
Project Architecture

Deliverable 1.1 (version 1)

Université Lyon 1 - LIRIS

07 March 2015

Project ASAWoO

Adaptive Supervision of Avatar / Object Links for the Web of Objects

Grant Agreement: ANR-13-INFR-0012-04



Deliverable 1.1

Abstract
The deliverable has for objective to globally define the ASAWoO architecture. First, it defines the vocabu-
lary, before describing the avatar architecture as well as the global view of avatar communities.

Contents
1 Introduction 2

2 Vocabulary 2

3 Avatar architecture 2

4 Avatar communities 3

5 Interaction diagrams for avatar components 6

1



Deliverable 1.1

1 Introduction
In this deliverable, we present the specification of the global ASAWoO architecture. We first introduce our
vocabulary (avatar, WoT application, functionality and capability), before describing our avatar architecture
and its components, their role and operation (retrieval of basic object capabilities, functionality discovery,
filtering and orchestration, code deployment, object collaboration and avatar interaction). We then introduce
the notion of community and describe how avatars interact in communities.

2 Vocabulary
• Avatar : piece of software that extends a physical object

• WoT Application (WoTApp) : software component that has a GUI and offers a functionality to a
user. An application can be available or not depending on the environment. The WoT application
depends on the functionalities that the objects present in the environment offer.

• Functionality : high level features that avatars can expose on the Web and can be viewed as the in-
terfaces that capabilities implement. Functionalities are utilized in WoT applications. There are three
ways for implementing a functionality: directly with a capability exposed by an object or a service
endpoint, or indirectly through a combination of several functionalities that are themselves imple-
mented. The functionality class has a isComposedOf property that allows for describing complex
functionalities that are composed of other functionalities. It also has an isImplementedBy property
that describes how a functionality is realized with a capability.

• Capability : the physical action that an object can realize. Capability instances provide an implemen-
tation for a functionality. We defined three subclasses for the Capability class : ActuatorCapability,
ProcessingCapability and SensorCapability, that respectively denote physical actions, data process-
ing, and detection.

3 Avatar architecture
The avatar architecture is called the “WoT Runtime Environment”, as depicted in Fig 1. It is composed of
a framework in which are plugged a set of components called managers, which are grouped in modules.
Each manager takes charge of a specific concern and interacts with other components using a specific API1.
The core module of the avatar architecture deploys the components into the framework via the “Component
Deployment Manager” and furnishes low-level components that other managers require to perform caching
and reasoning tasks. Each logical component of the avatar architecture can be executed either on the object
or in the cloud. Avatars belong to a WoT infrastructure that is restricted to the local network for privacy
reasons. However, the infrastructure enables inter-avatar communication as well as limited interactions with
the external Web.
At initialization time, the “Capability Manager” of the “Local Functionality Module” queries the “Appliance
Manager” to retrieve the basic capabilities that the object can perform. The “Appliance Manager” relies
on drivers configured with the “Appliance Configuration Manager” and loaded via the “Appliance Driver
Manager” to interact with the object.
Then, the “Local Functionality Manager” semantically discovers the functionalities that the object can
achieve using these capabilities. To do so, it queries the internal reasoner of the avatar that reasons about
the functionality ontology. Some functionalities are complex and involve several functionalities to be fully
realized. In such case, there is a need for a specific language to describe the orchestration of functional-
ities. One possible solution is to use the SCXML language, however, it is possible to rely on a different
language to describe complex functionalities depending on their needs. The discovered functionalities are
filtered using the “Context Manager” and “Privacy Manager”, in order not to expose unsafe or unrealizable
functionalities.

1Application Programming Interface

2



Deliverable 1.1

Figure 1: Avatar Architecture

The filtered functionalities are exposed as services to users and other avatars by the WoT application server.
When a service is invoked, the local orchestration engine embedded in the avatar triggers the invocation of
services based on the description of the functionality orchestration. For each “atomic” functionality (that
is realized by a capability), the actual implementation of the capability is specific to each object and stored
in an application code repository. The application code that implements the functionalities is executed in
a second internal framework, called the “WoT Application Container”. The code is dynamically deployed
from the code repository into the framework at execution time.
In the same fashion, the “Collaborative Functionality Discovery Manager” semantically discovers the func-
tionalities in which the object can be involved but require collaboration with other objects. It is queried by
the “Collaborative Agent Manager”, that interacts with other avatars through the Web service module.
The “WoT Application Server” component exposes available functionalities as REST resources. Each
avatar thus uses the HTTP client module to lookup or invoke avatar resources in the WoT infrastructure,
or query external Web services. The avatar also uses the Interoperability and Communication modules to
respectively connect to the object and communicate with it using the most optimal network protocols. At
the end of this document are the different interaction diagrams inside the avatar.

4 Avatar communities
Avatars on the Web form communities. Communities enable avatars to communicate with each others. We
identify two parameters that demarcate the boundaries of communities.

• geolocalisation : avatars that represent physical appliances that interact together and provide physical
functionalities if they are located at the same place

• functionality : avatars that provide location-independent functionalities such as calculation services
can be located anywhere and can be made available in all the communities

We propose a federated structure for avatar communities, where the avatars located in the same place can
directly interact together, and where requests to additional functionalities can be progressively redirected
to wider areas until the required functionality is found. Avatars collaborate to provide users with WoT
applications.
Interactions between avatars can lead to exhibit collective behaviours. We can concretely reuse all the works
exhibited in multiagent systems in the context of these avatar: an avatar is an autonomous agent.

3



Deliverable 1.1

To enable collective behaviours, avatars must first discover which functionalities they can fulfil coopera-
tively. This will be done by requesting the application functionalities ontology. Then they must negotiate
with one another to plan how to achieve these functionalities. This will require both a negotiation model
and a communication protocol. This task will then be divided in three tasks:

1. Enable complex tasks requests. An avatar has a functionalities management module. It may to
respond to requests regarding functionalities that overcome the possibilities of the object. Technically,
it consists in generating and sending to the functionalities ontology SPARQL requests equivalent to
"what can I almost do with" and containing the set of local functionalities already discovered. The
response to this query will be a set of super-functionalities, ordered by increasing number of missing
functionalities in the input parameters and by the semantic distance between them. Indeed, we assume
that when missing functionalities are close in the functionalities ontology, they are more likely to be
available on the same object.

2. Inter-avatar cooperation model. It is necessary to define the core of the negotiation process between
avatars, in order to identify functionalities that can be performed cooperatively. It will be based on a
multiagent interaction model, so that avatars will be designed as autonomous agents that can use the
context model to self-adapt their behaviour to contextual changes and pro-actively reorganize the set
of exposed single and multi-object functionalities.

3. Inter-avatar communication as semantic Web services. Then, it will encapsulate the inter-avatar com-
munication messages into semantic Web service. The challenge here is to reach semantic inter-
operability between various types of devices throughout standardized inter-avatars communication
protocols. Languages and technologies from the semantic Web have been studied for the past few
years as they allow describing a domain knowledge vocabulary in a semantics-explicit and machine-
interpretable way, using an ontology description schema. The commonly adopted standard language
for building ontologies is OWL, which is built on top of RDF and RDF-Schema. These advances have
been exploited on the Web, in particular with semantic annotations relying on RDFa , microformats
or microdata annotations. The envisioned format for exposing avatar functionalities in semantic Web
services and "semantified" Web pages is currently HTML + RDFa.

Avatar are software entities evolving in an environment that they can partially perceive and in which they
acts. They are endowed with autonomous behaviours and has objectives. Autonomy is the main concept in
the agent issue: it is the ability of agents to control their actions and their internal states. The autonomy of
agents implies no centralized control [6].
An avatar community can be seen as a multiagent system. It is set of avatars situated in a common envi-
ronment, which interact and attempt to reach a set of goals. Through these interactions a global behaviour,
more intelligent than the sum of the local intelligence of avatars, can emerge.The emergence paradigm deals
with the non programmed and irreversible sudden appearance of phenomena in a system confirming that
"the whole is more than the sum of each part". It is one of the expressions of collective intelligence [2].
Avatars can evolves different type of global behaviours (fig. 2). In this work, we assume the avatars want
to reach the user requirements disregarding their own local goals (energy consumption reduction etc.). We
then focus on cooperation and more precisely on simple collaboration situations. Our approach enable to
change these assumptions but, in this case, we have to adapt individual behaviours of avatars.
Building a collaborative system requires to inspect different of its aspects [3]. In multiagent system, de-
signers pay attention to:

• the environment deals with elements necessary for the multiagent system realization such as the
perception of this environment and the actions one can do on it

• the organizations allows to order agent groups in organizations determined according to their roles.

• the interaction includes all elements at stake for structuring the external interactions among the agents
like agent communication language and interaction protocols.

• the agents gathers all elements for defining and constructing these entities. It concerns the agent’s
know-how and knowledge, its model and its architecture.

4



Deliverable 1.1

Situation type Goals Resources Skills Category

IndependanceIndependance

CompatibleCompatible

SufficientSufficient
IndifferenceIndifference

Simple collaborationSimple collaboration

CooperationCooperationObstructionObstruction

InsufficientInsufficient
Coordinated 
collaboration

Coordinated 
collaboration

Pure individual 
collaboration

Pure individual 
collaboration

IncompatibleIncompatible AntagonismAntagonism

Pure collective 
competition

Pure collective 
competition

Individual ressource 
conflict

Individual ressource 
conflict

Collective ressource 
conflict

Collective ressource 
conflict

SufficientSufficient

InsufficientInsufficient

SufficientSufficient

InsufficientInsufficient

SufficientSufficient

InsufficientInsufficient

SufficientSufficient

InsufficientInsufficient

SufficientSufficient

InsufficientInsufficient

Figure 2: Classification of interaction situation [4]

These notions can be considered from a global (system centred) or a local (agent centred) point of view.
Building the multiagent systems consists often into integrate these different aspects in agent architectures.
Communication enable avatar to exchange information. They are at the origin of interactions and social
organization of avatars. An interaction protocol governs relations between avatars to meet the global goals
of the multi-avatar system. However avatars are autonomous: they can initiate, sustain, and detach them-
selves from these relationships. Considering an agent which accepts to use an interaction protocol, it have
to accept the associated semantic too. When the agent is in a given state of the interaction, it can receive
one message of a finite known set. Its answer will be a message of a pre-determinate set too.
They are a lot of works on interaction protocols. The contract net protocol (fig. 3) is an example of
interesting interaction protocol for cooperative problem among agents. It provides a solution for the so-
called connection problem: finding an appropriate agent to work on a given task. It is the good candidate
for your problem. Considering an avatar a which require a functionality. The contract net interaction
protocol is implemented into four steps:

1. Announce: Avatar a initiated interaction to announce its requirement;

2. Proposition: Avatars which can perform the functionality send their proposals;

3. Decision: After analysis of the received proposals, a choose the proposition of b which seem be the
best solution;

4. Contract: The contract between a and b is engaged.

Organization is seen as a division of tasks and a distribution of roles. At each role is associated a behaviour.
Here, roles and tasks coming from the scenario analysis. But another organization can occurs. In fact,
our approach where where socially situated avatar may depend on one another to achieve their own goals
can lead to the notion of dependence networks. Considering an avatar a which gives a proposal to an
initiator avatar b. a can be initiator of another interaction because he requires a task to make the proposal.
Dependence theory [1, 5] provides a nice framework to model such phenomena.

References
[1] CASTELFRANCHI, C., CESTA, A., CONTE, R., AND MICELI, M. Foundations for interaction: The

dependency theory. In Advances in Artificial Intelligence, Third Congress of the Italian Association for

5



Deliverable 1.1

Initiator Participant

call-for-proposal(task)

x

refuse(task)

not-understood(task)

propose(task,proposal)

x

reject-proposal(task,proposal)

accept-proposal(task,proposal)

inform(task)

cancel(task)

x

Figure 3: AUML representation of the Contract Net protocol

Artificial Intelligence, AI*IA’93, Torino, Italy, October 26-28, 1993, Proceedings (1993), vol. 728 of
Lecture Notes in Computer Science, Springer, pp. 59–64.

[2] DEGUET, J., DEMAZEAU, Y., AND MAGNIN, L. Elements about the emergence issue: A survey of
emergence definitions. Complexus 3, 1-3 (2006), 24–31.

[3] DEMAZEAU, Y. From interactions to collective behavior in agent-based systems. In European Confer-
ence on Cognitive Science (Saint-Malo France, 1995).

[4] FERBER, J. Multi-Agent Systems: An Introduction to Distributed Artifical Intelligence. Paperback,
1999.

[5] SICHMAN, J. S., CONTE, R., CASTELFRANCHI, C., AND DEMAZEAU, Y. A social reasoning mech-
anism based on dependence networks. In ECAI (1994), pp. 188–192.

[6] WOOLDRIDGE, M.-J. Intelligent agents. In Multiagent systems : A modern approach to Distributed
Artificial Intelligence (1999), G. Weiss, Ed., MIT Press.

5 Interaction diagrams for avatar components

6



Deliverable 1.1

Figure 4: Initialization phase

Figure 5: Collaboration initialization phase

7



Deliverable 1.1

Figure 6: Event Polling

Figure 7: Event Capability Change

8



Deliverable 1.1

Figure 8: Event Context Change

Figure 9: Functionality Request Phase

9


	Introduction
	Vocabulary
	Avatar architecture
	Avatar communities
	Interaction diagrams for avatar components

