used to unify the logical and the physical world. WoT (Web of Things)
is a non traditional view of the IoT (Internet of Things). IoT is a network of
different physical objects that enables these objects to collect and exchange
data. WoT enables a communication between connected devices using a same
language, in order to communicate and interoperate freely on the Web. In
addition, WoT extends the IoT by considering that each physical object can
be accessed and controlled using Web-based languages and protocols.

An avatar is an important element of the WoT and is built on a software
platform that addresses most of the challenges imposed by the WoT. It is
a software artifact dedicated to a particular physical object that represents
the virtual part of its corresponding cyber-physical object. It has several
characteristics, possesses a complex component-based architecture, allowing
to add intelligence to objects behaviors by taking into account additional
information available from other environments . An avatar is hosted in the
cloud and can be migrated between cloud infrastructures to ensure a better
service for users. Through this work we present a method for avatar migra-
tion between cloud infrastructures. To decide if migration is more beneficial,
a model of criteria has been proposed to calculate the cost of the migration.

This report consists of several parts and is divided into several sections as
follows. The first section presents the work environment and concepts while
describing the avatar, its architecture and features. It explains also the func-
tioning of the avatar. Then the second section focuses on the research prob-
lem, the motivation scenario and the state of the art of migration techniques.
The third section describes the model of criteria and how it was implemented
in our solution to evaluate the migration. In addition, it describes finely the
migration technique developed during the internship. Finally, the last section
presents the results obtained and the interpretation of these results.

1

2 Environment and Concepts
Through this section, we present a brief description of the environment and
the platform used during our study.We start with a definition of the Web of
Things, on which avatars are instantiated. Then, we present the avatar, its
features, architecture and life-cycle. We finish with the types of migration,
the research problem of the internship and the motivation scenarios.

2.1 Web of Things
Nowadays, the web is the major medium of communication between humans
and applications. Moreover, web services have been proven to be indispens-
able in order to create interoperable applications. Existing web technologies
and protocols will be used to unify the www world and the physical world.
WoT (Web of Things) is a non-traditional view of the IoT (Internet of Things)
that enables a communication between connected devices using a same lan-
guage, this way interconnected objects can communicate and interoperate
freely on the Web [1]. The WoT extends the IoT by considering that each
physical object can be accessed and controlled using Web-based languages
and protocols [2]. WoT runtime environment imposes some requirements. In
what follows some of the requirements are mentioned [2] [3].

• Live reactivity allows the platform to adapt its behavior and structure
to its environment at runtime.

• Resource management estimates the global cost of physical actions in
terms of different metrics (device usage, computation and networking).

• Interoperability to ensure that WoT platform is able to automatically
discover and interact with heterogeneous physical objects.

• Disconnection tolerance allows the platform to support connectivity
disruptions occurring between mobile objects.

• Safety ensures that the platform is reliable and secure. This way objects
and applications are harmless.

• Delegation allows identifying the most suitable location to execute code
module and deploying these modules on the object processing unit or
on a cloud infrastructure.

• Collaboration allows a set of objects to exhibit a collective behavior, in
order to accelerate the processes.

2

2.2 Avatars
Avatars, important elements of the WoT, are a central piece in the ASAWoO
project (https://liris.cnrs.fr/asawoo/). The avatar is built on a software plat-
form that addresses most of the challenges imposed by the WoT. An avatar
is a software artifact dedicated to a particular physical object and represents
the virtual part of its corresponding cyber-physical object [2]. This com-
ponent has several characteristics, it possesses a complex component-based
architecture, allowing to add intelligence to objects behaviors by taking into
account additional information available from other Web sources [3]. In addi-
tion avatars can be defined as systems that allow supporting a fast, scalable,
reliable, and energy efficient distributed computing over mobile devices by
leveraging cloud resources [4]. Finally, it provides hardware vendors, soft-
ware developers and end-users with a comprehensible abstraction that makes
physical objects accessible on the Web. All the characteristics mentioned are
supported through different features. In this section we will define avatar’s
features, then avatar’s architecture and finally avatar’s life-cycle.

2.2.1 Avatar architecture

The avatar runtime designed on a felix Apache server as an OSGi service-
oriented architecture is decoupled from its logical architecture. The fact
of having a decoupled logical architecture offer the possibility to adapt the
avatar on different types of objects dynamically and to distribute avatar’s ser-
vices to different locations. [3] The avatar architecture is formed by different
modules with a specific role for each one. Figure 1 shows the architecture of
the avatar, where services are grouped into functional module.

The first module is the Core module. This module includes central com-
ponents that are reused in different steps of the lifecycle of the avatar. The
reasoner is used by the local functionality manager from the collaboration
module. It reasons about knowledge representations. Local cache speeds up
data exchange between services. Component Deployment Manager decides
where and when to deploy other components in the architecture [3]. Web
service module is formed by two component. The WoT Application Server
that exposes functionalities available as applications. The HTTP Client that
allows an interaction between the avatar and an external Web service avail-
able on the Web or applications provided by other avatars. In addition this
module through its component is in charge of implementing the inter-avatar
negotiation processes. [2][3] WoT Application module, through this mod-

3

Figure 1: Avatar architecture

ule a WoT application is executed inside a WoT Application Container. The
container can be physically distributed over different objects or locations (de-
vice, gateway, cloud) by the WoT Application Deployment Manager. The
different parts of the application are implemented and compiled to be either
executed on the object or on the gateway/cloud [2][3]. Local functionality
module, include the Capabilities Manager that discover the capabilities of
an object while communicating with the object and by using introspection
techniques detailed previously. The Local Functionality Manager deducts
functionalities while combining capabilities discovered by the Capabilities
Manager. Local Functionality Manager needs the help of the reasoner to
reason about capabilities [2][3]. Collaboration module formed by the Collab-
orative Functionality Discovery Manager and Collaborative Agent Manager.

Avatars respect the WoT requirements and specifically the collaboration be-
tween devices and components. To do so, an avatar should identify func-
tionalities of other avatars in order to enable a collective behavior. Collabo-
rative Functionality Discovery Manager looks for external functionalities in
the avatar community. Collaborative Agent Manager observes the activity of
other avatars in its immediate environment to identify if its goals are compat-
ible with the goals of other avatars or if there is a conflict. Communication
module that has the responsibility to select the right network interface, the
right network (Wi- Fi, Bluetooth, Zigbee, etc.) and application protocols
(CoAP, HTTP) according to availability and needs (Throughput and needs).
DTN Communication Manager configures and initializes the communication
protocol based on the "store, carry and forward principle". DTN Communi-

4

cation Manager allows the avatar to support connectivity disruptions [2][3].
Filtering module includes the Context Manager that aggregates data from
different sources into contextual situations, [9] in order to identify on which
avatar to expose a collaborative function; to decide which functionalities to
expose; to choose where to deploy each architecture component and applica-
tion code module and to determine the most appropriate protocol stack for
the current communication scheme and contextual conditions. The privacy
manager will reason about privacy constraints and protect data [10][3]. The
Interoperability module formed by the Appliance communication manager
that communicates with other components in the architecture. As well it
works with the appliance configuration manager and the appliance driver to
communicate with the object. The Appliance configuration manager relies
on an object configuration tools database to associate communication meth-
ods to objects. The Appliance driver loads and uses the drivers to send and
receive messages to and from the object [2] [3].

2.2.2 Avatar features

An avatar presents different features used to present services for users. This
part presents some important features of an avatar. Semantic description of
capabilities and functionalities is the first feature. The description of capabil-
ities and functionalities in ASAWoO project is done using OWL (Web Ontol-
ogy Language) semantic Web language [2]. OWL web semantic language is
used when there is a need to process the content of information instead of just
presenting information [5]. The Avatar discovers the capabilities of an object
using introspection techniques by using SAJE (System-Aware-Java Environ-
ment). SAJE give the possibility to offer information about the capabilities
of physical objects, and to control some components of these objects such as
the communication interfaces. [3] Then the avatar infers its functionalities
using a common ontology that keeps trace of the different combinations of
capabilities required to achieve each functionality. Semantic descriptions of
capabilities and functionalities also provide intelligent resource management
facilities [2]. Another feature is Context-Aware Adaptation. The avatar has
a multi-level, semantic context model giving the possibility to be deployed
on different types of objects from different manufacturers. The model can be
processed at different abstraction levels and must respond to requests regard-
ing different adaptation goals [19]. These goals are chosen to first deploy the
different application modules. Then to choose the most appropriate commu-
nication protocols and schemes for a given task. Also to decide whether an
object has enough resources to perform a task or not and if the task is safe.

5

Finally, to take part in negotiations to achieve collaborative functionalities.
The context engine created will be both compatible with the high-level fea-
tures defined in the project and the contextual and QoS data provided by the
objects or other resources [2]. Disruption tolerant service provisioning is the
third one. Today’s network can suffer from short communication range of
wireless interfaces, interferences and limited power resource of devices . This
can cause disruptions in the communication links. To cope with these issues,
routing protocols used with avatars implement the "store, carry and forward"
principle. If two nodes encounter a difficulty to communicate with each other,
because they are not in the transmission range, "store, carry and forward"
principle offers the possibility to exploit other mobile nodes as intermediate
relays. These intermediary relays can carry a copy of a message when they
move and forward it afterwards to other nodes so that it eventually reaches its
destination [6]. In addition, other functionalities are supported by the avatar.

2.2.3 Avatar life-cycle

First, the avatar is instantiated, the avatar builder should be located on the
local network gateway to detect the arrival of an object in the network. After
creation, the avatar deploy the main components for the good functioning,
connects to and exchanges messages with the object it extends to discover
its actuators and sensors to build a list of capabilities. Based on this list
the avatar decides with the help of a reasoning engine which capabilities to
expose as functionalities. When the lifecycle comes to an end after object dis-
connection, the avatar notifies its community that its services are not avail-
able and terminates all the processes [3].

2.2.4 Avatar deployment on cloud infrastructures

A cloud infrastructure is an ideal location for avatars, since they can rely on
unlimited resources provided by the interconnected cloud infrastructures. In
order to deploy the avatar on a cloud, an instance (Virtual machine) will be
created , then java will be installed to obtain a JVM (Java Virtual Machine)
on which we will upload the avatar. The avatar is deployed as a java project
on the JVM as it is developed as an OSGi project formed by different bundles
and components.

Our contribution uses two different cloud infrastructure interconnected and
available on the same network. This way, the interconnection between the

6

two infrastructures will be easier. We used the OpenStack environment
(http://docs.openstack.org) of Université Lyon 1, formed by different com-
pute nodes as the first infrastructure. For the other cloud infrastructure,
DevStack (http://docs.openstack.org/developer/), the testing environment
of OpenStack, was installed on a local machine.

2.3 ASAWoO project
The ASAWoO project (https://liris.cnrs.fr/asawoo/) is a 4 year research
project funded by the French National Agency for Research (ANR), and
started on January 2014, in the context of the INFRA ANR program. IMAG-
INOVE competitiveness cluster (http://www.imaginove.fr), a witness for its
interesting impact on the society and industrial domains had certified the
project. The ASAWoO project has for objective to enhance appliance in-
tegration into the Web. Finally, ASAWoO project is designed on an OSGi
(Open Service Gateway initiative) platform, a module system and service
platform for the Java programming language and has become a standard
component for Java platforms. ASAWoO project includes different avatars
instantiated for different physical objects and each one is formed by different
OSGi components or bundles. An ideal location permitting to the avatar to
rely on unlimited resources is a cloud infrastructure. That’s why we use two
cloud infrastructures for the migration of the avatar. In what follows, the
four essential bundles of the ASAWoO project will be presented.

The Core that represents the main part of a java program. It is the core
of the ASAWoO middleware project. Different sub-bundles are defined: an-
notation, capability, config, context, deployment, functionality, net, proxy,
util and webapp. In addition it consists of three global classes Activator,
ASAWoOServiceTracker and runtime. By using this bundle the system will
define variables as functionalities, capabilities, methods and parameters, etc.
Services that represents the internal components of the avatar. One of the
components is Capability that activates a bundle through the activator class.
In addition Capability can add or remove listeners through the LocalCapa-
bilityManager class. Bundles that includes the different implementations for
objects and applications. Through this bundle all functions and services
needed by applications and objects are instantiated. It should include all
functions that may be used in different scenarios. And finally, Domains that
represents the functions available on interfaces like motion detector and data
collector. This bundle represents the interface used by the user to control
the avatar and to specify its needs.

7

An avatar is a software artifact corresponding to a physical object, it pos-
sesses different functionalities available on the WoT. It is an important ele-
ment to study and explore. The research problem and the motivation sce-
narios are developed in the next chapter.

3 Motivation scenarios and related work
Different scenarios motivate us to study the migration life-cycle of avatars.
In fact avatars migrate from one infrastructure to another when it is crucial
for the good functioning of the services and it is more beneficial than keeping
it on the source infrastructure.

3.1 Motivation scenarios

In what follows, we discuss different examples that explain the need of migra-
tion of avatars in order to clarify the idea and the objectives of the project.
An avatar as mentioned before is dedicated to a specific physical object, the
avatar and its physical object can be on different infrastructures or on the
same one. When the physical object moves from an infrastructure to an-
other, the fact of migrating the avatar with its physical object is important
to consider. As shown in figure 2, an avatar dedicated to the mobile device
of a researcher (Alex) is instantiated on its home cloud infrastructure (Cloud
1), Alex leaves home for work, then logically his mobile device will be con-
nected to a new infrastructure, the infrastructure of the laboratory (Cloud
2). Two choices are available; leave the avatar on Cloud 1 -if it is more
beneficial, it has a good internet connexion and has reasonable capacities for
calculations -while the mobile device is on Cloud 2 . The other choice is to
migrate the avatar to Cloud 2, then Alex’s device and its avatar are on the
same infrastructure. The migration can be done periodically in this case, a
trigger will be created for this process. For example the trigger migrates the
avatar from the Cloud 1 to Cloud 2 at 8 am when Alex heads to work and
from Cloud 2 to cloud 1 at 6 pm when he returns home from Monday to
Friday. Another example for a migration scenario is when the cloud infras-
tructure on which the avatar is instantiated/running had become overloaded
with calculations. In this case the services presented by the avatar can be
interrupted and the time of calculations will increase, the higher is this time
the lower is the performance, so migration will probably resolve the prob-
lem. In addition, in some cases, the infrastructure hosting the avatar should

8

be shut off for maintenance or for technical problem, etc. Then the avatar
should be migrated to another infrastructure to ensure a continuity of service.

An additional scenario is when different avatars need to be migrated at the
same time as the different physical object migrate together. For example a
family goes out, all the mobile devices will be disconnected together from
the gateway. Then the avatars instantiated for the physical devices need to
migrate together. To ensure that the model of criteria is respected, and there
is no ambiguity, the migration should be done sequentially. For this purpose,
a single token will be in used. Then we ensure that migrations are done one
at a time.

Figure 2: Scenario of migration

When the migration is one of the possible choices, mandatory questions
should be answered : Should we migrate or not to the new infrastructure?
What is the best solution for migration? Do we use Live migration, Freeze
and Resume migration or a compromise between the two? How to migrate
with a minimal cost? etc. Those decisions should be based on a model of
criteria that includes several metrics on which our study will be based and it
will be developed later. The cost of the migration will be calculated through
the measurements of the different metrics of the model by using a point sys-
tem and thresholds. Additionally the migration in our case is accomplished
in a WoT environment. Consequently it should respect the requirements for
this environment [3] [4]: Live reactivity, Resource management, interoper-
ability, disconnection tolerance, safety, delegation and collaboration.

Then the problems to study for the migration scenario are listed below.

• Necessity: To study the need for migration and the advantages offered
by this process. How the migration will be more beneficial for the user

9

and for a better service.

• Cost: To understand the effective cost of the migration. The price can
be paid for the migration or for the communication between infrastruc-
tures by using the public network; Internet.

• Type: To learn about the available types of migration, their feasibil-
ity and advantages. The choie of the migration type is mandatory to
benefit from the migration.

• Frequency: To study how to minimize the cost needed in case of mul-
tiple migrations per day. In addition, to indicate if there is a need to
create a trigger for the migration.

• Duration: To understand the effect of integration time and how it will
affect the global cost of migration. In fact, during the integration time,
services on the source and on the destination are used simultaneously.

• Downtime: To deduce how the service continuity will be affected. Dur-
ing this period service will be not available neither on the source nor
on the destination and the user will not have access to the service.

3.2 Migration
Migration is the process of moving an application, virtual machine, project,
etc. from one environment to another while considering at the destination
the last state of the migrated object on the source. It brings the benefit
of being able to move workload from an infrastructure to another. In gen-
eral, migration facilitates fault management, load balancing, and low-level
system maintenance. In consequence it improves the capacities and the fea-
tures of Cloud environments and implies more flexible resource management.
It presents different advantages for the continuity of services, services’ cost,
systems’ performance, etc. Although this is a complex and a difficult tech-
nique to use over MAN/WAN. IP addressing is one of the biggest issue as the
system changes the address of the migrated virtual machine which may not
remain in the same network domain. Moreover, it impacts the performance
of VMs by adding a non negligible overhead [9]. Additionally, migration can
be complicated because differences between the original and destination en-
vironments exist always.

Live migration and "Freeze and Resume" migration are two types of migration
that should be finely defined. Live migration refers to the process of mov-
ing a running object between different physical infrastructures or machines

10

without disconnecting the client or application; with a minimal downtime.
Practically, downtime exist in all live migration techniques and results from
the fact of copying memory content. Different studies are trying to reduce
downtime by using different approaches such as pre-paging and the proba-
bility density function of memory. Live migration ensure that all resource
state consisting of CPU, memory and storage are created on the destination
infrastructure. Then the subject of migration is suspended on the source
infrastructure, copied and initiated on the destination infrastructure. At the
end memory, storage, and network connectivity of the object are transferred
from the source to the destination [10]. Non-live migration or Freeze and
resume migration, as we decided to call it, is the slowest type of migration
and performs a network copy of the virtual machine or of the application
after freezing it on the source. It is the process of copying the object on the
destination without any consideration for the downtime and the continuity
of service during the migration. After migration, the application or virtual
machine should be resumed on destination. The downtime is proportional to
the size of the data transfer [11].

3.3 Related work
Different examples are done for the migration of OSGi components and OSGi
projects. The existing works present different solutions for component mi-
gration as OSGi-PC that presents migration through internal Java classes
and Kalimucho that offers the possibility to apply dynamic reconfigurations.
These two works ensure a component migration; or the avatar is formed by
multiple components. Another work present a solution for service migration
by using mobile agents and Agent Transfer Protocol. Other works present a
list of requirements that should be respected during the migration in OSGi
platforms. In what follows, a brief description of different works on the mi-
gration in OSGi platforms.

3.3.1 Component migration - OSGi-PC

OSGi-PC, OSGi-based pervasive cloud infrastructure is developed in paper
[12]. It uses the cloud computing capabilities and the component flexibilities
from OSGi. The migration through OSGi-PC need to determine the compo-
nents subject of migration and to provide these components to specific remote
framework. A remote deployer service at the destination needs to be regis-
tered to allow the migration and to manage the migrated component after
migration. OSGi-PC is implemented on Apache Felix OSGi framework as it

11

follows the OSGi standards. In addition this implementation reuse code from
DOSGi (Distributed OSGi) [13] which specify that standard meta-data in-
formation of components and services is used to disclose service information.
The component migration in OSGi-PC uses different classes to determine
the component that should be migrated, to shut down those components
and then to deploy them remotely. The authors defined three different types
of component migration: component migration between frameworks on re-
mote power nodes (where a new framework joining the OSGi-PC should
register itself with necessary information), between frameworks on small de-
vices (a simple process as the components are codes that are transferred, it
is a process of receiving the components, installing and starting them) and
between frameworks on remote power nodes and frameworks on small devices
(small devices can not read Jar files, the RemoteDeployerImpl service convert
components from Java code to the code used by small devices and vice versa).

3.3.2 Component migration - Kalimucho

Another work on migration in OSGi platforms, Kalimucho platform is de-
scribed in paper [14]. Kalimucho is a supervision platform that can perform
dynamic reconfiguration decisions to ensure service continuity and is dis-
tributed on all peripherals of the application. The work in [14] present a
possible way for service reconfiguration during runtime and different mech-
anisms to ensure structural reconfigurations including functionalities as mi-
gration, replacement, etc. This platform gather all the information (status of
the application, components, peripherals, connectors and the environment)
in order to process it and perform reconfiguration actions. Authors in [14]
identify three actions used to modify the structure of an application: ser-
vice migration (Modifying the distribution of a service without modifying its
components. Components are moved, with their statuses, from one periph-
eral to another without changes.), deployment or redeployment of a service
(Offering a new assembly of components to perform a service or an equivalent
service.) and modification of a service (Replacing one or more components
with others.). To perform the actions listed before, the platform should mon-
itor operation of components and data flows circulation by using containers.
The architecture of Kalimucho is based essentially on a middleware and a
core. The middleware handles the communications between components, it
consists of connectors. It present the possibility to create, delete, connect
and disconnect components while the application is running.

In addition, it involves different operations as creation of connectors and

12

migration of components. The core comprises services that can be installed,
if needed, depending on the configurations. The services that can be in-
stalled are Services Registry, Application supervision services, Code loading
services and Network communication services. Service Registry allows the
platform and applications to access services offered by Kalimucho. Applica-
tion supervision services execute creation/deletion/connection/disconnection
commands coming from the platforms. Code loading service used to load the
code for classes. Network communication services enable platforms to com-
municate with each other and are used as middleware medium. Migrating
a component running on a host A to a host B is performed with Kalimucho
as followed, the platform on A stops the component (like for a deletion),
then sends it to the platform on B by serializing its properties. Finally its
input and output connectors are redirected so that they now end up on B
and not on A. In fact the communication between components is provided
by connectors using a client/server model.

Based on the idea of these two works we had created a solution for mi-
grating the platform when needed and migrating component if the platform
exists on the destination host. The solution will be described later.

3.3.3 Service migration - ATP

Paper [20], discusses the migration in OSGi platforms while using mobile
agents. A mobile agent is a composition of computer software and data which
is able to migrate autonomously. The migration can reduce the network load,
provide dynamic adaptation and a fault tolerant flexible network. The migra-
tion is realized through Agent Transfer Protocol (ATP). Every mobile agent
framework is an ATP server. Dispatch and retract are two activities used
for the agent’s migration. Dispatch demands a destination agent framework
to reconstruct an agent from the content of a request. Then the destination
framework should start to execute the agent. In case of a successful request,
the sender must terminate the agent and release any resources consumed by
it on the source. Retract used when the destination agent framework should
send the specified agent back to the source.

3.3.4 Migration requirements

Author in [21] indicates that some requirements and non-functional concerns
need to be fulfilled to enable service migration in OSGi platforms. In what

13

follows, the requirements are listed. Knowledge about the presence, type and
context of the devices are prerequisite to guarantee a minimum usability and
QoS. Before relocating a service to another host, a service discovery protocol
is used to verify if the service is not already available. Stateful services re-
quire a state transfer after redeployment in order to continue their operations
on the destination host. Furthermore, the service must be able to resume
from its last state. The service platform must provide functions to manage
the life cycle of services. If a service cannot be run perfectly due to a lack
of resources on the platform, the service needs to be migrated to another
powerful device or infrastructure to ensure a better service.

Author in [22] described four requirements four framework migration: Trans-
parency, portability, minimum overhead during normal execution and strong
migrations properties. He indicates that the transparency requirement is
needed because the OSGi framework should appear as a local framework to
the outside world. For portability, he declares that all the platforms par-
ticipating in the virtual framework should be portable. In addition, the
techniques adopted to capture the last state should not cause a worse ser-
vice performance while remaining at the same location; that’s why minimum
overhead is required. Finally, strong migrations properties are a necessity to
automate all the tasks to perform a migration with no interference of pro-
grammers or users.

3.4 Summary of the research problem
All the examples listed before present the need for migration; but migration
should be done if it is more beneficial, while minimizing the cost and while
conserving the last state of the avatar on the source. Our study offers a model
of criteria that can decide which case (migration or non migration) is more
beneficial based on several criteria implemented in a model through a shell
code. Additionally this study presents a way to migrate the avatar from an
infrastructure to another while considering the last state of the avatar on the
source. This section present the migration that will be discussed meticulously
afterwards.

4 Contributions
After defining the problem and the motivation scenarios for a migration it is
time to describe our migration method. In addition, the model of criteria on

14

which the decision of migration is taken will be explained.

4.1 Migration Methods
As mentioned before, our migration technique is based on the several works
presented in a previous section. Our contribution is presented as a shell code
executed on the source infrastructure. The migration of avatars between
cloud infrastructures can be classified into three different scenarios or cases.
In what follows, each scenario is explained meticulously.

The first one is to migrate the avatar from an instance on a source cloud
to a different plain instance on the destination infrastructure with no instal-
lations of prerequisites or environments. For this purpose, the destination
environment should be prepared, by installing Java JDK8 to obtain a JVM
(Java virtual Machine). In addition all prerequisite softwares and tools as
curl, expect, etc. should be installed. After preparing the environment, mi-
gration can take place. To do so all the project, as the avatar is an OSGi
project, should be migrated from the source to the destination including the
felix runtime environment.

The second scenario is to migrate the avatar from an instance on a source
cloud infrastructure to a JVM instance on a different infrastructure. In this
case, only prerequisite softwares and tools should be installed if needed. Then
the avatar with felix runtime environment will be migrated from the source
to the destination.

The last scenario is to migrate the avatar from an instance on a source
cloud infrastructure to a prepared instance including the felix runtime envi-
ronment on the destination infrastructure. In this scenario, all prerequisite
and the runtime environment are available on the destination. For this, only
the bundles used by the avatar subject of migration will be migrated to the
destination.

Our contribution will migrate the avatar to the instance on the destination
cloud infrastructure while respecting the corresponding scenario of migra-
tion. To do so, the destination instance on the receiving infrastructure will
be tested to check first if the JVM is installed, then if the prerequisites are
available. Finally, the presence of felix runtime environment will be tested.

The migration of the avatar will be ensured through different phases. If
different avatars need to be migrated at the same time, sequential migration

15

will be used. In fact, avatar’s migration should be sequentialized to respect
the model of criteria. This idea is developed and explained in the next sub-
section. First, when the avatar possesses the right for migration, the JDK
on the destination will be tested by checking its version. If there is a need,
the JDK will be updated or installed. Second, expect and curl, two tools
on linux used by the avatar, are checked on the destination to ensure their
presence. To install or update tools and environments on the destination
the installation command will be sent using a ssh tunnel from the source to
the destination. Third, the felix runtime environment will be checked on the
destination. In case felix is available, a synchronisation between the environ-
ment on the source and on the destination is executed through the remote
synchronisation command (rsync). In fact, this phase will ensure that all the
components needed for the good functioning of the felix runtime environment
are available and with the correct version. If this runtime environment is not
available, it will be copied on the destination using the Secure Copy Protocol
command (scp) that will add security to the copying process by using also a
ssh tunnel. Finally, the bundles used by the avatar need to be available on
the destination. For this purpose, a remote synchronisation for the bundles
between the source and the destination is executed. The correct version of the
bundles and the needed bundles will be available on the destination through
this final phase.The scp and rsync commands used in the migration code
use different arguments; the source file, destination file and the security key.
In what follow we can visualize two examples of the usage of these command.

rsync -e "ssh -i /home/ubuntu/key4.pem" -r /home/ubuntu/middleware/
ubuntu@1 : /home/ubuntu/middleware/

scp -i /home/ubuntu/key4.pem -r /home/ubuntu/middleware ubuntu@1 :
/home/ubuntu

After preparing the destination instance on the destination infrastructure
for hosting the avatar, the services should be stopped on the source. To do
so, each bundle used should be stopped correctly to conserve its last state.
Using the remote shell bundle, we will access the gogo shell, that monitors
the different bundles running on the source felix server, using a telnet con-
nection. After accessing the gogo shell, stop commands will be executed for
each bundle. The state of the bundles will be saved in the configuration file
automatically after the stop commands. Telnet connection is created on the
localhost, using the 6666 port, so no security flaw.

16

To migrate the avatar with its last changes and states, a configuration file
storing these values will be copied to the destination using also the "scp"
command. This configuration file will be sent before starting the services on
the destination. When the configuration file is received, the avatar can be
started on the destination by sending the corresponding commands using a
ssh tunnel for security reasons.

During the migration, the different metrics used by the model of criteria
are measured using specific tools installed on the source. The model of cri-
teria and the tools needed are developed later in this section. Some tools
need also to be present on the destination; the installation commands will be
executed also through a ssh tunnel to remove security breaches. The values
of measurements will be returned after the migration and will be saved in a
specific file for later use.

Our contribution will allow a fast and easy migration of avatars and OSGi
projects between cloud infrastructures. In case, the migration will be peri-
odic between two infrastructures as for Alex’s example described in previous
section; the migration will be optimized by minimizing its cost and offering a
better service. This migration technique ensure a convenient migration also
in other scenarios like for infrastructure maintenance, etc. Figure 3 explain
our algorithm of migration through a model.

Figure 3: Schema of the migration

17

4.2 Mutex for chained migration
A mutex is a programming concept that is frequently used to solve multi-
threading problems. It is a mutually exclusive flag used to synchronize multi-
ple threads. In some cases, when different attempts to access a single resource
is present, only the first attempt should gain access and the others should
wait until the resource is free again. In fact, if different avatars should be
migrated and asked for migration at the same time; the migration processes
should be sequentialized. This way, persistent values for the different metrics
of the model of criteria are obtained. For example, if the destination infras-
tructure has no running avatar yet and the source infrastructure deploy them
all. The migration will be privileged as the source is overloaded and the des-
tination is free. Without a mutex, all the avatars will be migrated to the
destination, in case they ask for it at the same time. The mutex will ensure
the reliability of the criteria’s model by sequentializing the migrations, and
repeating the calculations of the different metric in the model of criteria after
each migration.

To implement the mutex a file (/var/lock/mylock) is created to ensure that
there is a lock while one avatar is migrating. The file should be accessed
only by one avatar, thanks to the function flock() available on Linux that
locks the file until the migration of the avatar is over. The code allowing to
implement the mutex for our migration method is represented below.

for line in (cat/var/lock/mylock)
do
while[′′line” = ”locked”];
do
echo waiting for token
sleep 15;
done
if [”line′′ =′′ nolock′′];
then
echolocked > /var/lock/mylock
flock − x.007/var/lock/mylock
.....

4.3 Model of criteria
The migration of the avatar is not always more beneficial than keeping it
on the source. To find which case is more beneficial , the cost of the mi-

18

gration should be estimated. Based on this cost all the questions related to
the execution of the migration will be answered. In order to accomplish the
cost calculation, a model of criteria should be proposed and should use ex-
isting techniques and technologies and adapt them to the different scenarios
of usage. For each criteria of our model, measurements in different scenarios
are considered and results will be compared to take decisions. The imple-
mentation of our model is based on a weighted average, for each criteria a
weight is affected. After comparing results, the weight will be added to the
migration or non migration variable depending on the results. Finally, these
new values will be compared in order to take a decision based on the higher
value. In what follows, for each criteria, the techniques of measurement and
theirs adaptation to our scenario will be considered.

4.3.1 Capacity of the source infrastructure

The capacity of the source infrastructure, in term of cpu and memory is a
mandatory criteria. This criteria indicates if the source infrastructure can re-
ply to the avatar’s needs. Before passing to other criteria, the capacity of the
source infrastructure will be studied. If there is not enough capacity, migra-
tion will be executed and other criteria will not be taken into consideration.
To measure this capacity, the nova client on the source infrastructure will
be requested to return the number of available CPUs and available memory
space. Based on returned values, the decision will be taken to continue to
measure other criteria or to migrate immediately.

This first criteria in our model of evaluation, ensure that the avatar has
its needs to offer the best services for the user. In case there is a difficulty
to obtain its needs, the avatar should be migrated to offer the best service
from the most suitable infrastructure.

4.3.2 Power consumption

Power consumption while migration is a non negligible criteria, as it affects
the real cost of the migration and indicates if the migration is eco-friendly.
The avatar is implemented on a cloud infrastructure, so power management
techniques and models for grids and data centers should be used to estimate
and minimize this consumption.

The power consumption of any system consists of a fixed part and a variable
part. The fixed part depends on the system size and components type. The

19

variable part results from computing, network and storage ressources usage
[15]. To save energy at data centers, studies in [16] indicates to minimize
the transmission losses by locating the center close to where the electricity
is generated. In addition, free cooling techniques as outside air or sea water
should be used. Another way to decrease energy consumption is to decrease
heat production by creating algorithms that deal with energy and thermal
problems.The best way to minimize energy is to place the workload on an
infrastructure where the outside temperature is low and so the system will
use less energy for cooling the infrastructure [17]. The fact of minimizing
the energy consumed on cooling systems, power consumption of other com-
ponents can be studied precisely. For example, if the infrastructure is used
only for avatar instantiation, the migration will be prioritized during time
where the cooling energy is minimal to minimize energy consumption. Our
infrastructures are not designed only for avatars instantiation so we can not
use this technique in our model.

To monitor power consumption, sensors as power meters should be imple-
mented on the infrastructure to return live values during migration. In our
contribution, a wattmeter available in LIP Lab had been used to return
power consumption values. The wattmeter used is LMG 450 model of ZES
ZIMMER, a Multi-channel precision Power Meter. It is a high precision
wattmeter that returns several measurement in a second. This frequency of
measurements is more than enough to monitor the power consumption. The
values returned by the power meter will be stored in a file for future use.
Additionally, a mean value will be calculated and compared to a threshold
defined by the user. The comparison will help for taking a decision of mi-
gration. If the mean value is higher than the threshold, the weight of this
criteria will be added to the non migration variable. If not, the weight will
be added to the migration variable. Idle consumption is subtracted from the
values returned by the power meter to obtain the effective power consump-
tion of the migration. The power consumption of the infrastructure will be
measured to calculate the idle consumption. Last, the mean value of the
power consumption of the migration will be multiplied by the time of mi-
gration (time of integration of the avatar on the destination) to obtain the
energy consumed in Joules. For this purpose, the formula E (J) = P (W) *
T (s) is used.

This criteria, ensure that the migration of the avatar will take place if it
is more beneficial from energy consumption point of view. This way, the
user can monitor the power consumption while ensuring a migration when
needed. Figure 4 and 5 below show the idle power consumption with no

20

migration activity and the power consumption during the migration.

Figure 4: Idle power Consumption of the infrastructure

Figure 5: Power consumption on the infrastructure during the migration

4.3.3 Used Data

The bandwidth usage while migration is an important criteria to study, as
it influences the bandwidth available on the network between the two infras-
tructure. On the other side the bandwidth used to communicate with the

21

Figure 6: Inter-avatar communication packets

avatar residing on the source cloud infrastructure should be measured too.
Those two values should be compared to decide which case is more beneficial.

To measure used bandwidth, Spruce and Pathload represents the two tech-
niques on which all the measurement tools are based. Spruce sends packet
pairs spaced back to back according to the capacity of the tight link, and the
amount of packet dispersion at receiver determines the Bandwidth. Pathload
creates short-lived congestion in the tight link then find trends in one way
probe packet delays [18]. Studies in [18] showed that Pathload is the most
accurate tools for big infrastructures with high speed. iPerf, a network test-
ing tool that measures the network throughput between end hosts, uses the
same technique as Pathload and gives accurate results. Although this tool
eats a lot of bandwidth for measurement. iPerf used in study [18] can return
values in a manageable time, about 6 seconds but it returns the bandwidth
available on the link between the two infrastructures.In our study we will use
the ifstat tool available on linux that return used data amount. It returns
the used data amount during every second. These values will be summed to
obtain the total usage for data during migration (Total-Data).

Figure 6 and 7 show respectively the packets of a single inter avatar commu-
nication and the packets of TCP connection establishment.
If the avatar is not migrated, a communication between the physical object
on the first infrastructure and the avatar on the second will be needed. These
communications will also consume bandwidth. A single communication for
the avatar is formed by four packets; two HTTP packets (GET, HTTP/OK)
and two acknowledgment packets (TCP ack) after building a TCP connec-
tion. These packets were sniffed using Wireshark. The mean value for the
packets size is calculated (Mean-Value-Packets). In addition the data used
for TCP connection establishment is calculated (TCP- Con-Data).

22

Figure 7: TCP connection establishment packets

The communication between avatar and physical object can be based on
different basic models : a frequent communication model, three communi-
cations every minute (90 communications per hour) or a non frequent com-
munication, one communication every five minutes (30 communications per
hour).The communication model is chosen based on the type of the avatar.
In our implementation the user will choose between these two models. We
should compare the used data for migration and the used data for communi-
cation. To do so, we will calculate the duration of communication, between
avatar and physical object on different infrastructures, in which used data
will be the same as for migration. If this time is less than a threshold defined
by the user, migration variable will be increased, if not the non migration
variable will be increased by the weight of this criteria. First the TCP-
Con-Data is subtracted from Total-Data then the result will be divided on
Mean-Value-Packets. The number of communication needed for having the
same data usage as for migration is obtained. This number will be divided
then by the number of requests per hour based on the model of communi-
cation (30 communications / hour or 90 communications / hour) to obtain
the final result and to compare it to the threshold value.

Data usage during migration can influence the performance of the network
interconnecting the two infrastructures or the network of the same infras-
tructure. For this reason, this criteria was essential to be used and added to
our model of criteria.

4.3.4 Time of residence

Mobile devices can be moved a lot during a short time period. If the device
will be on the new infrastructure for a short period, it will be more beneficial

23

to leave the avatar on the source infrastructure. To take decisions about this
criteria, a database created for each device should be created if this criteria
will be implemented in the model. The decision will be taken based on the
date (weekdays or weekends), time (Morning, noon, afternoon), place (a lot
visited place, new place), etc.

Using this criteria, non necessary migration will not be executed. Then
the non necessary cost of those migrations will be avoided. This way, our
model presents an optimized evaluation for migration decisions.

4.3.5 Delay

Duration needed for an information to travel across the network from one
endpoint to another is an important criteria where the application needs live
reactivity. To calculate the delay, RTT (Round Trip Time) will be measured
and divided by two to obtain an approximation of delay. In fact an approxi-
mate value is needed; a simple ping can return the mean value for delay. We
will use 10 ping requests to obtain the result. Two cases are used for the delay
comparison. Delay used for the communication between two infrastructures
and the delay needed to communicate in the same infrastructure, these two
values are compared to favorite migration or non migration.

In fact, some avatars needs live reactivity with a minimal delay to ensure
a fast reactivity and avoid problems. This way the best delay will be se-
lected to present the best and adequate service.

4.3.6 Time of integration and downtime

While migrating project and applications between infrastructures, some re-
quirements should be installed. In our case ASAWoO project should be
deployed and there is a possibility that the java environment should be up-
dated or installed. All those requirements demand some time. To calculate
this time, a simple subtraction between the start time of migration and the
time the project is running perfectly will be executed. To do so, the date
command will be used. In addition, the downtime is a crucial criteria as it
represents the time of unavailability of the service neither on the source nor
on the destination. This time is calculated by subtracting the time where
the service is stopped on the source and the service is running perfectly on
the destination using the same date command on Linux.

This criteria, is the most important criteria of our model. As it affects

24

directly the continuity of service. Some avatars needs a minimal downtime,
in this case downtime should be finely monitored and chosen.

4.3.7 Capacity of destination infrastructure

The capacity of the destination infrastructure is another criteria to be con-
sidered. If one of the infrastructures can’t take more calculations, it will be
better to place the avatar on the non overloaded infrastructure. This criteria
will be judged by consulting the number of available VCPU, free memory,
RAM and storage on the destination cloud infrastructure. On OpenStack
those values are represented on horizon (graphical interface of OpenStack)
or can be accessed through requests on nova client.

This last criteria, ensure that the avatar has its needs to offer the best ser-
vices. In case there is a difficulty to obtain the needs on the destination,
the avatar should not be migrated to offer the best service from the most
suitable infrastructure.

4.3.8 Available functionalities on the destination

The functionalities offered by other avatar can induce in a better service of
the whole environment. Some avatars can rely on the functionalities offered
by other avatars to ensure a better service and so on a better client satisfac-
tion.

Other avatars capacities can be an important criteria to study. The function-
alities available on the destination by other avatars are important to consider
in our study for migration decisions. If the destination can present important
functionalities to the avatar, it will be more beneficial to execute the migra-
tion. Semantic description of capabilities and functionalities is done using
OWL (Web Ontology Language) semantic Web language used when there
is a need to process the content of information. The Avatar discovers the
capabilities of an object using introspection techniques by using SAJE that
gives the possibility to offer information about the capabilities of physical
objects [8] [9]. Then the avatar infers its functionalities using a common on-
tology that keeps trace of the different combinations of capabilities required
to achieve each functionality. Semantic descriptions of capabilities and func-
tionalities also provide intelligent resource management facilities. This way
the available functionalities presented by different avatars on the infrastruc-
ture can be processed and used to take decision of migration[8] [9].

25

To implement those criteria in our model of criteria, we should try to find a
way to check the existence of some algorithms and some tasks on the desti-
nation infrastructure.

4.4 Additional Criteria
Through this section we will focus firstly on the availability of QoS mecha-
nisms in the destination cloud computing environments. Those mechanisms
can ensure a prioritized processing for priority communication packets. In
addition, the security and the privacy of the data on the cloud infrastructure
are essential to study. In fact, some data used by the avatars needs to be
secured as it consists in personal data. Additionally, the available function-
alities on the destination can induce in a better offer of the services, so these
functionalities should be represented correctly.

4.4.1 Quality of Service (QoS)

QoS is a new trend in the numeric world. Using the QoS mechanisms can
ensure a better client satisfaction and a better service. In order to respect
the client requirements some priority tasks should be executed before others.
The QoS mechanisms in cloud infrastructures will be presented in what fol-
lows.

QoS mechanism in destination infrastructures is important to consider. To
apply QoS mechanisms in any environment, two functionalities are necessary.
The first one is setting tasks (or packets) into one or different queues. The
other is scheduling between the queues. In fact, some communication pack-
ets between avatars should be prioritized from other packets. In addition,
the infrastructure should offer the required capabilities for proper service
functioning. It is more beneficial to apply QoS mechanisms in the cloud in-
frastructure that hosts the avatar. This way, the infrastructure will ensure a
better service to the user by prioritizing some packets that need to be deliv-
ered faster than others and will offer the required needs.

When we are migrating to a destination cloud infrastructure, and after build-
ing the needed environment, the cloud will deliver cloud computing services
as a SaaS (Software as Service). Consequently, to offer QoS mechanisms,
specific SLAs (Service Level Agreements) that respect the requirements of
SaaS should be established.

Data on clouds are hosted on servers. To satisfy the user on the performance

26

and the availability level, the service provider must have enough ressources
in order to be in line with the avatar needs. Considering the wide variety
of services in SaaS and specifically avatar’s services, it is difficult to provide
a comprehensive and representative list of SLO (Service Level Objective)
for our case. So users should expect the general objectives as the monthly
downtime, response time, the persistence of consumer information, and auto-
matic scalability. In addition, data held on the cloud should be stored using
standard formats to ensure data portability. For this, SaaS services must be
self-elastic to assign the number of servers, databases and computing capaci-
ties required to respect the SLA [23][24]. To ensure that client specifications
are respected, an algorithm, taking the objectives as entry variables, calcu-
lates and applies the configurations on the cloud.

Several works like in [25] are done till now to improve the utilization of servers
allocated to the jobs and the resource utilization, to process the job having
higher priority and finally to minimize the waiting time and the switching
time. To do so, a scheduling technique is used in cloud computing systems.
Other works like in [26], use a proposed Workload consolidation method sup-
ported by virtualization technologies for improving utilization of resources in
data centers and clouds.

Scheduling mechanisms in cloud computing environments induce in man-
aging the processes and in increasing the performance of the servers and
the ressources. Different scheduling algorithms and techniques are available
for the cloud. The goal of cloud task scheduling is to achieve high system
throughput, to allocate various computing resources to applications and to
prioritize some tasks on others. Different examples of scheduling algorithms
can be discussed: FCFS (First come First serve), Round-Robin, Min-Min
algorithm, Max-Min algorithm, etc. Other works had created there own
protocols and techniques for scheduling in cloud computing environments to
improve the performance on several levels. The fact of having a scheduling
algorithms implemented on the infrastructure can ensure a certain level of
QoS [25] [26]. We are not studying which algorithm is the most optimal one,
we are testing if the infrastructure can ensure QoS mechanisms by support-
ing any scheduling algorithm.

Queuing is another important QoS mechanism, response time is defined as
the time for a request to be serviced which corresponds to the waiting time
in the queue and the service time. Consequently, queuing technique induce
response time. The fact of choosing the best queuing technique is important.
Different queuing techniques and queuing model theories are available [27].

27

Again, we are not studying which technique is the most optimal, the simple
fact of using one of them will add QoS mechanisms on the cloud.

So as a conclusion to ensure that QoS mechanisms are available on the in-
frastructure; an algorithm checking if the service’s needs, a scheduling al-
gorithm and a queuing technique should be used on the infrastructure. To
check, if service’s needs are available on the infrastructure, the capacity of
infrastructure criteria will be used. To check the availability of queuing and
scheduling, techniques cloud providers or administrators should present in-
formations about those two criteria.

4.4.2 Security

Security had become an essential criteria in any environment, data should be
protected , communications should be encrypted to respect the privacy of the
communications, etc. In a cloud infrastructure where the data is available
on remote servers, the privacy of the users should be respected. That’s why
security mechanisms and functions should be implemented. The degree of
security risk associated with cloud computing is directly related to the sen-
sitivity of the data that will be stored, processed, or transmitted [28]. The
cloud will deliver avatar’s services as a SaaS. Security challenges in SaaS
applications are the same for any web application technology. Traditional
security solutions are not sufficient, so new approaches are necessary as the
Open Web Application Security Project (OWASP) that identifies ten critical
web applications security threats [29]. In what follows the essential security
mechanisms needed are discussed and defined.

Security mechanisms on cloud infrastructures is another criteria to take into
consideration in order to ensure the data privacy. Security of data and of
communications is a main concern for the cloud environment.While migrat-
ing the avatar from an infrastructure to another, all the mechanisms are
secured via ssh tunnels using public key systems. The security concerns con-
sist on how to secure the communications in the same infrastructure and how
to secure the data on the infrastructure for respecting the privacy of the users.

To ensure the security in an infrastructure, three essential security services
should be available: Confidentiality, Authentication, Integrity. The confi-
dentiality is the measures undertaken to prevent sensitive information from

28

reaching the wrong people, while making sure that the right people can in
fact get it. Data encryption is a common method of ensuring confidentiality,
public key encryption is the best way till now to ensure this service. Authen-
tication is the process used by a system in order to verify the identity of a
user trying to access it. Different techniques of authentication are available:
public key authentication, login/password authentication, etc. Integrity en-
sure the consistency, accuracy, and trustworthiness of data [30]. It ensures
also that data did not changed in transit. These measures include file permis-
sions, user access controls, some means to detect any changes in data caused
by non-human events. These means include checksums, even cryptographic
checksums, for verification of integrity. Secure communication between the
different part of the avatar residing on different places on an infrastructure
is needed also to ensure the security. Secure communication is when two
entities can communicate in a way not susceptible to interception. To en-
sure this, an encryption is needed, public key encryption will ensure that the
communication is just readable by the the two communication entities [30]
[31].

Consequently, data encryption, authentication methods and integrity check
are essential for securing the infrastructure. The presence of such techniques
indicates that security is taken into consideration on the infrastructure and
for the communication between different part on the destination. We need to
check the availability of security mechanisms on the destination to consider
the target infrastructure as secured.

4.5 Deployment of the model of criteria
Our model based on several criteria is implemented through a shell code.
Two variables are used (migration and non migration) to make at the end a
decision to perform. After evaluating each component and based on the re-
sults obtained during the evaluation, the weight of the criteria will be added
to the corresponding variable. At the end, these two values will be compared
and the decision will be taken.

First, the capacity of the source infrastructure is tested: if it is not suit-
able for the avatar, the avatar will be migrated to the destination and there
is no more measurements for other criteria. If not, the evaluation based
on the other criteria will take place. Next, the bandwidth usage will be
tested to find if the migration is more beneficial. Then, integration time and

29

Downtime are evaluated. Finally, energy consumption, and the capacity of
destination infrastructure are evaluated. As mentioned before, the two vari-
ables, migration and non migration, will be compared and the best decision
will be made.Figure 8 shows a model explaining the functioning of the model
of criteria .

Figure 8: Schema model of criteria

This section presented the migration method used in our approach. In addi-
tion, the model of criteria that had been discussed is the base of our study.
Using this model the results that will be explained next are measured and
calculated.

5 Experiments and evaluation
This section presents the different measurements and values for each criteria
in the model described in the previous section. In addition a mean value and
a standard deviation for each criteria are presented also. Finally, the results
are analyzed and explained.

5.1 Measurements
The values and measurements are represented using tables to simplify the
representation. Table 1 shows different measurements for different metrics
of the criteria’s model for each scenario case. In addition, Table 2 shows the
mean value and the standard deviation for each case. Case 1 corresponds to

30

the scenario where all dependencies are available on the destination without
the felix runtime environment. The second case corresponds to the scenario
where all dependencies are available on the destination with the felix run-
time environment. Finally, case 3 corresponds for a migration to a plain
destination infrastructure.

5.2 Interpretation
As we can see in the result before the time of integration is considerable.
In fact the DevStack environment we are using as a second infrastructure
is on a local machine. This local machine has limited capacities in term
of power calculations (CPU) and in term of memory resources which create
this considerable time. To be sure we had monitored the CPU usage and
the memory usage during migration in our source infrastructure (DevStack).
The CPU usage before migration is about 25,9 %, during the migration the
usage of the CPU passes to 50 % , 98 % and then 100 %. In addition the
memory access before migration was 38/116 MB and during migration, it
passes to 92/116 MB. In addition, as we can see the percentage of downtime
over the integration time is around 1,14 % for the first case, 2,67 % for the
second case and 0,89 % for the third case. The continuity of service will
be ensured and the service will be unavailable for around 10 seconds for the
three cases. For the energy consumption, we obtained reasonable values. For
the first case the energy consumption is approximately about 1,72 Wh (Watt
hour), for the second it is about 0,69 Wh and for the third it is about 1,86
Wh. These values are acceptable as the time of integration is less than half
an hour so for each migration, the energy consumption is minimal.

Case 1 Case 2 Case 3
Experiment 1 Experiment 2 Experiment 3 Experiment 1 Experiment 2 Experiment 3 Experiment 1 Experiment 2 Experiment 3

Integration
Time (s) 1015 996 1137 341 325 343 1194 1252 1209

Downtime
(s) 11 11 14 5 10 11 11 10 14

Used Data
(MB) 214,24 276,14 212,26 62,17 67,22 80,65 300,07 301,12 301,02

Delay
(ms) 3,83 6,93 4,54 3,30 3,52 2,35 4,24 8,83 3,52

Energie
Consumption (J) 6101,16 6215,04 6311,25 2315,39 2312,05 2802,31 6961,03 6873,4 6274,71

Table 1: Values of different metrics

The interpretation shows that our approach can be used on a real appli-
cation and on powerful infrastructures. In fact our results can be improved
by using more powerful infrastructures as the time of calculations will be
reduced and the CPU percentage also.

31

Case 1 Case 2 Case 3
Mean Standard Deviation Mean Standard Deviation Mean Standard Deviation

Integration
Time (s) 1049,33 76,51 336,33 9,86 1218,33 30,11

Downtime
(s) 11,85 1,73 8,66 3,21 11,66 2,08

Used Data
(MB) 234,21 36,23 70,01 9,55 300,73 0,57

Delay
(ms) 5,10 1,62 3,05 0,62 5,53 2,87

Energie
Consumption (J) 6209,15 105,17 2476,58 282,09 6617,87 383,62

Table 2: Mean and standard deviation for different metrics

6 Conclusion
The existence of avatars as an extension to physical objects is currently an
ongoing work in the ASAWoO project. From here it is important to study
the different life-cycles of the avatar and specifically the migration. In this
report, we had presented a simple method to migrate the avatar between
cloud infrastructures. Our method is based on basic commands on Unix. In
addition, this report presents a concrete model for migration evaluation. It
is a model of criteria based on a multiple criteria to evaluate the relevance
of migration and on a set of shell scripts to drive the migration process from
cloud to cloud. The migration, one of the most important life cycle of avatars
is studied through this internship. Specifically, the study focuses on how and
when to ensure the migration. In addition, it focuses on the cost of the mi-
gration.

Through the model of criteria, different physical and software tools had been
used to measure the different metrics to evaluate the project migration. Our
study has shown that service continuity can be ensured through our approach
with a minimal downtime. The energy consumption of our approach can be
explained as we are migrating a big project, so we are using a lot of CPU
and memory.

Future works consists in studying different phases of the life-cycle of the
avatar. Replication is one of these life-cycle. An example, is the avatar’s
replication when there is a need. In fact, the replication of the avatar is
considered when different physical object have the same capabilities. In this
case, these objects need the same avatar, and replication can be useful. Ad-
ditionally, the study can be based on how to create the replication on an
environment that can support only one avatar. Furthermore, the model of
criteria proposed depend on the type of the avatar. For this, a study can be

32

made to automatically adapt the importance of each criteria and give them
the corresponding weight for weighted average calculations. To do so, meta-
data informations should be used. The studies on this project are important
as a lot of work should be done to have a complete solution that adapt itself
for the scenario.

33

References
[1] Deze Zeng, Song Guo, and Zixue Cheng. The Web of Things: A Survey,

School of Computer Science and Engineering, The University of Aizu,
Japan. 15 June 2011.

[2] Michael Mrissa, Lionel Mni, Jean-Paul Jamont, Nicolas Le Sommer and
Jme Laplace. An Avatar Architecture for the Web of Things, LIRIS Lab-
oratory, Universit Lyon, France. July 2014

[3] Michael Mrissa, Lionel Mni, Jean-Paul Jamont, Nicolas Le Som-
mer and Jme Laplace. Towards An Avatar Architecture for
the Web of Things, LIRIS Laboratory, Universit Lyon, France.
http://www.itu.int/osg/spu/publications/internetofthings/

[4] Cristian Borcea, Xiaoning Ding, Narain Gehani, Reza Curtmola, Moham-
mad A Khan, Hillol Debnath. Avatar: Mobile Distributed Computing in
the Cloud, Department of Computer Science, New Jersey Institute of
Technology University Heights, Newark, New Jersey, 07102, USA. 2015

[5] W3C Recommendation. "OWL Web Ontology Language Overview". 10
February 2004 https://www.w3.org/TR/owl-features/

[6] Vinicius F. S. Mota, Felipe D. Cunha, Daniel F. Macedo, Jos S. Nogueira,
and Antonio A. F. Loureiro. Protocols, Mobility Models and Tools in Op-
portunistic Networks: A Survey, Computer Communi- cations, vol. 48,
pp. 5-19, March 2014

[7] Gita Sukthankar, Robert P. Goldman, Christopher Geib, David V. Pyna-
dath, and Hung Bui. Plan, Activity, and Intent Recognition: Theory and
Practice, Morgan Kaufmann 2014

[8] Michael Mrissa, Mohamed Sellami, Pierre De Vettor, Djamal Bensli-
mane, and Bruno Defude, A decentralized mediation-as-a-service architec-
ture for service composition in WETICE, Sumitra Reddy and Mohamed
Jmaiel, Eds. 2013, pp. 80-85, IEEE.

[9] ANNE-CECILE ORGERIE, MARCOS DIAS DE ASSUNCAO, LAU-
RENT LEFEVRE A Sur- vey on Techniques for Improving the Energy
Eciency of Large Scale Distributed Systems INRIA, LIP Laboratory, Uni-
versity of Lyon, France, CNRS, IRISA Laboratory, France, IBM Re-
search, Brazil

[10] Live Migration, https://www.techopedia.com/definition/16813/live-
migration

[11] Migrating Virtual Machines and Storage Overview,
https://technet.microsoft.com/en-us/library/jj628158.aspx

[12] ZHANG WeiShan, CHEN LiCheng, LIU Xin, LU QingHua, ZHANG
PeiYing, YANG Su. An OSGi-based flexible and adaptive pervasive cloud
infrastructure, Department of Software Engineering, China University of
Petroleum - College of Computer, Fudan University. 2013

[13] Zhang Y, Huang G, Liu X Z, et al. Refactoring android java code for
on-demand computation offloading. In: Proceedings of the ACM Interna-
tional Conference on Object Oriented Programming Systems Languages
and Applications, New York: ACM, 2012. 233-248

[14] Keling Da, Marc Dalmau, Philippe Roose Kalimucho: Middleware for
mobile applications, Universit Pau et des Pays de l’Adour - France. March
2014

[15] ANNE-CECILE ORGERIE, MARCOS DIAS DE ASSUNCAO, LAU-
RENT LEFEVRE A Sur- vey on Techniques for Improving the Energy
Eciency of Large Scale Distributed Systems INRIA, LIP Laboratory, Uni-
versity of Lyon, France, CNRS, IRISA Laboratory, France, IBM Re-
search, Brazil

[16] Greenpeace 2011. How dirty is your data?, Greenpeace report.

[17] Sharma, R., Bash, C., Patel, C., Friedrich, R., and Chase, J. Balance of
Power:Dynamic Thermal Management for Internet Data Centers IEEE
Internet Computing 9, 1, 42 - 49. 2005

[18] Hitesh Khandelwal, Ramana Rao Kompella, Rama Ramasubramanian
Cloud Monitoring Framework December 8, 2010

[19] Mehdi Terdjimia, Lionel Médinia, Michael Mrissaa Towards a Meta-
model for Context in the Web of Things KSS Research Workshop Febru-
ary 25 -26, 2016

[20] Mikael Desertot, Si-Ho Do, Didier Donsez, Marc Bui Mobile Agents
Platforms over OSGi 4th International Conference on Computer Sciences,
Research Innovation and Vision for the Futur February , 12-16, 2006,

[21] Davy Preuveneers and Yolande Berbers Context-driven migration and
diffusion of pervasive services on the OSGi framework Autonomous and
Adaptive Communications Systems 2010

[22] Damianos Maragkos Replication and Migration of OSGi Bundles in the
Virtual OSGi framework Swiss Federal Institute of Technology Zurich
2008

[23] Cloud Standards Customer Council Practical Guide to Cloud Service
Level Agreements Version 1.0 2012

[24] Yousri Kouki, Damierrano, Thomas Ledoux, Pierre Sens, Sara
Bouchenak SLA et qualit service pour le Cloud Computing 2013

[25] Lipsa Tripathy and Rasmi Ranjan Patra SCHEDULING IN CLOUD
COMPUTING International Journal on Cloud Computing: Services and
Architecture (IJCCSA) , October 2014

[26] Xiaocheng Liu, Albert Y. Zomaya, Fellow IEEE, Chen Wang, Bing Bing
Zhou, Junliang Chen, Ting Yang, Priority-Based Consolidation of Par-
allel Workloads in the Cloud. IEEE Transactions On Parallel And Dis-
tributed Systems, Vol. 24, No. 9, September 2013

[27] Er. Shimmy and Mr. Jagandeep Sidhu DIFFERENT SCHEDULING
ALGORITHMS IN DIFFERENT CLOUD ENVIRONMENT Chitkara
University, India, September 2014

[28] Jordi Vilaplana, Francesc Solsona, Ivan Teixidrdi Mateo, Francesc
Abella, Josep Rius A queuing theory model for cloud computing Uni-
versitat de Lleida, 09 April 2014

[29] GEMINI Security Solutions A Brief Security Overview of Cloud
Computing http://geminisecurity.com/wp-content/uploads/tools/a-
brief-security-overview-of-cloud-computing.pdf

[30] KeikoHashizume, DavidGRosado, EduardoFernez-Medina and
EduardoBFernandez An analysis of security issues for cloud
computing Journal of Internet Services and Applications, 2013,
https://jisajournal.springeropen.com/articles/10.1186/1869-0238-4-5

[31] Matthew Haughn, Stan Gibilisco, http://whatis.techtarget.com/definition/
Confidentiality-integrity-and-availability-CIA

[32] Cloud Standard Customer Council Security for Cloud Computing Ten
Steps to Ensure Success Version 2.0, March, 2015

